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Does equilibrium or nonequilibrium molecular dynamics correctly simulate thermal transport
properties of carbon nanotubes?
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There has been a lot of debate on whether non-Fourier thermal conduction can be observed in quasi-one-
dimensional materials such as carbon nanotubes (CNTs) and, additionally, whether the phenomenon can be
found by equilibrium or nonequilibrium molecular dynamics (EMD or NEMD) simulations. In fact, so far EMD
and NEMD simulations have revealed disparities of thermal transport in CNTs, ranging from purely diffusive
behavior, to diffusive-ballistic transition, and to non-Fourier thermal conduction. By carefully examining the
roles of interfacial thermal resistances and applied temperature differences in NEMD simulations, we show that
the two effects often yield spurious results. After removing the unwanted effects that have been overlooked by
previous works, we find that most EMD and NEMD simulations on CNTs consistently display diffusive thermal
conduction for length (L) > 200 nm. The finding is further supported by the disappearance of nonlocal thermal
conduction for L > 200 nm. Our results clarify many discrepancies of previous works and point out that nonideal
thermostats commonly used in EMD and NEMD simulations would give an effective contact thermal resistance
that misleads data interpretations. Overall, we find EMD and NEMD simulations conducted so far disagree with
the current experimental results of nondiffusive thermal conduction in CNTs.
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I. INTRODUCTION

Heat transfer phenomena in nanoscale materials are known
to be characteristically different from their bulk counterparts
[1]. Effects such as phonon transmission across interfaces,
phonon scatterings at surfaces/boundaries, and phonon
confinements all become more significant in nanoscale.
Interestingly, dimensionality of materials has been suggested
to play an important role in heat transfer as well [2]. The topic
has been raised when people find that in one-dimensional
(1D) systems, the thermal conductivity (ĸ) increases with
increasing sample length (L) in an anomalous (κ ∼ Lα ,
α < 1) manner, deviating from conventional diffusive (α = 0)
or ballistic (α = 1) thermal conduction [3,4]. Moreover, the
anomalous effect also suggests that ĸ would diverge with L
without saturation, and the effect is found to be insensitive
to disorders [5,6], the presence of a constant temperature
gradient [7], or nonlinear phonon interactions [3,4]. Hence,
after the theoretical discovery, the criteria of Fourier’s law,
the universality of the anomaly, and the underlying physical
mechanisms have become long-time puzzles for decades
[4,8,9]. Because the heat transfer process in 1D systems
apparently deviates from the normal diffusion process,
phenomena displaying α > 0 are sometimes referred to as
non-Fourier thermal conduction [3,4].
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Despite the intense theoretical investigations on many 1D
toy models, it is curious whether the phenomena could be
observed in real materials. Because of the pronounced phonon
confinement effect, single-wall carbon nanotubes (CNTs)
have been suggested to be quasi-1D systems that may display
non-Fourier thermal conduction. However, so far both equi-
librium and nonequilibrium molecular dynamics (EMD and
NEMD) simulations on CNTs have yielded inconsistent re-
sults [10–22]. For example, while some works have suggested
that ĸ would continue to diverge with L without saturation
at 300 K, the fitted α’s have varied from one to another,
even when the simulated CNTs are of identical structures
[10,11,14,15,17,19,22]. On the other hand, several works have
instead shown that CNTs display ballistic to diffusive transi-
tion when L is large, and estimated the phonon mean free path
to be ∼1 μm at 300 K [12,20,21]. Finally, some other works
have also reported ĸ’s of CNTs to be length independent,
displaying purely diffusive thermal conduction [16,18].

The disagreements between MD simulations have raised
concerns. Lukes and Zhong discussed the discrepancies be-
tween EMD and NEMD simulations on the value of ĸ’s and
attributed them to the length dependence of ĸ, an effect that
was not appreciated at that time [17]. However, they also noted
that many discrepancies could not be completely resolved
without knowing the subtleties in the MD simulations, such
as interatomic potentials, boundary conditions, and thermal
baths, etc. [17]. There were also discrepancies between MD
simulations and results from the Boltzmann transport equa-
tion [16,23,24]. For example, Mingo and Broido incorpo-
rated three-phonon scattering processes and found that the
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divergence of ĸ would terminate at L ∼ 1 mm [23]. On the
other hand, Donadio and Galli compared EMD simulations
and Boltzmann transport equations and found that ĸ would
saturate at ∼7000 W/mK when L ∼ 20 nm [16]. Recently,
Sääskilahti et al. pointed out higher-order scatterings were
either neglected or treated approximately in previous calcula-
tions [22]. They instead extrapolated phonon mean free paths
from their NEMD simulation to follow ω−0.97 (ω is phonon
frequency) for low-frequency phonons and suggested ĸ would
continue to increase at least up to L = 4 μm [22].

Experimentally, length-dependent ĸ measurements have
been conducted by several groups. Chiu et al. studied length-
dependent thermal transport by using electrical breakdown of
multiwall CNTs and estimated the phonon mean free path
to be 0.2 μm [25]. Chang et al. simultaneously measured
length-dependent electrical and thermal transport of multiwall
CNTs and demonstrated that the ĸ vs L relation deviated from
the electrical, diffusive counterparts for L ∼ 4 μm [26]. They
found α = 0.6 to 0.8, closer to conventional ballistic thermal
conduction. Liu et al. employed optical measurement to probe
the ĸ vs L relation of a single-wall CNT [27]. They found
κ ∼ L0.65 up to L = 5 μm and then ĸ saturated at L > 10
μm. However, the latter claim was inconclusive due to the
intrinsic noise associated with their optical measurements.
Recently, Lee et al. improved the measurement sensitivities
and obtained the length dependence of ĸ for L > 1 mm
[28]. Interestingly, they found α = 0.2 to 0.5 for L > 400
μm, falling within the α’s estimated from 1D models [2].
From these works, we found strong experimental evidence for
room temperature non-Fourier thermal conduction, at least at
microscale.

Because a genuine non-Fourier thermal conductor would
display κ ∼ Lα , many researchers plotted ĸ vs L data and
interpreted the divergence of ĸ as the evidence of non-
Fourier thermal conduction. On the other hand, because of
the mismatch of the phonon spectrum between thermal baths
and the sample, interfacial thermal resistances would occur
at the boundaries of an investigated system. Recently, we
pointed out that finite interfacial thermal resistance would
give spurious divergence of ĸ, leading to misinterpreting the
experimental data as evidence of ballistic thermal conduction
in Si or Ge [29].

To emphasize our point, we note that the ĸ vs L relation
reflects the thermal transport of the whole investigated sys-
tem, which includes the sample and the contacts jointing the
thermal baths. The statement is correct for any experimental
measurements as well as any NEMD simulations that em-
ploy thermal baths. Thus, for a thermal conductor (assuming
κsample ∼ Lα , or equivalently, Rsample = aL1–α , where a is a
constant) jointing to two thermal baths, the total thermal
resistance (Rtotal) of the system can be expressed as

Rtotal = aL1−α + Rc, (1)

where Rc is the interfacial thermal resistance. Following the
definition κ ≡ L/RA (where A is the cross-sectional area of
the sample), we can convert Rtotal into total thermal conduc-
tivity of the investigated system (κtotal):

κtotal = L/A

aL1−α + Rc
. (2)

We note that κtotal → 0 as L → 0 even for α = 0 (i.e.,
diffusive thermal conduction). Thus if we simply plot the κtotal

vs L data without noticing the presence of Rc in the system,
one could misinterpret the data as the evidence for non-
Fourier thermal conduction. As shown in Fig. 1(a), the κtotal vs
L relation of a diffusive conductor with finite Rc would look
very similar to that of a non-Fourier thermal conductor with
α = 0.206. Furthermore, a non-Fourier thermal conductor for
α = 0.3 and finite Rc could be mistakenly regarded as for
α = 0.51 with Rc = 0. Although one may investigate sam-
ples of very long lengths [i.e., L � √

Rc/a, as displayed by
L > 12 in Fig. 1(a)] to make a distinction, the criterion usually
goes beyond the capabilities of ordinary MD simulations and
cannot be realized in practice.

Because Rc = 0 should not be a priori in any investigated
systems, we have advocated to plot the ARtotal vs L rela-
tion (ARtotal ≡ L/κtotal) to avoid data misinterpretation [29].
Accordingly, the contribution of Rc’s can be read from the
intercept at the y axis when L → 0, as shown in Fig. 1(b).
After removing the unwanted Rc, the method will help to
uncover the unambiguous evidence for non-Fourier thermal
conduction, as displayed in Fig. 1(c).

In addition, we note that the above phenomena are estab-
lished on the theorem of linear responses; that is, non-Fourier
thermal conduction should not vanish when the applied tem-
perature difference (�T) across the sample is reduced. In
practice, �T is always kept large (>20 K) in most NEMD
simulations to minimize uncertainties caused by thermal fluc-
tuation. One is thus required to justify the �T used in the
simulation and demonstrate that the non-Fourier thermal con-
duction is robust when the �T becomes smaller.

In this paper, we investigate the effects of Rc and �T
to thermal transport of CNTs using NEMD simulations. In
Sec. II, we discuss the simulation method. In Sec. III, we
show that even when a linear temperature profile of a CNT
is used for estimating ĸ’s, unwanted effects of Rc still emerge
in the ĸ vs L relation, yielding spurious non-Fourier thermal
conduction. We have confirmed our finding by changing the
mass of thermal baths to induce Rc. Furthermore, we also
find that reducing �T would make the non-Fourier thermal
conduction disappear, rendering the estimated α’s unreliable.
In Sec. IV, we reexamine previous works and find that the
overlooked effects could invalidate previous findings on non-
Fourier thermal conduction or ballistic-diffusive transitions.
In fact, most EMD and NEMD simulations consistently give
diffusive thermal transport starting at very short L’s. However,
they disagree with experimental results. In Sec. V, additional
support based on nonlocal thermal conduction is shown to
give consistent results that CNTs behave like a diffusive
thermal conductor for L > 200 nm. In Sec. VI, we discuss
the idea that the origin of the Rc could be due to nonzero
output thermal resistance from a nonideal thermostat. Finally,
we summarize the results and discuss some possible directions
to remedy the problems.

II. METHODS

The nonequilibrium molecular dynamics approach was
employed to study thermal conductivity of (4,4) nanotubes
using the LAMMPS package. Here a temperature difference
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FIG. 1. (a) ĸ vs L relation of a diffusive conductor (α = 0,
blue solid line) with Rc = 1 would look very similar to that of a
non-Fourier thermal conductor with α = 0.206 and Rc = 0 (dark
cyan dotted curve). Additionally, a non-Fourier thermal conductor
with α = 0.3 and Rc = 1 (brown dashed curve) could be mistakenly
regarded as α = 0.51 with Rc = 0 (orange dashed-dotted curve).
Here we have assumed κ = Lα . (b) When plotting the corresponding
data using Rtotal vs L, the contribution of Rc’s can be estimated by the
intercept at the y axis when L → 0. (c) After removing the unwanted
contribution of Rc’s, the data can reveal non-Fourier thermal conduc-
tion. Here the thermal conductivity, thermal resistance, and lengths
are of arbitrary units.

FIG. 2. (a) A CNT in a nonequilibrium MD simulation is divided
into a number of equal cells. Fixed boundary conditions are applied
at two ends next to the thermal controlled region. (b) A represen-
tative temperature profile of a 1.5-μm-long CNT. To minimize the
unwanted effects of interfacial thermal resistance that appear as the
apparent temperature jumps at the ends of the CNT, we have focused
our analysis to the central region (z = –375 to 375 nm here), where
a linear temperature gradient can be observed, to determine the
system’s κtotal.

�T was imposed through two temperature controlled regions
(20 unit cells each, 320 atoms in one unit cell). Next to the
temperature controlled regions, the atoms at the two ends (two
unit cells) were fixed as shown in Fig. 2(a). The temperature
control was achieved through a Langevin thermal bath. Us-
ing second-generation reactive empirical bond order (REBO)
potential and fixed boundary conditions, we employed the
velocity Verlet method to integrate the equation of motion
with a time step of 0.5 fs. First, the entire nanotube was
coupled to a Nosé-Hoover thermostat at 300 K and MD was
performed to equilibrate and relax the system for 1 ns. After
equilibrium, the hot (cold) bath temperature was set to T +
�T /2(T − �T /2), respectively, and ran for 2 ns under a mi-
crocanonical ensemble. In our simulations, we took �T = 20,
40, and 60 K to examine the effect of temperature difference.
The heat flux P was computed from the energy in/out of the
temperature controlled regions. The simulated nanotube was
divided into several equal cells and the temperature at each
cell was calculated and averaged for 1 ns after reaching steady
state.

Figure 2(b) shows a representative temperature profile of
(4,4) CNT at �T = 40 K. There are apparent temperature
jumps at the ends of the CNT, indicating finite interfacial
thermal resistance between the CNT and the thermal baths.
To remove the obvious unwanted effect, we have focused on
the linear region at the middle (z = –L/4 to L/4) to analyze
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the thermal conductivity of the investigated system (κtotal),
following

κtotal = P

A(dT/dz)
, (3)

where P is the heat flux and the CNT cross section A = πDδ

(D is the diameter of the CNT, δ = 0.34 nm). As will be
shown below, we will find that κtotal is not the intrinsic thermal
conductivity of the CNT even if we have focused our analyses
on the linear temperature profile region far away from the
interfaces.

The T-junction and cross-junction CNTs in Sec. V, were
created by a thermal welding method as proposed in the
literature [30], where some atoms were removed manually
from one pristine (6,6) nanotube of 4 nm to create defects
in the crossing region. Then another 1.5 nm (6,6) CNT was
placed vertically above the crossing region of the defected
CNT. Then, these two nanotubes were moved closer and
simultaneously heated up to 4000 K for 2 ps to perform
thermal welding before they were cooled down to 300 K. The
branched CNT was created by connecting three (6,6) nan-
otubes of the same lengths to the junction part. To release the
stress inside the branched CNT, the atoms on each individual
branch were only allowed to move along its axial direction
under NVE ensemble and the equilibrating process was run
for 1 ns. Through this relaxation procedure, both longitudinal
and transverse stresses inside the branches were eliminated.

III. LENGTH-DEPENDENT THERMAL CONDUCTIVITY
AND THERMAL RESISTANCE

Figure 3(a) shows κtotal vs L relations for the mass of
the thermal bath respectively assigned to be mT = 6 and 18
(where mT is the atomic mass of the thermal bath, and mT =
12 for carbon atoms). For comparison, we also plot κtotal vs
L relations without removing the temperature jumps shown
in Fig. 2(b). At first sight, all the κtotal’s apparently increase
with increasing L and deviate from diffusive behavior (i.e.,
κtotal = constant). A naïve fitting to the κtotal vs L relations
shown in Fig. 3(a) indicates non-Fourier thermal conduction
with α = 0.26 and 0.44 for mT = 6 and 18, respectively.
However, as we have emphasized earlier, interpreting the data
based on the κtotal vs L relation could be misleading and
plotting the ARtotal vs L relation is more reliable. Indeed,
after plotting the ARtotal vs L data in Fig. 3(b), we find that
all data have a nonzero intercept at L → 0, indicating finite
interfacial thermal resistance. A simple calculation on the
phonon reflectivity suggests that Rc for mT = 6 is 1.6 times
larger than that of mT = 18, which quantitatively agrees with
the results read from the simulated temperature jumps. From
the intercept at L → 0 shown in Fig. 3(b), we find that the in-
terfacial thermal resistance is about two times higher for data
including temperature jumps than that excluding temperature
jumps. Because the latter is nonzero, it suggests that a residue
Rc still contributes to the investigated system even when
we have excluded the apparent temperature jumps in CNT’s
temperature profiles. Importantly, now the ARtotal vs L relation
shown in Fig. 3(b) is almost linear for mT = 18, suggesting
diffusive thermal conduction. Thus the spurious non-Fourier
thermal conduction for mT = 18 shown in Fig. 3(a) is in fact

FIG. 3. (a) κtotal vs L of a (4,4) CNT simulated using thermal
baths of different atomic mass (mT = 6 and 18). The solid symbols
are obtained after removing temperature jumps shown in Fig. 2(b).
We also plot the results containing the temperature jumps for com-
parison (open symbols). At first sight, all the curves appear to indi-
cate non-Fourier thermal conduction with α = 0.26 to 0.44. (b) The
corresponding data plotted in ARtotal vs L relation, but now the curves
do not significantly deviate from diffusive transport and α = 0 to
0.1 is found. We also find that all the data have nonzero intercept at
L → 0, indicating finite interfacial thermal resistance. Note that, for
the data without incorporating temperature jumps, their interfacial
thermal resistance (ARc = 0.09 × 10−9 m2 K/W) still contributes
about half of that containing temperature jumps. It indicates that
the removal of the temperature jumps is not sufficient to completely
eliminate the interfacial thermal resistance of the system.

an artifact due to the finite Rc. For mT = 6, the ARtotal vs L
curve slightly deviates from diffusive behavior and α = 0.05
to 0.1 is found. But, as will be discussed later, we will find the
data of mT = 6 to be due to another spurious effect from �T.

To minimize the unwanted effect of interfacial thermal
resistances, we note that minimum Rc is expected when as-
signing mT = 12. On the other hand, we note that the features
of non-Fourier thermal conduction should follow the linear
response theorem; that is, the features should not disappear
when �T is reduced. To investigate the robustness of the
feature, we have simulated CNTs with mT = 12 under �T =
60, 40, and 20K, respectively. Figures 4(a) and 4(b) show that,
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FIG. 4. (a) κtotal vs L of a (4,4) CNT under �T = 60, 40, and
20 K, respectively. Here the atomic mass of the thermal bath is mT =
12. (b) Corresponding data displayed using ARtotal vs L. Although
the data of �T = 60 K display features like non-Fourier thermal
conduction with α = 0.08, the thermal transport becomes almost
diffusive (α < 0.02) when �T = 40 and 20 K. The inconsistency
thus excludes the data at �T = 60 K to be genuine features of
non-Fourier thermal conduction.

although the κtotal vs L and ARtotal vs L relations under �T =
60 K display features such as non-Fourier thermal conduction
(finite Rc is still found here) with α = 0.08, the thermal trans-
port becomes almost diffusive (α < 0.02) for �T = 40 and
20 K, respectively. The inconsistency thus excludes the data
of �T = 60 K to be genuine features of non-Fourier thermal
conduction. Instead, unwanted nonlinear thermal responses
are more likely to be responsible for the observed phenomena.
Therefore, after removing the unwanted effects of Rc and �T,
so far our NEMD simulations have consistently displayed
diffusive thermal conduction in (4,4) CNTs.

IV. REEXAMINATION OF PREVIOUS RESULTS

Having clarified the effects that could mislead the data
interpretation, we now reexamine previous results based on
MD simulations. Table I summarizes the information we
collected from previous works, which includes EMD and

NEMD simulations, CNT of different chiralities, interacting
potentials, boundary conditions, thermal thermostats, etc. Be-
cause of their differences, it may not be surprising that the
claims also vary from one to another.

Almost all previous works have interpreted their data based
on ĸ vs L relations [10–22], but as we have mentioned above,
the analysis can be problematic and plotting the ARsample vs
L after removing the unwanted Rc is more appropriate. We
have thus replotted their data into ARtotal vs L and read ARc

from the intercept when L → 0 regardless of whether the
authors of the papers have excluded temperature jumps in their
simulations. We then obtain ARsample = A(Rtotal–Rc) = bL1–α

(here b is a constant, fitted from ARsample at the short L’s
of each paper), which is the intrinsic thermal resistance of
the CNT. Because the b’s also vary from one to another,
we have further normalized them and plotted ARsample/b
vs L in Fig. 5(a) to highlight their length-dependent be-
havior. An enlarged view for L < 300 nm is shown in
Fig. 5(b).

Many works have claimed to observe anomalous thermal
conduction in CNTs with α = 0.1 to 0.36. However, we find
only Zhang and Li’s (10,10) CNT [15], Shiomi’s (3,3) CNTs
[19], and Sevik et al.’s (10,0) CNT [21] display observable
deviation from diffusive thermal conduction, as shown in
Figs. 5(a) and 5(b). Even so, the reanalyzed α’s are smaller
than previous claims, falling within α < 0.1. They could be
indistinguishable from diffusive behavior after further incor-
porating simulation errors.

Some other previous works have observed ballistic to diffu-
sive transition when L increases [12,20,21]. The characteristic
length associated with the transition has been interpreted as
the phonon mean free path of CNTs. However, the claim is
not supported after our reanalyses. As displayed in Figs. 5(a)
and 5(b), most of the works show diffusive transport starting at
L < 50 nm. These results contradict experimental observation
that non-Fourier thermal conduction of CNTs exceeds 4 μm
[26–28].

On the other hand, some EMD simulations have instead
suggested diffusive thermal transport in CNTs [16,18]. We
find the claim is sustained after our reanalyses. We also find
Rc = 0 in our reanalysis, which is expected as no thermostat is
employed in EMD simulations. The results clearly show that
the diffusive thermal transport in CNTs and the presence of
finite Rc has different origins. However, as mentioned above,
the claim disagrees with experimental results.

Because thermal transport properties of a large-diameter
CNT are expected to be similar to those of graphene, the
same phenomena will be likely to be observed whenever MD
simulations are employed in graphene as well. In addition,
if diffusive thermal conduction in CNTs of small diameter
appears at much shorter L’s than previously thought, it would
imply MD simulations would always give a very short phonon
mean free path in graphene as well. Indeed, the NEMD
simulation on graphene display a nearly diffusive result for
L > 30 nm after we replot the data of Refs. [20,31,32]
into ARtotal vs L. The misintepretation is again due to the
overlooked Rc in the NEMD simulation. In addition, the
diffusive transport is consistent with that obtained from EMD
simulations [33,34]. Thus our reanalysis further highlights
that the empirical interatomic potential of sp2 bonds would
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TABLE I. Summary of previous publications. Here the α’s denoted by ∗ are fitted from the published ĸ vs L relation.

Publication CNT index α Reported ARc(10−9 m2 K W−1) �T Potential

Maruyama [10] (5,5) 0.32 0.038 20 K TB

Maruyama [11] (5,5) 0.27 0.036 20 K Simplified Brenner
(8,8) 0.15 0.02

(10,10) 0.11 0.008

Moreland et al. [12] (10,10) Ballistic-diffusive 0.183 20 K TB

Padgett and Brenner [13] (10,10) 0.67* 0.302 ? REBO

Zhang and Li [15] (5,5) 0.4 0.003 20 K Tersoff
(10,10) 0.36 0.003

Lukes and Zhong [17] (10,10) 0.94* 0.24? N/A (EMD) REBO
(10,10) 0.8* 0.158

Donadio and Gallo [16] (10,0) 0 0 N/A (EMD) Tersoff

Shiomi and Maruyama [19] (3,3) 0.4* 0.058 20 K Simplified Brenner
(5,5) 0.28* 0.034

Bi et al. [18] (15,0) 0* 0 20 K Tersoff
(10,10) 0* 0

Thomas et al. [20] (6,6) Ballistic-diffusive 0.4 >12 K (depending on length) REBO
(8,8) 0.24

(10,10) 0.41

Sevik et al. [21] (10,0) Ballistic-diffusive 0.116 60 K Tersoff
(10,10) 0.11

Sääskilahti et al. [22] (10,10) 0.38∗ 0.163 60–200 K Tersoff

This work (4,4) 0 0.09 20–60 K REBO

FIG. 5. (a) Normalized thermal resistance vs L summarized from previous works and this work. (b) An enlarged view of (a). It can be
seen that most data display nearly diffusive thermal transport (solid line) starting at L < 200 nm. Even for a few cases that show indication
of non-Fourier thermal conduction, their deviation is found to be small (α < 0.1). (c) Summary of ARc vs CNT diameters estimated from
previous works. It can be seen that ARc varies even when the simulated CNTs are of identical chirality.
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consistently yield diffusive thermal conduction in CNTs and
graphene.

Regarding �T’s applied to the simulated systems, we find
that many previous works have kept �T = 20 K, but there
are concerns whether the finding remains robust when �T
is reduced. On the other hand, some previous works have
instead used a constant temperature gradient. For example,
Sääskilahti et al. have applied �T = 200 K to a L = 4 μm
CNT and observed non-Fourier thermal conduction [22], but
α < 0.1 is found after our reanalyses. Thomas et al. have
applied a temperature gradient 25–80 K/μm (�T < 57 K) to
their CNTs [20] and found ballistic to diffusive transition at
L = 400–800 nm, but we could only find diffusive transport
throughout their investigated L’s after our reanalyses.

V. NONLOCAL THERMAL CONDUCTION

Having learned the overlooked effect of Rc and over-
estimated α’s omnipresent in earlier works, we now seek
additional evidence to support our finding. Because Rc arises
even when apparent temperature jumps in CNTs have been
removed for our analysis, we desire an independent NEMD
simulation that can be free from the unwanted effect of Rc.

According to the Landauer-Büttiker formula [35,36], a
one-dimensional ballistic electrical conductor connected with
multiple terminals will lead to nonlocal electrical conduction,
following

Ii = GQ

∑

j

(t jiVi − ti jVj ), (4)

where is Ii electrical current flowing out of the ith terminal, Vi

is electrical voltage on the ith terminal, ti j is the transmission
probability from the ith to the jth terminal, and GQ = e2/h.

The analogy between electrical transport and thermal trans-
port also gives the Landauer-Büttiker formula for nonlocal
thermal conduction, i.e.,

Pi = KQ

∑

j

(t jiTi − ti jTj ), (5)

where Ii is replaced by the thermal current Pi, Vi is replaced
by temperature Ti, and KQ is quantum thermal conductance
obeying Landauer’s formalism. Note that Eq. (5) is much
simpler than the general formalism of nonlocal thermal con-
duction in three dimensions and thus will be easier for analysis
[37,38]. Besides, in a time reversal-invariant system, ti j = t ji

and Eq. (5) can be simplified to

Pi = KQ

∑

j

ti j�Ti j . (6)

Because nonlocal thermal conduction is absent in a diffu-
sive thermal conductor, its presence would infer nondiffusive
thermal transport and the effect will be independent of the
unwanted effect of Rc.

To investigate nonlocal thermal conduction using NEMD,
we arrange a (6,6) CNT of length 2L + Lth connected to three
thermostats with temperatures respectively set at T1 = 300 K,
T2 = 340 K, and T3 = 320 K, as shown in Fig. 6(a). Here the
thermostat at the middle has length Lth but only encompasses
a half circumference of the CNT so that phonons leaving
from T3 could propagate across it to reach T1, which would

FIG. 6. (a) A (6,6) CNT connected to three independent ther-
mostats for investigating nonlocal thermal conduction. Here T1 =
300 K, T2 = 340 K, and T3 = 320 K. To determine t31, the heat
current between T2 and T3 is compared with that of a controlled
simulation shown in (b). (c) t31 vs L for the middle thermostat
of lengths Lth = 9.84 nm (blue triangles) and Lth = 2.46 nm (red
circles), respectively.

contribute nonlocal thermal conduction t31. For a controlled
simulation, we have investigated the thermal current of a
CNT of length L under identical temperature configurations,
as displayed in Fig. 6(b). Because T3–T1 = T2–T3, the t31 can
be obtained from comparing the net thermal current received
at terminal 3 in Fig. 6(a) [P3 = KQt31(T3–T1) + KQt32(T3–T2),
here t31 + t32 = 1], and in Fig. 6(b) [P′

3 = KQ(T3–T2)] via the
relation 2t31 = 1 − P3/P′

3. This method helps us to minimize
temperature- or length-dependent effects when determining
t31. We have also varied the length (Lth) of the middle thermo-
stat and the length (L) of CNT to investigate its effect on t31.
Finally, we have confirmed that t31 = 0 for a purely diffusive
thermal conductor of identical geometry, which excludes any
nonzero t31 observed to be attributed to dimensional effects.

Figure 6(c) displays the t31 vs L of a CNT with two
different Lth’s. Notably, t31 remains zero for Lth = 9.84 nm, in-
dicating that the dissipation of the middle thermostat has com-
pletely destroyed nondiffusive properties of low-frequency
phonons in the CNT. On the other hand, for Lth = 2.46 nm,
t31 reaches 7% for the shortest CNT and gradually decrease
to zero when L increases beyond 200 nm, which suggests
that the phonon mean free path of the CNT is shorter than
200 nm. Although one may speculate that further reducing
Lth would elongate the length of nonlocal thermal conduction,
extrapolating the data to Lth → 0 indicates that the mean free
path remains in the range of 200 nm.

Because the result of Fig. 6(c) is obtained without incor-
porating unwanted effects of Rc, it is an independent proof
that a CNT would be a diffusive thermal conductor when L >

200 nm.
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FIG. 7. Pi/P1 vs Li for a T junction (a) and a cross junction (b)
whose structures are respectively shown in the insets. The predictions
of diffusive transport are shown by dashed lines.

The evidence of nonlocal thermal conduction can be fur-
ther solidified using other systems. As shown in the inset of
Fig. 7(a), we now devise a T junction made by three (6,6)
CNTs of equal lengths (L1 = L2 = L3). We then study how the
two branches distribute the heat flow and find their deviations
from diffusive thermal conduction when Li increases. If the
system is a diffusive conductor and T1 = 330 K, T2 = T3 =
270 K, it can be expected that the heat current evenly dis-
tributes to each segment. The result still holds when exchang-
ing the temperature settings to T2 = 330 K, T1 = T3 = 270 K.

Figure 7(a) shows the ratio of total heat current (P2/P1) re-
ceived by terminal 2 when T1 = 330 K and T2 = T3 = 270 K.
It can be seen that P2/P1 = 0.5 happens only for Li > 200 nm,
whereas the unexpected P2/P1 < 0.5 occurs for Li < 200 nm.
In addition, the result seems to indicate that phonons prefer to
move forward rather than be scattered by 90°.

However, the results are different in a cross junction made
by (6,6) CNTs of equal lengths (L1 = L2 = L3 = L4) shown
in the inset of Fig. 7(b). Here the expected diffusive results
(P2/P1 = P3/P1 = P4/P1 = 0.33) can be found only for Li >

150 nm. Unlike the result from the T junction, here we have

P2/P1 to P4/P1 < 0.33 for Li < 150 nm, which seems to in-
dicate that phonons prefer to be scattered by 90° instead of
moving forward.

Because the joints in Figs. 7(a) and 7(b) have identical
septagon carbon and octagon carbon rings, the preferred scat-
tering direction should be identical for both cases even if the
joint renders some anisotropic phonon scatterings. Thus the
results in the T junction and the cross junction being difficult
to understand within the picture of diffusive transport. Thus,
both the deviation of P2/P1 from diffusive transport and the
dissimilar anisotropic scatterings must be analyzed using the
Landauer-Büttiker formula shown in Eq. (6).

For the cases shown in Figs. 7(a) and 7(b), because of the
structural asymmetries induced by the joint and in general
t12 	= t13, deviations from t12/(t12 + t13) = P2/P1 = 50% are
expected within the framework of nonlocal thermal con-
duction. If CNTs are perfect ballistic thermal conductors,
t12/(t12 + t13) should be independent of Li. However, we find
that ballistic phonons gradually dissipate and converge to the
results of diffusive transport as Li increases, suggesting that
diffusive thermal conduction dominates when Li > 150 to
200 nm.

Nonlocal thermal conduction can also explain the dissimi-
lar anisotropic phonon scatterings observed in the T junction
and the cross junction. When welding the perpendicular CNT
into the horizontal CNT for the T junction, the phonon modes
are pinched, in a way similar to inserting a microwave waveg-
uide into another one. Because the CNTs are identical, the
transmission (t13) for forward scattering remains larger than
t12. On the other hand, due to the presence of the two CNTs
welded sideways, the phonon modes are further pinched down
in the cross junction; t13 becomes smaller than t12 or t14.
For Li > 150 to 200 nm, decoherence of phonons dominates
and the effect of the waveguide no longer applies, resulting
in t12 = t13 = t14 = 0.33. When simulating the T junction
and cross junction, we have also exchanged the temperature
settings and verify ti j = t ji, confirming that the deviation to
diffusive results is not due to thermal rectification. All these
results have given consistent support to our previous findings
of the dominant diffusive thermal transport for CNTs with
Li > 150 to 200 nm.

VI. OUTPUT RESISTANCE FROM
A NONIDEAL HEAT BATH

From Table I, we find that the normalized interfacial re-
sistance (ARc) also varies from one to another. The origin
of the discrepancy could be due to the fact that ARc might
not be simply scaled as the presumed cross-sectional area
A = πDδ of CNTs. However, even for CNTs of identical
chirality, ARc can vary from 0 to 0.3 × 10−9 m2 K/W, as
shown in Fig. 5(c) for (10,10) CNTs. The variation could be
due to different potentials, thermostats, or boundary condi-
tions employed by different research groups. Curiously, we
have found that ARc is nearly independent of mT and �T
(Figs. 3 and 4), and it does not display apparent scaling
with the diameter of CNT [Fig. 5(c)]. We also note the
equivalent interfacial thermal conductance (1/ARc) generally
lies in the range of 10 GW/m2 K, which is higher than
the highest measured value (4 GW/m2 K, occurring between
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Al/Cu interface). The result indicates that the Rc is not a
physical phenomenon, but rather an artifact from the nonideal
thermostat.

An ideal thermostat should absorb all energy transmitting
into it. However, it has been known that common thermostats
(such as the Nosé-Hoover thermostat used here) are far from
ideal and low-frequency phonons usually bounce back from
them. Because of the phonon reflection from heat baths, Li
and McGaughey proposed an interesting idea that energy
transport could be diffusive even though phonon transport
is ballistic [39]. Unfortunately, because the idea is based on
the transient dynamics, it is difficult to test its validity based
on our results under steady state conditions. On the other
hand, because the steady state condition has been employed
for experimental measurements, the concept of phonon and
energy transport should be indistinguishable and the disagree-
ments between experimental data and EMD/NEMD results
are unambiguous.

An ideal voltage source should have zero output impedance
in an electronic circuit. Similarly, an ideal thermostat with
controlled temperature should have zero output resistance in
a thermal circuit. However, due to the lack of ergodicity
[40], the presence of temperature oscillations [41] and ill-
defined temperatures in nonequilibrium processes [42,43], the
commonly used thermostats (such as Nosé-Hoover thermostat
used here) are known to be far from ideal. So it is not
surprising that these thermostats always give nonzero output
resistance when employing NEMD simulations. Curiously,
because no other temperature jumps are observed in CNTs af-
ter excluding the apparent boundary effect shown in Fig. 2(b),
the Rc found in the Rtotal vs L relations could happen inside the
thermostats and function like the internal thermal resistance of
a practical temperature source.

Similar to our daily experience of using a practical voltage
source, the presence of finite output resistance in a thermostat
would not be a problem in NEMD simulations once we
are aware of the effect. In electronics, the nonzero output
impedance of a voltage source reminds us to be cautious when
measuring a highly conducting sample. Likewise, one should
be alerted when employing a nonideal thermostat to simulate
thermal transport properties of good thermal conductors like
CNTs. Thus the presence of the unwanted Rc is not a serious
problem. However, because both EMD and NEMD give con-
sistent diffusive transport in CNTs, the inconsistency between
MD and experimental results still cannot be resolved even if
Rc is removed.

It should be noted that similar problems are also found
in employing EMD and NEMD to simulate Si [44]. Dong
et al. have found inconsistencies between EMD and NEMD
and tried to resolve them by introducing an upper limit of
the correlation time (t) in the Green-Kubo formula to be
associated with the system length (Lx) and a free parameter vg,
using Lx = vgt [44]. Although they have claimed to observe a
mean free path ∼300 nm in Si, we have instead found purely
diffusive transport with finite Rc after replotting their data into
ARtotal vs L. The latter result still gives consistencies between
EMD and NEMD even without introducing a fitting param-
eter. Because bulk Si with clean surfaces is experimentally
known to exhibit mean free path at least longer than 1 µm [45],
the disagreement suggests that the problems originate not only

from the thermostats employed but also from the empirical
atomic potential of Si.

VII. DISCUSSIONS AND SUMMARY

These discussions certainly raise concerns on the validity
of applying EMD or NEMD simulations to unravel thermal
transport of CNTs. We note that the presence of Rc’s has
been pointed out in simulating 1D models [7]. The unwanted
effect has been regarded as a finite size effect since then and
α’s can be obtained only from much larger systems [46,47].
Here, we find the unwanted Rc’s of NEMD simulations on
CNTs have also misled previous interpretations and should
be removed. Moreover, although most EMD and NEMD
simulations consistently yield diffusive thermal transport for
L > 200 nm, the disagreements between the results and
experimental data are especially disturbing. Because EMD
and NEMD simulations apparently underestimate the ballistic
thermal conduction observed in CNTs, it is likely the atomic
potential overestimates the anharmonicity of the real potential
of carbon sp2 bonds, rendering the simulated temperature
much higher than the experimental temperature (usually 300
K). If a lower temperature is employed in EMD and NEMD
simulations, one might be able to observe non-Fourier thermal
conduction at longer L’s. Such a temperature correction has
become commonplace in modeling water, and it is not sur-
prising that similar corrections are needed for the empirical
potentials used in MD simulations, too. Note that, however,
the temperature correction is opposite to what “quantum
correction” in MD would do, in which Bose-Einstein statistics
is imposed to make the simulated temperature higher. Size
effects on temperature, even for classical systems, could be
another critical issue for simulating CNTs as well. Finally, the
nonlinear effect associated with �T suggests that investigat-
ing non-Fourier thermal conduction in CNTs is not a trivial
task. The long-time tails of phonon relaxation observed in 1D
models could have been ignored during the simulation [3,4].

EMD or NEMD simulations have relied on either enforced
thermal equilibrium or steady state to extract the nominal ther-
mal conductivity, and NEMD has further constraints from the
nonideal thermostat that gives rise to Rc mentioned above.
Thus, how to make EMD/NEMD to reach agreements with
Boltzmann transport models or experimental results could be
a subtle issue. EMD and NEMD are not perfect approaches
to evaluate thermal transport behaviors of CNTs, but they
are nevertheless convenient to set up. They produce good
guidelines for material designs when other approaches are
not available, and they still give qualitative understandings
on thermal transport behaviors of materials. However, it is
important to recognize their limitations before extending them
for practical uses. Our result now advocates cautious intro-
spection on the fundamental limitations of MD simulations.
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