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Abstract

This paper investigates the causal relations between stock return and volume based

on quantile regressions. We first define Granger non-causality in all quantiles and propose

testing non-causality by a sup-Wald test. Such a test is consistent against any deviation

from non-causality in distribution, as opposed to the existing tests that check only non-

causality in certain moment. This test is readily extended to test non-causality in different

quantile ranges. In the empirical studies of 3 major stock market indices, we find that the

causal effects of volume on return are usually heterogeneous across quantiles and those

of return on volume are more stable. In particular, the quantile causal effects of volume

on return exhibit a spectrum of (symmetric) V -shape relations so that the dispersion of

return distribution increases with lagged volume. This is an alternative evidence that

volume has a positive effect on return volatility. Moreover, the inclusion of the squares of

lagged returns in the model may weaken the quantile causal effects of volume on return

but does not affect the causality per se.

JEL Classification No: C12, G14

Keywords: Granger non-causality, quantile causal effect, quantile regression, return-

volume relation, sup-Wald test



1 Introduction

The relationship between financial asset return and trading volume, henceforth the return-

volume relation, is important for understanding operational efficiency and information

dynamics in asset markets. Models related to this topic include, e.g., the sequential infor-

mation arrival model (Copeland, 1976; Jennings, Starks, and Fellingham, 1981; Jennings

and Barry, 1983) and mixture of distributions model (Clark, 1973; Epps and Epps, 1976;

Tauchen and Pitts, 1983). There are also equilibrium models that emphasize the informa-

tion content of volume, e.g., Harris and Raviv (1993), Blume, Easley, and O’Hara (1994),

Wang (1994), and Suominen (2001). For instance, Blume, Easley, and O’Hara (1994)

stress that volume carries information that is not contained in price statistics and hence

is useful for interpreting the price (return) behavior. On the empirical side, there have

been numerous studies on contemporaneous return-volume relation since Granger and

Morgenstern (1963) and Ying (1966); see Gallant, Rossi, and Tauchen (1992) and also

Karpoff (1987) for a review. Yet, as far as prediction and risk management are concerned,

the dynamic (causal) relation between return and volume is more informative.

Causal relations between variables are typically examined by testing Granger non-

causality. While Granger non-causality is defined in terms of conditional distribution,

it is more common to test non-causality in conditional mean based on a linear model

(Granger, 1969, 1980). Granger, Robins, and Engle (1986) and Cheung and Ng (1996)

consider testing non-causality in conditional variance, whereas Hiemstra and Jones (1994)

derive a test for nonlinear causal relations. These tests have been widely used in the

literature (e.g., Fujihara and Mougoué, 1997; Silvapulle and Choi, 1999; Chen, Firth,

and Rui, 2001; Ciner, 2002; Lee and Rui, 2002). A serious limitation of this approach

is that non-causality in mean (or in variance) need not carry over to other distribution

characteristics or different parts of the distribution. Diks and Panchenko (2005) also give

examples that the test of Hiemstra and Jones (1994) may not test Granger non-causality.

These motivate us to consider characterizing and testing causality differently.

This paper investigates causal relations from the perspective of conditional quantiles.

We first define Granger non-causality in a given quantile range and non-causality in all

quantiles. The quantile causal effects are then estimated by means of quantile regres-

sions (Koenker and Baseett 1978; Koenker, 2005). The hypothesis of non-causality in

all quantiles is tested by the sup-Wald test of Koenker and Machado (1999). This test

checks significance of the entire parameter process in quantile regression models and hence

is consistent against any deviation from non-causality in distribution, as opposed to the
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conventional tests of non-causality in a moment and the tests of Lee and Yang (2006)

and Hong, Liu, and Wang (2008). The test of Koenker and Machado (1999) is easily

extended to evaluate non-causality in different quantile ranges and enables us to identify

the quantile range for which causality is relevant. Our approach thus provides a detailed

description of the causal relations between return and volume.

In the empirical study we examine the causal relations between return and (log) volume

in three stock market indices: New York Stock Exchange (NYSE), Standard & Poor 500

(S&P 500), and Financial Times-Stock Exchange 100 (FTSE 100). Despite that the

conventional test may suggest no causality in mean, there are strong evidences of causality

in quantiles in these indices. For NYSE and S&P 500, we find two-way Granger causality in

quantiles between return and volumes; for FTSE 100, only volume Granger causes return

in quantiles. In particular, the causal effects of volume on return are heterogeneous across

quantiles, in the sense that they possess opposite signs at lower and upper quantiles and

are stronger at more extreme quantiles. On the other hand, the causal effects of return

on volume, if exist, are mainly negative and remain stable across quantiles.

With log volume on the vertical axis and return on the horizontal axis, the quantile

causal effects of volume on return exhibit a spectrum of symmetric V -shape relations

for NYSE and S&P 500. While many existing results (e.g., Karpoff, 1987) find a sim-

ple V -shape relation based on a least-squares regression of absolute return on volume,

our V -shape results are very different. First, what we find are dynamic rather than con-

temporaneous relations. Second, these relations hold across quantiles rather than at the

mean only. Moreover, the identified V spectrum suggests that distribution dispersion in-

creases with lagged volume. This constitutes an alternative evidence that volume has a

positive effect on return volatility and is compatible with the empirical finding based on

conditional variance models (e.g., Lamoureux and Lastrapes, 1990; Gallant, Rossi, and

Tauchen, 1992).

It is interesting to note that the quantile causal relations we find are quite robust to

different sample periods and different model specifications. Indeed, the inclusion of the

squares of lagged returns in the model may weaken the quantile causal effects of volume

on return but does not affect the causality per se. Thus, lagged volumes carry information

that is not contained in lagged returns and their squares, as argued by Blume, Easley, and

O’Hara (1994). Our results also confirm that non-causality in mean bears no implication

on non-causality in distribution (quantiles). A conventional test may find no causality in

mean because the positive and negative quantile causal effects cancel out each other in

least-squares estimation, as demonstrated in our study. It is therefore vulnerable to draw
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a conclusion on causality solely based on a test of non-causality in mean.

This paper is organized as follows. We introduce the notion of Granger (non-)causality

in quantiles in Section 2 and discuss the sup-Wald test of non-causality in quantiles in

Section 3. The empirical results of different causal models are presented in Section 4.

Section 5 concludes the paper.

2 Causality in Mean and Quantiles

Following Granger (1969, 1980), we say that the random variable x does not Granger

cause the random variable y if

Fyt
(η|(Y,X )t−1) = Fyt

(η|Yt−1), ∀η ∈ IR, (1)

holds almost surely (a.s.), where Fyt
(·|F) is the conditional distribution of yt, and (Y,X )t−1

is the information set generated by yi and xi up to time t − 1. That is, Granger non-

causality requires that the past information of x does not alter the conditional distribu-

tion of yt. The variable x is said to Granger cause y when (1) fails to hold. In what

follows, Granger non-causality defined by (1) will be referred to as Granger non-causality

in distribution.

As estimating and testing conditional distributions are practically cumbersome, it is

more common to test a necessary condition of (1), namely,

IE[yt|(Y,X )t−1] = IE(yt|Yt−1), a.s. (2)

where IE(yt|F) is the mean of Fyt
(·|F). We say that x does not Granger cause y in

mean if (2) holds; otherwise, x Granger causes y in mean. Similarly, we may define

non-causality in variance (Granger, Robins, and Engle, 1986; Cheung and Ng, 1996) and

non-causality in other moments. Hong, Liu, and Wang (2008) consider “non-causality in

risk,” a special case of (1) in which η is the negative of a VaR (Value at Risk). Note

that these notions of non-causality are necessary for, but not equivalent to, Granger non-

causality in distribution.

The hypothesis (2) is usually tested by evaluating a linear model of IE[yt|(Y,X )t−1]:

α0 +
p∑

i=1

αiyt−i +
q∑

j=1

βjxt−j ,

which depends on the past information of yt−1, . . . , yt−p and xt−1, . . . , xt−q. Testing (2)

now amounts to testing the null hypothesis that βj = 0, j = 1, . . . , q, in the postulated
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model; that is, whether any lagged x has a significant impact on the conditional mean

of yt.1 Rejecting this null hypothesis suggests that x Granger causes y. Yet, failing to

reject the null is compatible with non-causality in mean but says nothing about causality

in other moments or other distribution characteristics.

Given that a distribution is completely determined by its quantiles, Granger non-

causality in distribution can also be expressed in terms of conditional quantiles. Letting

Qyt
(τ |F) denote the τ -th quantile of Fyt

(·|F), (1) is equivalent to

Qyt
(τ

∣∣(Y,X )t−1) = Qyt
(τ

∣∣Yt−1), ∀τ ∈ (0, 1), a.s. (3)

We say that x does not Granger cause y in all quantiles if (3) holds. We may also define

Granger non-causality in the quantile range [a, b] ⊂ (0, 1) as

Qyt
(τ

∣∣(Y,X )t−1) = Qyt
(τ

∣∣Yt−1), ∀τ ∈ [a, b], a.s. (4)

Note that Lee and Yang (2006) considered only non-causality in a particular quantile, i.e.,

the equality in (3) holds for a given τ .

3 Testing Non-Causality in Quantiles

This paper proposes to verify causal relations by testing (3), rather than testing non-

causality in a moment (mean or variance) or non-causality in a given quantile. To this

end, we postulate a model for Qyt
(τ | (Y,X )t−1) and estimate this model by the quantile

regression method of Koenker and Bassett (1978); see Koenker (2005) for a comprehensive

study of quantile regression.

Letting yt−1,p = [yt−1, . . . , yt−p]′, xt−1,q = [xt−1, . . . , xt−q]′, and zt−1 = [1,y′t−1,p,x
′
t−1,q]

′,

we assume that the following model is correctly specified for the τ -th conditional quantile

function:

Qyt
(τ | zt−1) = a(τ) + y′t−1,pα(τ) + x′t−1,qβ(τ) = z′t−1θ(τ),

where θ(τ) = [a(τ),α(τ)′,β(τ)′]′ is the k-dimensional parameter vector with k = 1 +

p + q. Note that the τ -th conditional quantile of the error etτ = yt − z′t−1θ(τ) is zero, a

consequence of correct model specification. For a given τ , the parameter vector θ(τ) is

estimated by minimizing asymmetrically weighted absolute deviations:

min
θ

T∑
t=1

(τ − 1{yt<z′t−1θ}) |yt − z′t−1θ|,

1Clearly, this approach would be valid provided that the postulated linear model is correctly specified

for the conditional mean function.
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where 1A is the indicator function of the event A. The solution to this problem, denoted

as θ̂T (τ), can be computed using a linear programming algorithm.

In what follows, let D−→ denote convergence in distribution, ⇒ weak convergence (of

associated probability measures), and ‖ · ‖ the Euclidean norm. Under suitable regularity

conditions, θ̂T (τ) is consistent and asymptotically normally distributed such that

√
T

[
θ̂T (τ)− θ(τ)

]
D−→ [τ(1− τ)]1/2Ω(τ)1/2N (0, Ik),

where Ω(τ) = D(τ)−1M zzD(τ)−1, M zz := limT→∞ T−1
∑T

t=1 zt−1z
′
t−1, and

D(τ) := lim
T→∞

1
T

T∑
t=1

ft−1

(
F−1

t−1(τ)
)
zt−1z

′
t−1,

with Ft−1 and ft−1 being, respectively, the distribution and density functions of yt condi-

tional on Zt−1, the information set generated by zt−1,zt−2, . . .; see Koenker (2005) and

Koenker and Xiao (2006).2

Given a linear model for conditional quantiles, testing (3) amounts to testing

H0 : β(τ) = 0, ∀τ ∈ (0, 1). (5)

To this end, we must check significance of the entire parameter process β(·). Letting Ψ

be a q × k selection matrix such that Ψθ(τ) = β(τ), we have

√
T

[
β̂T (τ)− β(τ)

]
=
√

TΨ
[
θ̂T (τ)− θ(τ)

]
D−→ [τ(1−τ)]1/2[ΨΩ(τ)Ψ′]1/2N (0, Iq). (6)

For a given τ , the Wald statistic of β(τ) = 0 is

WT (τ) := T β̂T (τ)
′(
ΨΩ̂(τ)Ψ′)−1

β̂T (τ)/[τ(1− τ)],

where Ω̂(τ) is a consistent estimator of Ω(τ). In the special case that ft(·) = f(·), the

unconditional density of yt, Ω(τ) = f(F−1(τ))−2M−1
zz , and the Wald statistic becomes

WT (τ) = T β̂T (τ)
′(
ΨM̂

−1

zz Ψ′)−1
β̂T (τ)f̂2/[τ(1− τ)],

2Note that when IE[τ − 1{etτ <0}|Zt−1] = 0, zt−1[τ − 1{etτ <0}] is a martingale difference sequence and

hence obeys a central limit theorem:

T−1/2
TX

t=1

zt−1[τ − 1{etτ <0}]
D−→ [τ(1− τ)]1/2M1/2

zz N (0, Ik).

The asymptotic normality of θ̂T (τ) and the asymptotic covariance matrix Ω(τ) readily follow from the

Bahadur representation and this result. For some regularity conditions ensuring IE[τ −1{etτ <0}|Zt−1] = 0,

see Koenker and Xiao (2006).
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where M̂ zz = T−1
∑T

t=1 zt−1z
′
t−1, and f̂ is a consistent estimator of f . To test (5),

Koenker and Machado (1999) suggest using a sup-Wald test, i.e., the supremum of WT (τ).

Note that Bq(τ), a vector of q independent Brownian bridges, equals [τ(1−τ)]1/2N (0, Iq)

in distribution. Thus, (6) can be expressed as

√
T

[
β̂T (τ)− β(τ)

]
D−→ [ΨΩ(τ)Ψ′]1/2Bq(τ). (7)

Under suitable conditions, (7) holds uniformly on a closed interval T ⊂ (0, 1), so that

under the null hypothesis (5),

WT (τ) ⇒

∥∥∥∥∥ Bq(τ)√
τ(1− τ)

∥∥∥∥∥
2

, τ ∈ T ,

where the weak limit is the sum of squares of q independent Bessel processes.3 This

immediately leads to the following result:

sup
τ∈T

WT (τ) D−→ sup
τ∈T

∥∥∥∥∥ Bq(τ)√
τ(1− τ)

∥∥∥∥∥
2

. (8)

In practice, we may set T = [ε, 1− ε] for some small ε in (0, 0.5) and choose n points

(ε = τ1 < . . . < τn = 1− ε). The sup-Wald test for (5) is computed as

sup -WT = sup
i=1,...,n

WT (τi).

When n is large, the right-hand side of (8) with T = [ε, 1− ε] ought to be a good approxi-

mation to the null limit of sup-WT . See Koenker and Machado (1999) for some simulation

results on the finite-sample performance of this test. Similarly, we may test the null:

H0 : β(τ) = 0, ∀τ ∈ [a, b]. (9)

by the supremum of WT (τi) with a = τ1 < . . . < τn = b. It is clear that the limit in (8)

carries over to T = [a, b]. The results of the sup-Wald test on various [a, b] may be used to

identify the quantile range from which causality arises. For example, if the null hypothesis

(5) is rejected but (9) is not rejected for some interval [a, b], one may infer that causality

mainly arises from the quantiles outside [a, b].

Remark: The linear model considered here is convenient for model estimation and hy-

pothesis testing. Yet, our approach to testing causality, the sup-Wald test in particular,

3Note that ‖Bq(τ)/
p

τ(1− τ)‖ tends to infinity when τ → 0 or 1 (Andrews, 1993). Thus, WT (τ),

τ ∈ T , would not have a well defined limit unless T is a closed interval in (0, 1).
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Table 1: The critical values of the sup-Wald test on [0.05, 0.95].

q = 1 q = 2 q = 3

1% 13.01 16.30 19.21

5% 9.84 12.77 15.28

10% 8.19 11.05 13.49

Note: q is the dimension of the parameter vector being tested.

would be valid provided that the linear model is correctly specified for conditional quantile

functions.

To determine the critical values for the sup-Wald test, we note that, for s = τ/(1− τ),

the one-dimensional Bessel process B(τ)/
√

τ(1− τ) and the normalized, one-dimensional

Brownian motion W (s)/
√

s are equal in distribution. It follows that

IP

 sup
τ∈[a,b]

∥∥∥∥∥ Bq(τ)√
τ(1− τ)

∥∥∥∥∥
2

< c

 = IP

{
sup

s∈[1,s2/s1]

∥∥∥∥W q(s)√
s

∥∥∥∥2

< c

}
,

with s1 = a/(1− a), s2 = b/(1− b), and W q a vector of q independent Brownian motions.

That is, the critical values c are determined by the sum of squared normalized Brownian

motions. The critical values for some q and s2/s1 have been tabulated in DeLong (1981)

and Andrews (1993); other critical values can be easily computed via simulations. The

simulated critical values of the sup-Wald test (with q = 1, 2, 3) on [0.05, 0.95] are summa-

rized in Table 1.4

4 Empirical Study

Our empirical study of return-volume relations focuses on 3 stock market indices: NYSE,

S&P 500 and FTSE 100. The daily data from the beginning of 1990 (Jan. 2 or Jan. 4)

to June 30, 2006 are taken from Datastream database, and there are 4135, 4161 and

4166 observations for NYSE, S&P 500 and FTSE 100, respectively. As will be shown in

Section 4.4, our results are quite robust to different sample periods.

Returns are calculated as rt = 100 × (ln(pt) − ln(pt−1)), where pt is index at time t;

volumes vt are the traded share volumes of these indices. Their summary statistics are
4Our simulation approximates the standard Brownian motion using a Gaussian random walk with 3000

i.i.d. N (0, 1) innovations; the number of replications is 20,000.
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Table 2: Summary statistics for stock returns rt and volume vt.

NYSE S&P 500 FTSE 100

rt vt rt vt rt vt

mean 0.03 769.43 0.04 863.18 0.02 778.10

st. deviation 0.89 541.27 1.02 761.37 1.02 662.77

median 0.05 609.31 0.05 494.88 0.04 426.80

skewness −0.23 0.53 −0.09 0.61 −0.11 0.94

kurtosis 4.15 −0.96 3.74 −1.07 3.11 −0.07

minimum −6.79 31.64 −7.25 2.08 −5.89 26.36

maximum 5.18 2767.75 5.61 3345.21 5.90 4461.01

Note: Volumes here are traded share volumes times 10−6.

collected in Table 2. It can be seen that the mean and median returns are all close to zero

and their standard deviations are close to one. Also, the return series behave similarly

to what we usually observe in the literature: they fluctuate around their respective mean

levels and exhibit volatility clustering and excess kurtosis. For each volume, the mean and

median are quite different, and its kurtosis coefficient is small.

There are pronounced trending patterns in the volume series. Following Gallant, Rossi,

and Tauchen (1992), we consider log volume series and remove their trends by regress-

ing ln vt on a constant, t/T and (t/T )2; see also Chen, Firth, Rui (2000) and Lee and

Rui (2002). To conserve space, we plot only the log volume series and their detrended

residuals in Figure 1. It can be seen that there is no trend in these residual series. Our sub-

sequent analysis of return-volume relations is thus based on rt and ln vt while controlling

the time trend effects.5

4.1 Causal Effects of Volume on Return: Model without r2
t−j

We first consider the following model for return and estimate this model using the least-

squares (LS) and quantile regression (QR) methods:

rt = a(τ) + b(τ)
t

T
+ c(τ)

( t

T

)2
+

q∑
j=1

αj(τ)rt−j +
q∑

j=1

βj(τ) ln vt−j + et, (10)

5We also considered the causal relations between return and the growth rate of volume and found

that the latter does not Granger causes the former in quantiles. This agrees with the finding of Su and

White (2007) which is based on a test at the distribution level.
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Figure 1: The series of log volume (upper panel) and detrended residuals (lower panel).

where T is the sample size and q ≥ 1; this model will be referred to as a lag-q model. In

the light of Figure 1, we include t/T and (t/T )2 as regressors in the model so as to control

the trending effect in ln vt. We do not report the results of the model with detrended

ln vt (i.e., the residuals of regressing ln vt on t/T and (t/T )2) as regressors because, as

far as causality is concerned, all regressors should be in the information set so that the

model involves no future information.6 Although we may specify different models for the

conditional mean and quantile functions, we estimate the same model (10) in our study

so that the LS and QR estimates can be compared directly.

We apply the sup-Wald test to determine an appropriate lag order q∗. If the null of

βq(τ) = 0 for τ in [0.05, 0.95] is not rejected for the lag-q model but the null of βq−1(τ) = 0

for τ in [0.05, 0.95] is rejected for the lag-(q − 1) model, we infer that ln vt−q does not

Granger cause rt in quantiles but ln vt−q+1 does. The desired lag order is then set as

q∗ = q − 1. For simplicity, we do not consider the model that includes rt−j and ln vt−j

with different lag orders. For NYSE, the sup-Wald test of β4(τ) in the lag-4 model is

11.813 and that of β3(τ) in the lag-3 model is 18.261. The latter is significant at 1% level,

but the former is not; see the critical values in Table 1 (under q = 1). For S&P 500,
6Nonetheless, we find that the QR estimates of (10) are very close to those of the model with lagged rt

and lagged detrended ln vt as regressors.
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Figure 2: QR and LS estimates of the causal effects of log volume on return: Model without r2
t−j .

the sup-Wald test of β3(τ) in the lag-3 model is 12.421 which is insignificant at 1% level,

but that of β2(τ) in the lag-2 model is 25.227 which is significant. For FTSE 100, the

sup-Wald test of β3(τ) in the lag-3 model is 7.7 which is insignificant even at 10% level,

and that of β2(τ) in the lag-2 model is 13.567 which is significant at 1% level. Thus, we

set q∗ = 3 for NYSE and q∗ = 2 for S&P 500 and FTSE 100.7 For each lag-q∗ model (10),

91 quantile regressions (with τ = 0.05, 0.06, . . . , 0.95) are estimated using the R program

(version 2.4.0) with the “quantreg” package (version 4.01) written by R. Koenker.8

7At 5% level, we find q∗ = 5 for NYSE, q∗ = 5 for S&P 500, and q∗ = 2 for FTSE 100. To ease our

illustration, we choose 1% level and deal with simpler models.
8These programs are available from the CRAN website: http://cran.r-project.org/.
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In Figure 2, we plot against τ the QR estimates of βj(τ) (solid line) and their 95%

confidence intervals (in shaded area), together with the LS estimate (dashed line) and its

95% confidence interval (dotted lines). It can be seen that, for NYSE and S&P 500, the LS

estimates of βj , the mean causal effects of log volumes, are all negative but insignificantly

different from zero. This suggests no causality in mean in these 2 series. Yet, the QR

estimates of βj(τ) vary with quantiles and exhibit an interesting pattern. First, the QR

estimates are negative at lower quantiles and positive at upper quantiles. Second, the

magnitude of these estimates increases as τ moves toward 0 and 1. Third, these estimates

are, in general, significant at tail quantiles.9 Thus, lagged log volume exerts opposite and

heterogeneous quantile causal effects on the two sides of the return distribution, and such

effects are stronger at more extreme quantiles.

The estimation results for FTSE 100 are quite different. The LS estimate of β1 is

significantly negative at 5% level, but that of β2(τ) is insignificant. This shows that there

is causality in mean in FTSE 100. The QR estimates of βj(τ) are also heterogeneous across

τ . The QR estimates of β1(τ) are significantly negative at lower quantiles but insignificant

at upper quantiles, and the QR estimates of β2(τ) are significantly positive at most upper

quantiles.10

To be sure, we apply the sup-Wald test to check joint significance of all coefficients

of lagged log volumes. The null hypothesis for NYSE is β1(τ) = β2(τ) = β3(τ) = 0 on

[0.05, 0.95], and the null for S&P 500 and FTSE 100 is β1(τ) = β2(τ) = 0 on [0.05, 0.95].

As shown in Table 3, these statistics overwhelmingly reject the null of non-causality at

1% level, suggesting causality in quantiles in these indices. We also test βi(τ) = 0 on the

ranges of quantiles at which the estimates of βi(τ) are found insignificant individually.

As shown in Table 3, none of these null hypotheses can be rejected at 5% level. Thus,

we conclude that, for NYSE and S&P 500, the quantile causal effects are mainly due to

the tail quantiles outside the interquartile range (except that of ln vt−1 for NYSE). Our

results are in contrast with many existing findings of non-causality that are based on a

test for linear causality in mean (e.g., Kocagil and Shachmurove, 1998; Chen, Firth, and

Rui, 2001; Lee and Rui, 2002).

Following Buchinsky (1998), we test whether the pairwise causal effects at the τ -th
9For NYSE, we obtain insignificant QR estimates of β1(τ) for τ in [0.53, 0.79] and [0.87, 0.95], insignif-

icant estimates of β2(τ) for τ in [0.30, 0.72], and insignificant estimates of β3(τ) for τ in [0.26, 0.62] and

[0.68, 0.76]. For S&P 500, there are insignificant QR estimates of β1(τ) for τ in [0.24, 0.64] and insignificant

estimates of β2(τ) for τ in [0.34, 0.65].
10For FTSE 100, the quantiles range of insignificant QR estimates are [0.67, 0.95] for β1(τ) and [0.08, 0.49]

and [0.83, 0.85] for β2(τ).
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Table 3: The sup-Wald tests of non-causality in different quantile ranges.

Index βi(τ) = 0, i = 1, 2, 3 β1(τ) = 0 β2(τ) = 0 β3(τ) = 0

NYSE [0.05, 0.95] [0.53, 0.79] [0.87, 0.95] [0.3, 0.72] [0.26, 0.62] [0.68, 0.76]

79.12∗∗ 3.48 3.11 2.65 2.86 2.26

βi(τ) = 0, i = 1, 2 β1(τ) = 0 β2(τ) = 0

S&P 500 [0.05, 0.95] [0.24, 0.64] [0.34, 0.65]

134.27∗∗ 5.80 5.71

FTSE 100 [0.05, 0.95] [0.67, 0.95] [0.08, 0.49] [0.83, 0.85]

27.53∗∗ 2.18 2.98 2.78

Note: Each interval in the square bracket is the quantile range on which the null hypothesis

holds; the entry below each interval is the sup-Wald statistic. ∗∗ and ∗ denote significance at

1% and 5% levels, respectively. The critical values for the tests on [0.05, 0.95] are in Table 1;

the other critical values are obtained by simulations.

and (1− τ)-th quantiles are symmetric about the median, i.e., βi(τ)+βi(1− τ) = 2βi(0.5)

with i = 1, 2, 3 for NYSE and i = 1, 2 for both S&P 500 and FTSE 100. This amounts to

checking whether

δ̂i,T (τ) = β̂i,T (τ) + β̂i,T (1− τ)− 2β̂i,T (0.5)

is sufficiently close to zero. To this end, we conduct a χ2(1) test based on the square of

the normalized δ̂T (τ) for the τ pairs: (0.05, 0.95), (0.1, 0.9), . . . , (0.45, 0.55), where the

standard error of δ̂T (τ) is computed via design matrix bootstrap. We may also conduct

a joint test to check if δ̂i,T (τ), i = 1, . . . , k, are close to zero. For NYSE, it is a χ2(3)

test; for S&P 500 and FTSE 100, it is a χ2(2) test. The testing results of all indices are

summarized in Table 4.

Table 4 shows that, for NYSE and S&P 500, the null of symmetric causal effects can

not be rejected at 5% for all τ pairs we considered. This is so for both individual test

and joint test. For FTSE 100, these effects are not symmetric for some middle τ pairs

of β1(τ). These symmetry results are somewhat different from those of Hutson, Kearney,

and Lynch (2008). The symmetry of these quantile causal effects helps to explain why the

conventional methods, such as correlation coefficient and LS estimation, usually yield an

insignificant estimate of the causal effect of volume, as the positive and negative effects at

corresponding upper and lower quantiles tend to cancel out each other in “averaging.”
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Table 4: Testing symmetry of quantile causal effects: Models without r2
t−j .

τ pair NYSE S&P 500 FTSE 100

(τ, 1− τ) β1 β2 β3 joint β1 β2 joint β1 β2 joint

0.05 0.027 0.139 2.692 4.325 0.335 0.760 0.724 0.042 0.447 0.874

0.10 0.023 0.699 0.056 1.695 0.000 0.384 0.608 3.615 1.477 3.857

0.15 1.665 0.029 0.001 3.134 0.020 0.452 0.566 4.253∗ 1.119 4.597

0.20 2.160 0.338 0.658 3.967 0.329 0.612 0.629 8.339∗∗ 1.082 10.236∗∗

0.25 2.931 0.598 1.432 5.259 0.349 0.013 0.740 7.150∗∗ 0.883 8.749∗

0.30 1.484 0.495 0.234 3.120 0.790 0.009 1.487 6.224∗ 1.434 7.040∗

0.35 0.929 1.162 0.002 4.301 0.120 0.601 1.571 1.815 0.106 2.567

0.40 1.025 0.008 0.006 1.463 0.234 0.867 0.871 0.697 1.311 1.280

0.45 0.327 0.135 0.526 0.873 0.062 0.095 0.100 1.296 3.508 3.408

Note: Each entry is a test statistic for the hypothesis that the quantile causal effects are

symmetric about the median. ∗∗ and ∗ denote significance at 1% and 5% levels, respectively;

the corresponding critical values are 6.63 and 3.84 for χ2(1), 9.21 and 5.99 for χ2(2), and 11.34

and 7.81 for χ2(3).

The estimation and testing results for NYSE and S&P 500 lead to a vivid pattern of

quantile causal effects. By putting lagged log volume on the vertical axis and return on

the horizontal axis, the quantile causal effects of log volume on return exhibit a spectrum

of symmetric V -shape relations, in which the V ’s at more extreme quantiles have wider

opening. Thus, an increase in lagged log volume results in a larger return in either sign,

and such effect is stronger for returns with larger magnitude. This dynamic V -shape pat-

tern complements the findings of Karpoff (1987), Gallant, Rossi, and Tauchen (1992), and

Blume, Easley, and O’Hara (1994). These V -shape relations also imply that the disper-

sion of return increases with lagged volume, so that return volatility depends positively

on lagged volume, analogous to the results in the context of conditional variance, e.g.,

Lamoureux and Lastrapes (1990), Gallant, Rossi, and Tauchen (1992), Moosa and Al-

Loughani (1995), Kocagil and Shachmurove (1998), Chen, Firth, and Rui (2001), and Xu,

Chen, and Wu (2006).

4.2 Causal Effects of Volume on Return: Model with r2
t−j

From the preceding subsection we find that the dispersion (volatility) of return changes

with lagged log volume. To see if the quantile causal effects of log volume are robust,
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we take squared return as a proxy for return volatility and consider an extension of (10)

which includes lagged r2
t−j as additional regressors:

rt = a(τ) + b(τ)
t

T
+ c(τ)

( t

T

)2
+

q∑
j=1

αj(τ)rt−j +
q∑

j=1

βj(τ) ln vt−j

+
q∑

j=1

γj(τ)r2
t−j + et.

(11)

This allows us to examine whether log volume still Granger causes return in the presence

of r2
t−j . The model (11) carries the flavor of an ARCH-in-mean model and is also able to

capture some nonlinearity in lagged return.

We again apply the sup-Wald test to determine an appropriate lag order q∗. For

NYSE, the sup-Wald test of β3(τ) in the lag-3 model is 12.402 which is is significant at

1% level and that of β2(τ) in the lag-2 model is 21.158 which is significant. For S&P 500,

the sup-Wald test of β3(τ) in the lag-3 model is 11.362, and that of β2(τ) in the lag-2

model is 20.554; the latter is significant at 1% level but the former is not. Therefore, we

estimate (11) with q∗ = 2 for both NYSE and S&P 500. For FTSE 100, q∗ = 1 because

the sup-Wald test of β2(τ) in the lag-2 model is 5.27 which is insignificant at 10% level

and that of β1(τ) in the lag-1 model is 20.513 which is significant at 1% level. Thus, the

desired lag order q∗ may be affected when r2
t−j are included in the model. For each lag-q∗

model, we also estimate 91 quantile regressions. The resulting QR and LS estimates and

their 95% confidence intervals are plotted in Figure 3.

For NYSE and S&P 500, we observe that the LS estimates of mean causal effect are

insignificantly different from zero, except that the estimate of β1 for NYSE is significantly

negative at 5% level (but still insignificant at 1% level). Thus, one may still conclude that

there is no causality in mean in NYSE and S&P 500. On the other hand, their quantile

causal effects are similar to those in Figure 2. For NYSE, the QR estimates of β1(τ) at

upper quantiles are mostly insignificant, and those of β2(τ) are negative (positive) at lower

(upper) quantiles and significant at tail quantiles. For S&P 500, the QR estimates for each

βj(τ) also have opposite signs at two sides of the return distribution and are significant

at tail quantiles.11 Moreover, we find that the magnitude of the QR estimates at tail

quantiles are weaker than the corresponding estimates in Figure 2. For FTSE 100, the LS

estimate of β1 is significantly negative, and the QR estimates are significantly negative at
11For NYSE, the QR estimates of β1(τ) are insignificant for τ in [0.55, 0.95], and those of β2(τ) are

insignificant for τ in [0.31, 0.67]. For S&P 500, the QR estimates of β1(τ) are insignificant at [0.22, 0.29]

and [0.44, 0.79], and those of β2(τ) are insignificant at [0.34, 0.72].
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Figure 3: QR and LS estimates of the causal effects of log volume on return: Model with r2
t−j .

middle and lower quantiles and significantly positive at right tail quantiles (except for τ

in [0.66, 0.89]). These are somewhat similar to the results of FTSE 100 in Figure 2.

The sup-Wald test of non-causality again significantly rejects the null of βi(τ) = 0 on

[0.05, 0.95] for these indices. The results of the symmetry test are collected in Table 5,

which are similar to those in Table 4. For NYSE and S&P 500, the quantile causal effects

are symmetric about the median for all τ pairs. For FTSE 100, the causal effects are

symmetric, except for some pairs of middle quantiles. To summarize, the presence of r2
t−j

in the model may reduce the strength of quantile causal effects of log volume but does

not affect causality in quantiles per se. For S&P 500, these quantile causal effects exhibit

a spectrum of “smaller”, symmetric V -shape relations. This is also the pattern of the

quantile causal effects of ln vt−2 on the return of NYSE.

We also examine the effects of r2
t−j on rt i.e., the estimates of γj(τ) in (11). These

estimates are plotted in Figure 4. It is quite interesting to see that the heterogeneity of

the estimated γj(τ) is somewhat similar to that of the estimated βj(τ). In particular,

the quantile causal effects increase with τ . The estimated γ2(τ) for NYSE and S&P 500

and the estimated γ1(τ) for FTSE 100 have opposite signs at the two side of the return

distribution. Putting r2
t−j on the vertical axis and rt on the horizontal axis, we would also
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Table 5: Testing symmetry of quantile causal effects: Models with r2
t−j .

τ pair NYSE S&P 500 FTSE 100

(τ, 1− τ) β1 β2 joint β1 β2 joint β1

0.05 0.005 1.732 2.003 1.256 0.105 1.409 0.629

0.10 0.003 2.520 2.885 0.612 0.061 0.748 0.660

0.15 0.259 1.093 2.576 0.395 0.123 1.299 3.390

0.20 0.426 0.811 2.422 0.751 0.489 2.921 8.367∗∗

0.25 0.617 0.341 1.584 1.703 0.042 3.221 3.969∗

0.30 0.063 0.801 1.519 1.357 0.031 2.408 2.820

0.35 0.217 0.554 1.322 0.513 0.581 2.569 0.349

0.40 0.953 0.044 0.962 0.202 1.374 1.544 0.157

0.45 0.017 0.481 0.696 0.745 0.000 1.274 0.270

Note: Each entry is a test statistic for the hypothesis that the quantile causal effects

are symmetric about the median. ∗∗ and ∗ denote significance at 1% and 5% levels,

respectively; the corresponding critical values are 6.63 and 3.84 for χ2(1) and 9.21

and 5.99 for χ2(2).

obtain a spectrum of V -shape relations based on these estimates. This result, together

with the quantile causal effects in Figures 2 and 3, confirms that both ln vt−j and r2
t−j are

able to account for distribution dispersion (volatility) in a similar manner.

4.3 Causal Effects of Return on Volume

To see if there is two-way causality between return and log volume, we now consider the

following models for ln vt:

ln vt = a†(τ) + b†(τ)
t

T
+ c†(τ)

( t

T

)2
+

q∑
j=1

α†j(τ) ln vt−j +
q∑

j=1

β†j (τ)rt−j + et;

ln vt = a†(τ) + b†(τ)
t

T
+ c†(τ)

( t

T

)2
+

q∑
j=1

α†j(τ) ln vt−j +
q∑

j=1

β†j (τ)rt−j

+
q∑

j=1

γ†j (τ)r2
t−j + et.

The first model is common in empirical studies; the second one extends the first by in-

cluding r2
t−j as regressors and is compatible with the model (11).

As in the preceding subsections, we first determine an appropriate lag order q∗ by the
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Figure 4: QR and LS estimates of the causal effects of r2
t−j on rt.

sup-Wald test. For NYSE, the sup-Wald test of β†2(τ) in the lag-2 model without r2
t−j

is 11.138 which is insignificant at 1% level and that of β†1(τ) in the lag-1 model without

r2
t−j is 16.298 which is significant. For S&P 500, the sup-Wald test of β†3(τ) in the lag-3

model without r2
t−j is 10.107 and that of β†2(τ) in the lag-2 model is 16.636. The latter is

significant at 1% level and the former is not. Therefore, for models without r2
t−j , we set

q∗ = 1 for NYSE and q∗ = 2 for S&P 500. We also find that, for models with r2
t−j , q∗ = 1

for NYSE and S&P 500.12 On the other hand, the lagged return does not Granger cause

log volume in FTSE 100 because the sup-Wald test of β†1(τ) in the lag-1 model without

and with r2
t−j yields 6.161 and 7.767 which are insignificant even at 10% level.

We now focus on NYSE and S&P 500 and summarize the LS and QR estimates of β†j (τ)

in the models without and with r2
t−j in Figures 5 and 6. We observe that the LS estimates

in these models are all significantly negative. The QR estimates are also significantly

negative at most quantiles and stay within the confidence interval of the corresponding

LS estimate. Thus, the causal effects of return on log volume are relatively stable (ho-
12For NYSE, the sup-Wald test of β2(τ) in the lag-2 model is 6.808 and that of β1(τ) in the lag-1 model

is 13.512. For S&P 500, the sup-Wald test of β2(τ) in the lag-2 model is 12.003 and that of β1(τ) in the

lag-1 model is 20.564.
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Figure 5: QR and LS estimates of the causal effects of return on log volume: Model without r2
t−j .
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Figure 6: QR and LS estimates of the causal effects of return on log volume: Model with r2
t−j .

mogeneous) across quantiles for NYSE and S&P 500. These results are consistent with

the existing findings, such as Moosa and Al-Loughani (1995), Silvapulle and Choi (1999),

Chen, Firth, and Rui (2001), and Lee and Rui (2002). We also note that the quantile

causal effects of r2
t−1 on log volume are all significantly positive.

To summarize, we find from these subsections that there are two-way quantile causal

relations between return and log volume for NYSE and S&P 500 but only one-way causality

in quantiles from log volume to return for FTSE 100. The quantile causal effects of a lagged

log volume on return still exhibit symmetric V shapes in general, yet the causal effects of

a lagged return on log volume are negative. Thus, lagged log volume carries important

information that is not contained in the past returns and past squared returns. Similarly,

lagged return also carries information that is not contained in the past volumes and past

squared returns. This is in line with Blume, Easley, and O’Hara (1994).
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Figure 7: QR and LS estimates of the causal effects of log volume on return: 1995–2006, Model

without r2
t−j .

4.4 Robustness Check

As our sample extends a fairly long time (17 years), we check the robustness of our results

by evaluating the causal relations between return and volume in different sub-samples.

Specifically, we conduct the same causality analysis on two sample periods: Jan. 1995 to

June 2006 and Jan. 2000 to June 2006. The choice of these sub-samples is arbitrary.

We briefly summarize our estimation results here; the detailed statistics and estimation

results are available upon request. At 1% level, the sup-Wald test suggests q∗ = 1 in the

model (10) for each index in each sub-sample considered, except for S&P 500 in 1995–2006

the sup-Wald test of β1(τ) = 0 in the lag-1 model is 9.69 which is almost significant at 5%

level. To ease our comparison, we estimate all models with q∗ = 1. The resulting estimates

of β1(τ) based on the sample of 1995–2006 are plotted in Figure 7, and those based on

the sample of 2000–20006 are plotted in Figure 8. It is readily seen that the LS estimates

in these plots are all insignificant at 5% level while the quantile causal patterns of these

estimates are qualitatively similar to those in Figure 2. Indeed, we observe V -shape causal

relations for NYSE and S&P 500 in these sub-samples. Estimating the model (11) with

r2
t−j also yields similar results. To conserve space, the plots of these parameter estimates

are not presented here.

5 Concluding Remarks

In this paper we estimate quantile causal effects and test Granger non-causality in different

quantile ranges based on the quantile regressions of return (log volume). We find that

there are quantile causal relations between return and log volume. More importantly, our

results indicate that the causal relations may be far more complicated than what can be
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Figure 8: QR and LS estimates of the causal effects of log volume on return: 2000–2006, Model

without r2
t−j .

described using least-squares regression. Indeed, the causal effects may be heterogeneous

across quantiles and that the causal effects at tail quantiles may be much different from

those at middle quantiles and at the mean. Thus, the conclusion on non-causality based

solely on a conventional test on the mean relation may be misleading.

The empirical results of causality in quantiles, however, can not be explained by ex-

isting equilibrium models (e.g., Campbell, Grossman, and Wang, 1993). These models

typically yield implications on the conditional mean but say little about the behaviors of

conditional quantiles. Therefore, different models are needed to account for the quantile

causal patterns found in this paper. It is also interesting to note that quantile causal

relations provide detailed information about distribution dispersion and hence can com-

plement conventional volatility measures, such as conditional variance. How to incorporate

such information to improve on the evaluation of volatility and related assets (e.g., VIX

option) is an interesting topic and currently being investigated.
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