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Abstract

We extend the KVB approach of Kiefer, Vogelsang, and Bunzel (2000, Econometrica)

to constructing robust M tests without consistent estimation of asymptotic covariance

matrix. We demonstrate that, when model parameters have to be estimated, the nor-

malizing matrix computed using a full-sample estimator is able to eliminate the nuisance

parameters when there is no estimation effect but not otherwise. To circumvent the

problem of estimation effect, we propose using recursive estimators to compute the nor-

malizing matrix and show that the resulting M test is asymptotically pivotal. This M

test is thus robust not only to heteroskedasticity and serial correlations of unknown form

but also to the presence of estimation effect. As examples, we consider robust tests for

serial correlations and robust information matrix tests. The former tests extend that of

Lobato (2001, JASA) and are applicable to model residuals. For testing higher-order

moments, we find that the latter tests are also robust when a lower-order moment is

mis-specified. Our simulations confirm that the proposed M tests are properly sized and

have power advantage when other tests are computed based on inappropriate user-chosen

parameters.

JEL classification: C12, C22

Keywords: information matrix test, M test, Newey-West estimator, test for serial cor-

relations, recursive estimator



1 Introduction

Consistent estimation of asymptotic variance-covariance matrix plays a crucial role in

large-sample tests. A leading class of consistent variance-covariance matrix estimators

that are robust to heteroskedasticity and serial correlations of unknown form is the non-

parametric kernel estimator originated from spectral estimation (Parzen, 1957); see also

Hannan (1970) and Priestley (1981). This estimator was brought to econometricians’

attention by Newey and West (1987) and Gallant (1987), and it was subsequently elab-

orated by Andrews (1991), Andrews and Monahan (1992), Hansen (1992), Newey and

West (1994), de Jong and Davidson (2000), and Jansson (2002); for an early review see

den Haan and Levin (1997). While the performance of this estimator may vary with the

choices of the kernel function and truncation lag (i.e., the number of autocovariances to

be estimated), such choices are somewhat arbitrary in practice. Therefore, the statistical

inferences resulted from the kernel-estimator-based tests are unavoidably vulnerable.

Kiefer, Vogelsang, and Bunzel (2000) proposed an alternative approach to building ro-

bust tests in linear regressions. Instead of estimating the asymptotic variance-covariance

matrix, they employed a random normalizing matrix to eliminate the nuisance parame-

ters (of the asymptotic variance-covariance matrix) in the limit. This approach, hereafter

the KVB approach, makes an important contribution to hypothesis testing because it

avoids nonparametric estimation and hence its related problems. Jansson (2004) also

showed that, in a Gaussian location model, the test based on the KVB approach com-

pares favorably with the kernel-estimator-based tests in terms of the error in rejection

probability. Bunzel, Kiefer, and Vogelsang (2001) and Vogelsang (2002) applied this ap-

proach to construct robust tests based on the nonlinear least squares (NLS) estimator

and the generalized method of moments (GMM) estimator; a test for serial correlations

was also developed by Lobato (2001) along the same line. Whether the KVB approach

is applicable to more general specification tests has not been studied, however.

In this paper we extend the KVB approach to constructing robust M tests. The M

test considered by Newey (1985), Tauchen (1985), and White (1987) is a general class of

specification tests on moment conditions that are functions of unknown parameters. The

specification tests under the quasi-maximum likelihood framework are leading examples.

We show that, when model parameters have to be estimated, the normalizing matrix

computed based on a full-sample estimator is able to eliminate the nuisance parameters

when there is no estimation effect but not otherwise. To circumvent the problem of

estimation effect, we also propose using recursive estimators to compute the normalizing
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matrix and show that the resulting M test is asymptotically pivotal such that its limiting

distribution is the same as that of Lobato (2001). This M test is thus robust not only

in the KVB sense but also to estimation effect. The latter property is important in M

testing because, when estimation effect is present, the asymptotic covariance matrix is

usually of a complex form and hence difficult to estimate consistently.

As examples, we consider robust tests for serial correlations and robust informa-

tion matrix tests for skewness and excess kurtosis. The former tests extend that of

Lobato (2001) and are applicable to model residuals. In particular, it is shown that

the recursive-estimator-based normalizing matrix is needed for testing the residuals of

dynamic models. For information matrix tests, it is quite interesting to find that the

proposed tests on higher-order moments are also robust when a lower-order moment is

mis-specified. As for the finite-sample performance, our simulations demonstrate that

the proposed M tests are properly sized and have power advantage when other tests are

computed based on inappropriate user-chosen parameters.

This paper proceeds as follows. In Section 2, we introduce the KVB approach in

the context of M testing. We propose two robust M tests in Section 3 and illustrate

them using two examples in Section 4. Monte Carlo simulation results are reported in

Section 5. Section 6 concludes the paper. All proofs are deferred to the Appendix.

2 The KVB Approach

We first present the KVB approach in the context of M testing. For M tests, the hypoth-

esis of interest can be expressed as a vector of q moment conditions:

IE[f(ηt;θo)] = o, for some θo ∈ Θ ⊂ IRp, (1)

where ηt are random data vectors, θo is the p× 1 true parameter vector, and f is a q× 1

vector of functions that are continuously differentiable in the neighborhood of θo. To

examine the power property of M tests, we consider a sequence of local alternatives:

IE[f(ηt;θo)] = δo/
√

T , (2)

where T is the sample size and δo is a vector of nonzero constants. Clearly, (2) reduces

to (1) when δo = o. In what follows, we let [c] denote the integer part of the number

c, ⇒ denote weak convergence (of associated probability measures), D−→ convergence in

distribution, d= equality in distribution, Wq a vector of q independent, standard Wiener

processes, and Bq the Brownian bridge with Bq(r) = Wq(r) − rWq(1) for 0 ≤ r ≤ 1.
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We first consider the simplest case that θo is known. Define

m[rT ](θ) =
1
T

[rT ]∑
t=1

f(ηt;θ), 0 < r ≤ 1,

where T is the sample size; for r = 1, mT (θ) is the sample average of f(ηt;θ). We can

then base an M test on mT (θo), the sample counterpart of (1). Suppose that T 1/2mT (θo)

is governed by a central limit theorem such that under the alternative hypothesis (2),

T 1/2mT (θo)
D−→ N (δo, Σo), where Σo is nonsingular. As long as we can find a consistent

estimator Σ̂T for Σo, the M test under the alternative hypothesis (2) is:

T mT (θo)
′Σ̂

−1

T mT (θo)
D−→ χ2(q; δ′

oΣ
−1
o δo),

where δ′
oΣ

−1
o δo is the non-centrality parameter. When the null hypothesis (1) is true,

δo = o so that the limiting distribution of this test is central χ2(q).

A leading consistent estimator of Σo when f(ηt;θo) are heteroskedastic and serially

correlated is the following nonparametric kernel estimator:

Σ̂T =
1
T

T∑
i=1

T∑
j=1

κ

( |i − j|
�(T )

)
[f(ηi;θo) − mT (θo)][f(ηj;θo) − mT (θo)]

′,

where κ is a kernel function that vanishes when |i− j| > �(T ), and �(T ) grows with T at

a slower rate and is known as the truncation lag. The performance of the M test based

on Σ̂T varies with the chosen kernel function κ and/or the truncation lag �(T ).

The main idea underlying the KVB approach is to employ a random normalizing

matrix CT (θo) in place of a consistent estimator of Σo so as to avoid the problems

arising from kernel estimation. Following this approach, a robust M test of (1) is

MT = T mT (θo)
′CT (θo)

−1mT (θo), (3)

where CT (θo) = T−1
∑T

t=1 ϕt(θo)ϕt(θo)′ with

ϕt(θo) =
1√
T

t∑
i=1

[
f(ηi;θo) − mT (θo)

]
=

√
Tmt(θo) −

t

T

√
TmT (θo).

We impose a “high-level” condition that {f (ηt;θo)} obeys a functional central limit

theorem (FCLT); more primitive regularity conditions will be discussed in Section 3.

[A1] (a) Under the local alternatives (2),

√
Tm[rT ](θo) =

1√
T

[rT ]∑
t=1

f(ηt;θo) ⇒ rδo + SWq(r), 0 ≤ r ≤ 1,

where S is the nonsingular, matrix square root of Σo (i.e., Σo = SS′).
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By [A1](a), T 1/2mT (θo) ⇒ δo + SWq(1)
d= N (δo, Σo) under local alternatives, and

its null limit is SWq(1). Yet under both the null and local alternative hypotheses,

ϕ[rT ](θo) ⇒ S
[
Wq(r) − rWq(1)

]
= SBq(r), 0 ≤ r ≤ 1,

and CT (θo) ⇒ SP qS
′ with P q =

∫ 1
0 Bq(r)Bq(r)′ dr. It follows that

MT
D−→ [S−1δo + Wq(1)]

′P−1
q [S−1δo + Wq(1)],

under the local alternative (2), and MT
D−→ Wq(1)

′P−1
q Wq(1) under the null hypothesis

(1). The advantage of the KVB approach is now clear. Although CT (θo) is not consistent

for Σo, it eliminates the nuisance parameter S arising from the limit of T 1/2mT (θo) and

yields an asymptotically pivotal test. This limit is the same as that of Lobato (2001)

but differs from that of Kiefer et al. (2000) by a scaling factor; the critical values of this

distribution for various q can be found in Lobato (2001). Kiefer and Vogelsang (2002a)

showed that CT (θo) is algebraically equivalent to one half of the nonparametric kernel

estimator based on the Bartlett kernel without truncation (i.e., �(T ) = T ).

3 Robust M Tests

In practice, θo of (1) is unknown and must be estimated. We now introduce two robust

M tests based on different estimators of θo.

3.1 M Test Based on a Full-Sample Estimator

Consider the robust M test with θo replaced by a full-sample estimator θ̂T :

M̂T = T mT (θ̂T )′Ĉ
−1

T mT (θ̂T ), (4)

where the normalizing matrix is ĈT = CT (θ̂T ) = T−1
∑T

t=1 ϕt(θ̂T )ϕt(θ̂T )′ with

ϕt(θ̂T ) =
1√
T

t∑
i=1

[
f(ηi; θ̂T ) − mT (θ̂T )

]
=

√
Tmt(θ̂T ) − t

T

√
TmT (θ̂T ). (5)

Although M̂T in (4) is analogous to MT in (3), their asymptotic properties are not

necessarily the same. To see this, note that

√
Tm[rT ](θ̂T ) =

√
Tm[rT ](θo) +

[rT ]
T

F [rT ](θo)
[√

T (θ̂T − θo)
]
+ oIP(1), (6)

where F [rT ](θo) = [rT ]−1
∑[rT ]

t=1 ∇θf
(
ηt;θo

)
. Here, the second term on the right-hand

side above is OIP(1) and characterizes the estimation effect of replacing θo with θ̂T .

4



T 1/2mT (θ̂T ) in M̂T and T 1/2mT (θo) in MT are not asymptotically equivalent and have

different asymptotic covariance matrices, unless the estimation effect is absent.

To derive the limit of (4), we observe that many well-known econometric estimators

may be expressed as:

√
T (θ̂T − θo) = Qo

[
1√
T

T∑
t=1

q(ηt;θo)

]
+ oIP(1), (7)

where Qo is a p × p nonsingular matrix and q is a vector-valued function in IRp. For

example, when θ̂T is a quasi-maximum likelihood (QML) estimator, Qo is the inverse

of the limit of the Hessian matrix evaluated at θo, and q(ηt;θo) is the score function

evaluated at θo. The NLS and GMM estimators can also be expressed in a similar form.

The conditions below require {g(ηt;θo) = [f(ηt;θo)′,q(ηt;θo)′]′} to obey a central limit

theorem (CLT) and {∇θf
(
ηt;θo

)} to obey a law of large numbers (LLN).

[A1] (b) Under the alternative hypothesis (2),⎡⎣ 1√
T

∑T
t=1 f(ηt;θo)

1√
T

∑T
t=1 q(ηt;θo)

⎤⎦⇒ ζ(δo) + GWq+p(1),

where G is nonsingular with the nonsingular diagonal blocks G11 (q × q) and G22

(p×p) and the off-diagonal blocks G12 (q×p) and G21 (p× q), ζ(δo) = [δ′
o φ(δo)′]′

with supδo
‖φ(δo)‖ < ∞, and φ(δo) = o if δo = o.

[A2] F [rT ](θo) = [rT ]−1
∑[rT ]

t=1 ∇θf
(
ηt;θo

) IP−→ F o, uniformly in 0 < r ≤ 1, where F o is

a q × p non-stochastic matrix; ∇θF [rT ](θo) is bounded in probability.

We do not explicitly specify the regularity conditions for [A1] and [A2] so as to reduce

technicality and excessive notations. Instead, we note that the conditions ensuring a

multivariate FCLT, e.g., Corollary 4.2 of Wooldridge and White (1988) or Theorem 7.30

of White (2001), suffice for [A1], and those in Theorem 3.18 of Gallant and White (1988)

suffice for [A2]. These conditions allow for general f functions as well as heterogeneous

and weakly dependent data. Such conditions are quite standard in the literature; see

Davidson (1994) and White (2001) for more thorough discussions. Note that the upper

left (q × q) block of Γ = GG′ is Γ11 = G11G
′
11 + G12G

′
12, which is nothing but Σo in

[A1](a). Thus, S is also the matrix square root of Γ11. Moreover, [A1](b) implies:

√
T (θ̂T − θo)

D−→ N (Qoφ(δo), QoΓ22Q
′
o)

d= Qoφ(δo) + QoΛW p(1),
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where Λ is the matrix square root of Γ22 = G21G
′
21 + G22G

′
22, the lower-right (p × p)

block of Γ. This is a standard CLT result for many econometric estimators. Therefore,

apart from the joint convergence of f(ηt;θo) and q(ηt;θo), the regularity conditions for

[A1] are virtually the same as those in the analysis of M tests (Newey, 1985).

From (5) and (6) we see that T 1/2 mT (θ̂T ) has the estimation effect, yet owing to

“centering” (i.e., the summand of ϕ being f(ηi, θ̂T ) − mT (θ̂T )), ϕ[rT ](θ̂T ) in ĈT does

not. It is then clear that the limit of ĈT can not eliminate the nuisance parameter arising

from T 1/2 m(θ̂T ) in general, as shown in the result below.

Theorem 3.1 Suppose that [A1] and [A2] hold.

(a) If F o 
= o, we have under the local alternative (2) that

M̂T
D−→ [

δo+F oQoφ(δo)+V W q(1)
]′[

SP qS
′]−1[

δo+F oQoφ(δo)+V W q(1)
]
,

where V is the matrix square root of [Iq F oQo]GG′[Iq F oQo]
′, S is the matrix

square root of Γ11, the upper left block of Γ = GG′, and P q =
∫ 1
0 Bq(r)Bq(r)′ dr;

in particular, M̂T
D−→ Wq(1)′V

′[SP qS
′]−1

V Wq(1) under the null hypothesis (1).

(b) If F o = o, we have V = S and, under local alternatives (2),

M̂T
D−→ [

S−1δo + W q(1)
]′

P−1
q

[
S−1δo + W q(1)

]
;

in particular, M̂T
D−→ Wq(1)

′P−1
q Wq(1) under the null hypothesis (1).

Thus, M̂T is asymptotically pivotal when the estimation effect is absent in the limit (i.e.,

F o = o) but not otherwise. Note that V in Theorem 3.1(a) must have a complex form

because it is obtained from G and depends on the asymptotic variances of the two terms

on the right-hand side of (6) and their covariance. Hence, a consistent estimator for the

asymptotic covariance matrix V V ′ may not be readily available.

Remark: The nonsingularity of G required by [A1] excludes the cases that f and q

(hence T 1/2mT (θo) and T 1/2(θ̂T − θo)) are linearly dependent in the limit. This may

happen when θ̂T is obtained from solving mT (θ) = o. For example, when mT (θ) is

the average of sample score functions and θ̂T is the QML estimator so that q = p, we

have mT (θ̂T ) = o and T 1/2
(
θ̂T − θo

)
= −F−1

o T 1/2mT (θo) + oIP(1). In this case, G is

singular because by setting Qo = −F−1
o , f = q. In fact, when mT (θ̂T ) is identically

zero, it can not be used to test (1). For testing over-identifying restrictions in the GMM
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context, let mT (θo) denote the average of sample moment functions and θ̂T denote the

corresponding GMM estimator. Then,

√
T
(
θ̂T − θo

)
= −[F ′

T (θo)HT F T (θo)]
−1F ′

T (θo)HT

(
1√
T

T∑
t=1

f(ηt;θo)

)
+ oIP(1),

where HT is the weighting matrix in GMM estimation. When HT converges in proba-

bility to a nonsingular matrix Ho, we have Qo = −(F ′
oHoF o)−1 and q = F ′

oHof . This

also yields a singular G.

3.2 M Test Based on Recursive Estimators

In the light of Theorem 3.1(b), an asymptotically pivotal M test would be available if the

estimation effect of T 1/2 mT (θ̂T ) can be eliminated. Estimation effect may be removed

using the martingale transformation of Khmaladze (1981); see, e.g., Stute et al. (1998)

and Bai (2003). Instead of trying to tackle the estimation effect directly, we propose a

different normalizing matrix that can eliminate the nuisance parameter V , regardless of

the value of F o. This is precisely the spirit of the KVB approach.

To construct a proper normalizing matrix, it is desired that ϕ[rT ] preserves the esti-

mation effect and converges to a limit with the same nuisance parameter V for every r.

The first objective can be easily achieved by evaluating mT (·) and m[rT ](·) with r < 1

at different estimators, so that “centering” does not cancel out the estimation effect in

ϕ[rT ]. Suppose that mT (·) is evaluated at θ̂T as before and that m[rT ](·) is evaluated

at another consistent estimator θ̌ which, when normalized by a factor h(T ), converges in

distribution to a Gaussian random vector. To yield the nuisance parameter V , note that

the Taylor expansion of T 1/2 m[rT ](θ̌) is:

√
Tm[rT ](θo) +

[rT ]√
T

1√
h(T )

F [rT ](θo)
[√

h(T )(θ̌ − θo)
]
+ oIP(1)

=

√
[rT ]√
T

⎧⎨⎩ 1√
[rT ]

[rT ]∑
t=1

f(ηt;θo) +

√
[rT ]√
h(T )

F [rT ](θo)
[√

h(T )(θ̌ − θo)
]⎫⎬⎭+ oIP(1).

When the estimation effect remains, the second term in the curly brackets above depends

on the relative orders of [rT ] and h(T ) in the limit. As such, the terms in the curly

brackets can not behave like T 1/2 mT (θ̂T ) unless h(T ) = [rT ] and h(T )1/2(θ̌ − θo) has

the same limiting distribution as T 1/2(θ̂T − θo). These suggest us to choose θ̌ = θ̃[rT ],

the recursive counterpart of θ̂T , computed from the subsample of first [rT ] observations.
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In view of the discussion above, we propose computing the normalizing matrix based

on the recursive estimators θ̃t: C̃T = T−1
∑T

t=p+1 ϕ̃tϕ̃
′
t with

ϕ̃t = ϕt(θ̃t, θ̃T ) =
1√
T

t∑
i=1

[
f(ηi, θ̃t) − mT (θ̃T )

]
.

The resulting M test is thus

M̃T = T mT (θ̂T )′C̃
−1

T mT (θ̂T ). (8)

In the light of (7), [rT ]1/2(θ̃[rT ] − θo) = [rT ]−1/2Qo

∑[rT ]
t=1 q(ηt;θo) + oIP(1). The

first-order Taylor expansion about θo then yields

√
Tm[rT ]

(
θ̃[rT ]

)
=

√
Tm[rT ]

(
θo

)
+

√
[rT ]√
T

F [rT ](θo)
[√

[rT ]
(
θ̃[rT ] − θo

)]
+ oIP(1)

=
√

Tm[rT ]

(
θo

)
+ F [rT ](θo)Qo

⎛⎝ 1√
T

[rT ]∑
t=1

q(ηt;θo)

⎞⎠+ oIP(1).

This expression suggests that we may strengthen [A1] to an FCLT condition.

[B1] Under the local alternatives (2),⎡⎣ 1√
T

∑[rT ]
t=1 f(ηt;θo)

1√
T

∑[rT ]
t=1 q(ηt;θo)

⎤⎦⇒ r ζ(δo) + GWq+p(r), 0 ≤ r ≤ 1,

where G and ζ(δo) are as in [A1](b).

Clearly, [B1] implies [A1]; the main difference is that [B1] also requires {q(ηt;θo)} to

obey an FCLT. This is not an excessively stronger requirement. In fact, as far as the

regularity conditions are concerned, those imposed in Corollary 4.2 of Wooldridge and

White (1988) or Theorem 7.30 of White (2001) are still sufficient for [B1].

Theorem 3.2 Given [B1] and [A2], we have under the local alternatives (2) that

M̃T
D−→ [

V −1
(
δo + F oQoφ(δo)

)
+ W q(1)

]′
P−1

q

[
V −1

(
δo + F oQoφ(δo)

)
+ W q(1)

]
,

where V and P q are defined in Theorem 3.1; in particular, M̃T
D−→ Wq(1)

′P−1
q Wq(1)

under the null hypothesis (1).

From the proof of Theorem 3.2 we see that ϕ̃t converges weakly to V Bq(r). This

is why C̃
−1

T can eliminate the nuisance parameter of T 1/2mT (θ̂T ). It follows that M̃T
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has the same weak limit as MT . Clearly, when F o is indeed zero, both M̂T and M̃T

are asymptotically pivotal, but the former is computationally simpler because it does not

require recursive estimation. We stress that M̃T is not only a robust test in the KVB

sense but also an alternative to the estimation effect problem in M testing. The latter is

an important feature because estimation effect is typical in M tests and usually renders

consistent estimation of the asymptotic covariance matrix difficult.

Remarks:

1. Theorem 3.2 is subject to the same restriction as Theorem 3.1 because G is also re-

quired to be nonsingular. That is, f and q (hence T 1/2m[rT ](θo) and [rT ]1/2(θ̃[rT ]−
θo)) can not be linearly dependent in the limit. This requirement may be relaxed

slightly. Note that Theorems 3.1 and 3.2 remain valid as long as V is nonsingular,

for which the nonsingularity of G is sufficient but not necessary. Thus, our results

carry over when G is singular with rank k (q ≤ k < p + q) and V is nonsingular.

In practice, it may be difficult to verify whether V is nonsingular, however.

2. Our results fail to hold when V is singular with rank γ, where 0 < γ < q. For

example, for testing over-identifying restrictions in the GMM context, we have

rank(G) = q but rank(V ) = q − p > 0. Then, as shown in the Appendix:

Wq(1)
′V ′(V P qV

′)+V Wq(1)
d= W γ(1)′P−1

γ W γ(1), (9)

where A+ is the Moore-Penrose generalized inverse of A. Although C̃T ⇒ V P qV
′,

there is no guarantee that C̃
+

T ⇒ (V P qV
′)+ because generalized inverse is not a

continuous function. To ensure such convergence, C̃T is required to satisfy more

conditions; see, e.g., Scott (1997, 188–190). Hence, further modification of the test

and/or C̃T may be needed to deliver an asymptotically pivotal test.

3. Similar to Kiefer and Vogelsang (2002a), we can show that ĈT is one half of the

Bartlett-kernel-based estimator without truncation. But C̃T does not have this

property. Thus, in contrast with Kiefer and Vogelsang (2002b), there is no other

kernel estimator without truncation that corresponds to C̃T . Yet some variants

of C̃T also eliminate the nuisance parameter when estimation effect is present,

e.g., the “non-centered” normalizing matrix: C̈T = T−1
∑T

t=p+1 ϕ̈tϕ̈
′
t with ϕ̈t =

T−1/2
∑t

i=1 f(ηi, θ̃t). Under the null, C̈T ⇒ V [
∫ 1
0 W q(r)W q(r)′ dr]V ′, so that

M̈T = T mT (θ̂T )′C̈
−1
T mT (θ̂T ) ⇒ W q(1)

′
[ ∫ 1

0
W q(r)W q(r)

′ dr
]−1

W q(1).
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This test is asymptotically pivotal but turns out to have little asymptotic local

power. For the local powers of M̈T and other tests, see next sub-section.

3.3 Asymptotic Local Power

In this section we compare the asymptotic local powers of the M̃T test with the “cen-

tered” normalizing matrix, M̈T test with the “non-centered” normalizing matrix, and

standard M test: M†
T = TmT (θ̂T )′V̂

−1′

T V̂
−1

T mT (θ̂T ), where V̂ T is a consistent estimator

of V defined in Theorem 3.1.

Let λ = δo + F oQoφ(δo). By Theorem 3.2, the asymptotic local power of M̃T is

IP
{
[V −1λ + W q(1)]

′P−1
q [V −1λ + W q(1)] > cα

}
,

with cα the critical value at α level taken from the distribution of W q(1)′P
−1
q W q(1). It

can be verified that under the local alternative (2), C̈T ⇒ V Ξ−1
q V ′ with

Ξq =
∫ 1

0

[
rV −1λ + W q(r)

][
rV −1λ + W q(r)

]′ dr,

which differs from P q by the term rV −1λ in the integral. It follows that the asymptotic

local power of M̈T is

IP
{
[V −1λ + W q(1)]

′Ξ−1
q [V −1λ + W q(1)] > cα

}
,

with cα the critical value at α level taken from W q(1)′[
∫ 1
0 W q(1)W q(1)′ dr]−1W q(1).

Further, under the local alternative, M†
T

D−→ χ2(q, ω), a non-central χ2 distribution

with q degrees of freedom and the non-centrality parameter ω = λ′V −1′V −1λ. The

asymptotic local power of M†
T is then IP{χ2(q, ω) > cα}, with cα the critical value taken

from the central χ2 distribution with q degrees of freedom. Note that the local powers

of these tests are essentially due to the same ingredient λ.

We simulate the asymptotic local powers of M̃T and M̈T for q = 1. In our simulation,

the standard Wiener process is approximated by the (normalized) partial sums of 2, 000

pseudo standard normal random variables, and the number of replications is 50, 000. We

also compute the local power of M†
T by comparing χ2(1, ω) with the critical value of χ2(1).

This is an “ideal” result because the power does not depend on the covariance matrix

estimator. The power curves for the nominal sizes 5% and 10% are plotted in Figure 1.

Similar to Kiefer, Vogelsang, and Bunzel (2000), the local power of M†
T dominates that

of M̃T , but their difference becomes smaller when the nominal size is 10%. In practice,

M†
T is affected by the covariance matrix estimator and hence need not outperform M̃T .
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5% level 10% level

Figure 1: The asymptotic local power of M†
T (solid), M̃T (dashed) and M̈T (dotted).

In fact, when estimation effect is present, computing M†
T may not be easy because a

consistent estimator of the covariance matrix may not be readily available.

It is interesting to observe that, while M̃T and M̈T have similar normalizing matrices

and statistics, they have very different local powers. To see why, note that under the

local alternative, their limits differ by the extra term V −1λ in Ξq. As this term shows

up in both the numerator and denominator of the limit of M̈T , their effects cancel

out, so that M̈T virtually has no local power. This result demonstrates the importance

of “centering” in constructing normalizing matrices and agrees with the conclusion of

Hall (2000) on kernel estimators with truncation. We also considered the normalizing

matrices: C̄T = T−1
∑T

t=[aT ]+p+1 ϕ̃tϕ̃
′
t with 0 < a < 1, but found that the resulting local

powers (not reported) are all dominated by M̃T .

4 Examples

We now illustrate the proposed robust M tests using two examples: one contains robust

portmanteau tests for serial correlations based on model residuals and the other are

robust information matrix tests for conditional asymmetry and excess kurtosis.

4.1 Robust Tests for Serial Correlations

A leading diagnostic test for serial correlations is the Q test of Box and Pierce (1970)

and Ljung and Box (1978). Similar to KVB, Lobato (2001) constructed a portmanteau
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test for serial correlations that does not require consistent estimation of the asymptotic

covariance matrix. The Lobato test is applicable to testing raw time series, however.

Consider the nonlinear regression specification: yt = h(xt;θ) + et(θ), where h is a

measurable function, xt is a k × 1 vector of observed variables, θ is a p × 1 vector of

unknown parameters, et(θ) is a random error. Let θo be such that IE(yt|xt) = h(xt;θo)

and assume that θo is the unique solution to IE[∇h(xt,θ)et(θ)] = o. When h(xt;θ) is

evaluated at θo, the resulting error is denoted as εt := et(θo). For notation simplicity, we

write yt−1,q = [yt−1, . . . , yt−q]′ with q > p, ht−1,q(θ) and et−1,q(θ) are similarly defined.

Note that εt−1,q := et−1,q(θo). Let θ̂T denote the NLS estimator for the nonlinear

specification above, which is consistent for θo under quite general conditions; see, e.g.,

Gallant and White (1988). Hence, et(θ̂T ) is the t-th model residual evaluated at θ̂T , and

et−1,q(θ̂T ) is the vector of q lagged residuals.

As the Q test, we are interested in testing

IE[f t,q(θo)] = IE(εtεt−1,q) = o. (10)

Letting Tq = T − q, define

mTq
(θ) =

1
Tq

T∑
t=q+1

[
yt − h(xt;θ)

][
yt−1,q − ht−1,q(θ)

]
=

1
Tq

T∑
t=q+1

et(θ)et−1,q(θ).

We can base an M test of (10) on mTq
(θ̂T ) = T−1

q

∑T
t=q+1 et(θ̂T )et−1,q(θ̂T ). We have

learned that T
1/2
q mTq

(θ̂T ) and T
1/2
q mTq

(θo) are not asymptotically equivalent unless

F Tq
(θo) converges to F o = o, where

F Tq
(θo) =

−1
Tq

T∑
t=q+1

[
εt−1,q∇θht(θo) + εt∇θht−1,q(θo)

]
.

For example, F o = o when {xt} and {εt} are mutually independent. If h(xt;θo) is a

linear function x′
tθo, F o = o when {xt} and {εt} are mutually uncorrelated.

For the models that F Tq
(θo)

IP−→ o, the robust M test for model residuals is

M̂Tq
= Tq mTq

(θ̂T )′Ĉ
−1

Tq
mTq

(θ̂T ),

where the normalizing matrix is ĈTq
= T−1

q

∑T
t=q+1 ϕt(θ̂T )ϕt(θ̂T )′ with

ϕt(θ̂T ) =
1√
Tq

t∑
i=q+1

[
ei(θ̂T )ei−1,q(θ̂T )

]− t − q

Tq

1√
Tq

T∑
i=q+1

[
ei(θ̂T )ei−1,q(θ̂T )

]
.
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By Theorem 3.1, M̂Tq
is asymptotically pivotal with the null limit Wq(1)′P

−1
q Wq(1).

Note that M̂Tq
includes the test of Lobato (2001) for raw time series as a special case.

To see this, suppose that h(xt;θ) contains only the constant term. Then, the estimator

θ̂T is the sample mean of yt, and mTq
(θ̂T ) is a vector of sample autocovariances. In this

case, M̂Tq
is exactly the test of Lobato (2001) and is asymptotically pivotal because the

constant is uncorrelated with all εt (so that F o = o).

The M̂Tq
test is, however, not valid for testing the residuals of dynamic models, such

as AR models and models with lagged dependent variables. Consider now the linear

AR(p) specification: h(xt;θ) = y′
t−1,pθ. As ∇θht(xt;θ) = y′

t−1,p is correlated with

εt−1,q, F Tq
(θo) does not converge to zero, so that the null limit of M̂Tq

still contains

nuisance parameters, as shown in Theorem 3.1. Nonetheless, we can compute the robust

M test (8) using the recursive (NLS) estimators θ̃t, t = q + 1, . . . , T . The required

normalizing matrix is C̃Tq
= T−1

q

∑T
t=q+1 ϕ̃tϕ̃

′
t with

ϕ̃t =
1√
Tq

t∑
i=q+1

[
ei(θ̃t)ei−1,q(θ̃t)

]− t − q

Tq

1√
Tq

T∑
i=q+1

[
ei(θ̃T )ei−1,q(θ̃T )

]
,

where ei(θ̃t) = yi − h(xi; θ̃t) is the i-th residual evaluated at the estimator θ̃t, and

ei−1,q(θ̃t) is the vector of q lagged residuals. The robust M test for the residuals of

dynamic models is thus M̃Tq
= T m′

Tq
(θ̂T )C̃

−1

Tq
mTq

(θ̂T ) D−→ Wq(1)
′P−1

q Wq(1), the

weak limit of the test of Lobato (2001).

4.2 Robust Information Matrix Tests

A well known class of specification tests is the information matrix test proposed by

White (1982). This test checks model mis-specifications by examining whether the infor-

mation matrix equality holds; see White (1994) for a thorough discussion.

Consider the quasi-log-likelihood function LT (θ) = T−1
∑T

t=1 �t(yt|xt;θ), with the p-

dimensional vector θ. Let st(yt,xt;θ) = ∇θ�t(yt|xt;θ), which will be denoted as st(θ) for

simplicity. In general, the QML estimator θ̂T converges to a minimizer of the Kullback-

Leibler information criterion, θ∗. When �t(yt|xt;θ) is correctly specified in the sense that

there exists a θo such that �t(yt|xt;θo) is the true conditional density, θ∗ = θo, and the

information matrix equality below should hold:

IE[∇θst(θo) + st(θo)st(θo)
′] = o.

An information matrix test is then designed to check if

IE[∇θst(θ
∗) + st(θ

∗)st(θ
∗)′] = o;
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failure of this equality signifies model mis-specification. Different model mis-specifications

can be tested by checking different elements of the equality above. The resulting tests

are also referred to as the second-order information matrix tests by White (1994).

To test certain pre-specified elements of the information matrix equality, let Λ be a

q × p2 selection matrix and f(ηt;θ) := Λ vec
[∇θst(θ) + st(θ)st(θ)′

]
. The hypothesis

of interest is IE[f(ηt;θ
∗)] = o. We can then compute a robust information matrix test

(M̂T or M̃T ) as discussed in Section 3.

To illustrate, we consider the following simple example:

�t(yt|xt;θ) = −1
2

ln(2π) − 1
2

ln(σ2) − 1
2σ2

(yt − α − βxt)
2,

with θ = (α, β, σ2)′. Then, st(θ) = [et(θ)/σ2, et(θ)xt/σ
2, (et(θ)2/σ2 − 1)/2σ2]′, where

et(θ) = yt −α− βxt. Let e∗t = et(θ
∗) and εt = et(θo). Straightforward calculation shows

that the (3,2) element of the information matrix equality is

IE[f(ηt;θ
∗)] = IE

[
xt

2(σ∗)3

(
(e∗t )3

(σ∗)3
− 3e∗t

σ∗

)]
= 0.

When the maintained assumption is that the conditional mean function is correctly spec-

ified (i.e., εt = e∗t has conditional mean zero), testing this equality amounts to testing

conditional symmetry (IE[(e∗t )3|xt] = 0). It is easy to verify that

∇θf(ηt;θ) =
[
− 3xt

2σ4

(
e2
t

σ2
− 1
)

, − 3x2
t

2σ4

(
e2
t

σ2
− 1
)

, − 3xt

2σ5

(
e3
t

σ3
− 2et

σ

)]′
.

Hence,
∑[Tr]

t=1 ∇θf(ηt;θ
∗)/[Tr] would converge to zero under the null hypothesis of con-

ditional symmetry as well as the additional requirement of conditional homoskedasticity,

yet this average does not converge to zero when e∗t are conditionally heteroskedastic. An

information matrix test for conditional symmetry can be calculated as M̂T of (4) when

the conditional variance of e∗t is indeed a constant. We may also compute M̃T as (8)

based on the recursive QML estimators. This test is robust not only to potential serial

correlations but also to neglected conditional heteroskedasticity.

Similarly, the (3,3) element of the information matrix equality is

IE[f(ηt;θ
∗)] =

1
4(σ∗)4

IE
(

(e∗t )4

(σ∗)4
− 6

(e∗t )2

(σ∗)2
+ 3
)

= 0.

When the maintained assumptions are: e∗t has conditional mean zero and is conditionally

homoskedastic, testing this equality amounts to testing if the conditional kurtosis of e∗t
is 3(σ∗)4. It can be seen that

∇θf(ηt;θ) =
1
σ5

[
− e3

t

σ3
+

3et

σ
, − e3

t xt

σ3
+

3etxt

σ
, − 1

σ

(
e4
t

σ4
− 18e2

t

4σ2
+

3
2

)]′
.
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In addition to the maintained assumptions, the sample averages of the first two terms

above converge to zero when e∗t is also conditionally symmetric. Thus, M̃T in (8) for

excess kurtosis would be robust to both serial correlations and conditional asymmetry.

5 Monte Carlo Simulations

In this section, we first examine the finite sample performance of the M̂Tq
and M̃Tq

tests

for serial correlations discussed in Section 4.1. We consider two nominal sizes: 5% and

10%, and two different samples: T = 100 and 500. The number of replications is 5000

for size simulations and 1000 for power simulations. As the results for different nominal

sizes are qualitatively similar, we report only the results for 5% nominal size.

In size simulations, eight data generating processes (DGPs) are considered: DGP1–

DGP4 are a linear regression model with i.i.d., ARCH, GARCH, and bilinear errors;

DGP5–DGP8 are an AR(1) model with these four errors, respectively. The details of

these DGPs are summarized in Table 1. For comparison, we simulate the Q test of Ljung

and Box (1978), the robust test of Wooldridge (1991), the spectral-density-based test

of Hong (1996), and the test of Francq, Roy, and Zaköian (2004). For the Q test on

residuals, it is well known that the null distribution is χ2(q) under DGP1 (a model with

an exogenous regressor and i.i.i. errors) and χ2(q − 1) under DGP5 (an AR(1) model

with i.i.d. errors). Yet this distribution may vary under different DGPs; see Davidson

and MacKinnon (1993, p. 364) and Haysahi (2000, p. 146) for details. For convenience,

the critical values of the Q test are taken from χ2(q) for models with an exogenous

regressor and from χ2(q−1) for AR(1) models in our simulations. Aside from the Q test,

the other tests are selected because they all require setting some user-chosen parameters.

Note that Wooldridge’s test is also robust to the estimation effect problem.

The robust test of Wooldridge (1991) involves several steps: weighted NLS estima-

tion, a step to eliminate the estimation effect, and a VAR regression to remove serial

correlations. In our simulation, we set the conditional variance function to one so that

only LS estimation is needed. The order G of the VAR regression is set as G = 1, 3, 5 and

also determined by AIC and BIC, with the maximum lag order being 5. As the results

based on AIC and BIC are similar and usually better than those based on different G

values, we report only those based on BIC, denote as WLBIC . This test has an asymp-

totic χ2 distribution. It should be noted that in order to eliminate the estimation effect,

this test in fact loses its consistency. By contrast, our test is robust to the estimation

effect and remains consistent.
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The test of Hong (1996) involves nonparametric kernel estimation of the spectral

density and hence depends on the chosen kernel function and truncation lag. We consider

in our simulation the Bartlett, Parzen, Daniell and quadratic-spectral kernels and the

truncation lags that are of different rates: (i) �3T 0.3�, (ii) �9T 0.3�, and (iii) �12T 0.3�,
where �c� stands for the integer that is closest to the real number c. We find that Hong’s

tests with different kernel functions perform quite similarly and report only those based

on the quadratic-spectral kernel. These tests are denoted as Hr, with r the rates (i), (ii),

and (iii) above.

Francq et al. (2004) derived the limiting distribution of the Q test under more gen-

eral conditions. This test depends on consistent estimation of an asymptotic covariance

matrix and requires computing its eigenvalues. A consistent estimator may be obtained

via a kernel estimator or a VAR method. For the former, we choose the Bartlett kernel

and follow Newey and West (1994) to determine the data-dependent bandwidth. In par-

ticular, the Newey-West method is implemented by setting the weighting vector to the

vector of ones and the parameter c = 4 and 12, where the c values were also considered by

Newey and West (1994). For simplicity, we report only the result for c = 12, denoted as

QFRZ
NW12. For the VAR method, the VAR order G is set as G = 1, 3, 5 and determined by

AIC and BIC; we report only the results based on BIC, denoted as QFRZ
BIC , because they

are usually better. The asymptotic critical values of this test are obtained via simulation.

Note that these tests are valid only for testing the residuals of ARMA models but not

general regression residuals.

The empirical sizes of these tests are summarized in Table 2. As the first four DGPs

are based on a linear regression with an exogenous regressor, the empirical sizes of M̂Tq

and M̃Tq
are all close to the nominal size in these cases. For the other four DGPs

that involve an AR(1) model, M̂Tq
is clearly under-sized for all cases, but M̃Tq

has

better size performance in most cases (though it may be somewhat undersized when T

is small). These simulation results are consistent with the analysis of Section 4.1. On

the other hand, the Q test and the tests of Hong (1996) are over-sized when there are

ARCH, GARCH and bilinear errors, and the size distortions deteriorate when the sample

increases from 100 to 500. This is the case because these tests in fact require i.i.d. errors

under the null. We also find that the size distortions are more severe when the DGP is

a linear regression with an exogenous regressor (DGP2–4). Moreover, the performance

of Hong’s test varies with the chosen truncation lag. The WL test also depends on the

VAR order G, but WLBIC performs well, though it may be undersized when the sample

is small. As for the tests of Francq et al. (2004), those based on the VAR method have
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better size performance than those based on the kernel estimator. In fact, QFRZ
NW12 is

severely over-sized when the sample is small, and the empirical sizes of QFRZ
BIC are close

to the nominal size for q = 2 and 3 but usually under-sized for q = 4.

In the power simulations, we consider seven DGPs, including a linear regression

with AR errors (DGP9) and ARMA processes with innovations being i.i.d. (DGP10

and DGP11), bilinear (DGP12), and ARCH (DGP13–DGP15); see Table 3 for detail.

Note that the last three DGPs were also simulated in Francq et al. (2004). The empirical

powers of these tests are summarized in Tables 4. It can be seen that M̃Tq
dominates

M̂Tq
for all DGPs, except that they perform similarly for DGP9. This may not be sur-

prising because M̂Tq
is typically under-sized when the DGPs are dynamic models with

a lagged dependent variable.

Although we do not report all the results here, we note that the powers of the QFRZ ,

H, and WL tests are all sensitive to the user-chosen parameters. The M̃Tq
test usu-

ally outperforms the tests with inappropriate user-chosen parameters in a small sample

(T = 100), yet those with BIC-determined parameters, which require more computing,

compare favorably with M̃Tq
. The Q and the kernel-estimator-based QFRZ

NW12 tests have

higher powers, but these powers may be inflated because of their severe size distortions.

These results show that the proposed robust tests do suffer from power loss. Yet they

are still practically useful because they are free from user-chosen parameters and are

computationally simpler than those rely on model selection criteria.

We also simulate the robust information matrix test for conditional symmetry dis-

cussed in Section 4.2. The nominal size is 5%; the samples are T = 100, 500, 1000. The

number of replications is 5000 for size simulations and 1000 for power simulations. We

consider eight DGPs which are a linear regression yt = 1 + 1 · xt + et, where xt are i.i.d.

N (1, 1) random variables and et are generated as: N (0, 1) (IID-N), et = 0.5et−1 + ut

with ut i.i.d. N (0, 1) (AR(1)-N), et = σtut with σ2
t = 1.0+0.5e2

t−1 (ARCH-N), t(7) (IID-

t(7)), logistic (IID-Lo), centered χ2(2) (IID-χ2(2)), centered log-normal (IID-LN), and

positively skewed t distribution of Jones and Faddy (2003) with the parameters a = 5

and b = 3.5 (IID-tJF ). For these simulations, we do not consider non-robust informa-

tion matrix test because it is not clear how the asymptotic covariance matrix should be

estimated when the estimation effect is present.

The simulation results are reported in Table 5, where the first five DGPs are empirical

sizes and the others are empirical powers. The empirical sizes of M̃T are close to the

nominal size 5% for the first two DGPs. When et are leptokurtic (ARCH-N, IID-t(7),
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IID-Lo), M̃T are over-sized when the sample is small but have proper sizes when the

sample gets larger. Note that ARCH errors seem to have a stronger effect on the size

performance. By contrast, M̂T are under-sized for all cases and all samples considered.

For example, under ARCH-N, the size distortion of M̃T diminishes when the sample

increases, yet the size distortion of M̂T remains even when T = 1000. This confirms

that M̂T is valid only under conditional homoskedasticity, as discussed in Section 4.2.

In power simulations, the errors in the last three DGPs are conditionally homoskedastic,

so that both M̂T and M̃T are valid. Clearly, M̃T dominates M̂T for all samples.

6 Conclusions

In this paper, the KVB approach is extended to construct robust M tests on moment

conditions that involve unknown parameters. We show that the normalizing matrix re-

quired by the KVB approach may be computed using a full-sample estimator when there

is no estimation effect or using recursive estimators when estimation effect is present.

Although recursive estimation is computationally more demanding, it delivers an asymp-

totically pivotal M test that does not require consistent estimation of the asymptotic

covariance matrix and is robust to the presence of estimation effect. The latter feature

suggests that the proposed approach may serve as a useful alternative to the estimation

effect problem usually encountered in constructing specification tests. As applications,

we provide new tests for serial correlations based on models residuals and information

matrix tests on higher-order moments that are also robust when a lower-order moment

is mis-specified. Many other existing specification tests can be robustified along the line

discussed in this paper.

As discussed in the Remark after Theorem 3.2, there are different ways to eliminate

the nuisance parameter. Although our choice of the normalizing matrix compares favor-

ably with some alternatives considered in the paper, it does not carry any optimality

property. Therefore, the optimal choice of the normalizing matrix and a thorough study

on different approaches to constructing robust M tests are important research directions.

As far as test implementation is concerned, it would be practically useful if the required

normalizing matrix can be computed without recursive estimation. This is another topic

for future research.
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Appendix

Proof of Theorem 3.1: By the first-order Taylor expansion about θo,
√

Tm[rT ](θ̂T ) =
√

Tm[rT ](θo) +
[rT ]
T

F [rT ](θo)
[√

T (θ̂T − θo)
]
+ oIP(1).

Using (7), we have from [A1](b) and [A2] that
√

TmT (θ̂T ) =
√

TmT (θo) + F T (θo)
[√

T (θ̂T − θo)
]
+ oIP(1)

=
1√
T

T∑
t=1

f(ηt;θo) + F T (θo)Qo

(
1√
T

T∑
t=1

q(ηt;θo)

)

⇒ δo + F oQoφ(δo) + [Iq F oQo]GWq+p(1).

As [Iq F oQo] has full row rank q, [Iq F oQo]GG′[Iq F oQo]
′ is nonsingular with the

nonsingular, matrix square root V . Thus, [Iq F oQo]GWq+p(1) has the same distribution

as V Wq(1). Owing to “centering,” we have from [A1](a) that

ϕ[rT ](θ̂T ) =
√

Tm[rT ](θ̂T ) − [rT ]
T

√
TmT (θ̂T )

=
√

Tm[rT ](θo) −
[rT ]
T

√
TmT (θo) + oIP(1)

⇒ SBq(r),

which does not involve the estimation effect. It follows that ĈT ⇒ SP qS
′, regardless of

the value of F o. These results lead to the limit under the local alternative hypothesis

(2). The null limit follows by setting δo = o. To derive the limits in (b), note that when

F o = o, [Iq F oQo]GG′[Iq F oQo]′ = Γ11, the upper left (q × q) block of Γ = GG′. As

S is also the matrix square root of Γ11, we have V = S. The limits under the null and

local alternative hypotheses now follow immediately from (a). �

Proof of Theorem 3.2: The first-order Taylor expansion about θo yields

√
Tm[rT ]

(
θ̃[rT ]

)
=

√
Tm[rT ]

(
θo

)
+ F [rT ](θo)Qo

⎛⎝ 1√
T

[rT ]∑
t=1

q(ηt;θo)

⎞⎠+ oIP(1).

Given [A2] and [B1],
√

Tm[rT ]

(
θ̃[rT ]

)⇒ rδo + rF oQoφ(δo) + [Iq F oQo]GWq+p(r).

Similar to the preceding proof, we have [Iq F oQo]GWq+p(r)
d= V Wq(r), where V is,

again, the matrix square root of [Iq F oQo]GG′[Iq F oQo]
′. Thus,

√
Tm[rT ]

(
θ̃[rT ]

)⇒ rδo + rF oQoφ(δo) + V Wq(r),

19



and T 1/2mT (θ̂T ) ⇒ δo + F oQoφ(δo) + V Wq(1). It can also be verified that

ϕ̃[rT ] =
√

Tm[rT ](θ̃[rT ]) −
[rT ]
T

√
TmT (θ̃T ) ⇒ V Bq(r),

and hence C̃T ⇒ V P qV
′. This proves the limit under the local alternatives. By setting

δo = o, the null limit follows. �.

Proof of Equation (9): By the singular value decomposition, we have V = A∆B′,

where A and B are q×γ matrices such that A′A = B′B = Iγ , and ∆ is a γ×γ diagonal

matrix with positive diagonal elements. As V V ′ = A∆2A′, it can be easily seen that

V W q(r)
d= A∆W γ(r) and V P qV

′ d= A∆P γ∆A′. The Moore-Penrose generalized

inverse of A∆P γ∆A′ can be written as

(A∆P γ∆A′)+ = (∆A′)+(A∆P γ)+ = (∆A′)+P−1
γ (A∆)+,

because rank(A∆) = rank(A∆P γ) = rank(P γ) = γ; see Theorem 5.9 of Scott (1997,

page 181). Since A∆ is of full column rank and ∆A′ is of full row rank, their Moore-

Penrose generalized inverses are simply

(A∆)+ = (∆A′A∆)−1∆A′ = ∆−1A′,

(∆A′)+ = A∆(∆A′A∆)−1 = A∆−1.

Given the result above, we can now show that

Wq(1)
′V ′(V P qV

′)+V Wq(1)

d= W γ(1)′∆A′(A∆P γ∆A′)+A∆W γ(1)

= W γ(1)′∆A′(∆A′)+P−1
γ (A∆)+A∆W γ(1)

= W γ(1)′∆A′A∆−1P−1
γ ∆−1A′A∆W γ(1)

= W γ(1)′P−1
γ W γ(1). �
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Table 1: The data generating processes for size simulations.

DGP1: yt = 1.0 + 1.0xt + ut

DGP2: yt = 1.0 + 1.0xt + et, et = σtut, σ2
t = 1.0 + 0.5e2

t−1

DGP3: yt = 1.0 + 1.0xt + et, et = σtut, σ2
t = 0.001 + 0.02e2

t−1 + 0.8σ2
t−1

DGP4: yt = 1.0 + 1.0xt + et, et = ut + 0.3ut−1et−2

DGP5: yt = 1.0 + 0.5yt−1 + ut

DGP6: yt = 1.0 + 0.5yt−1 + et, et = σtut, σ2
t = 1.0 + 0.5e2

t−1

DGP7: yt = 1.0 + 0.5yt−1 + et, et = σtut, σ2
t = 0.001 + 0.02e2

t−1 + 0.8σ2
t−1

DGP8: yt = 1.0 + 0.5yt−1 + et, et = ut + 0.3ut−1et−2

Note: {xt} and {ut} are sequences of i.i.d. N (0, 1) random variables and indepen-

dent to each other.
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Table 2: Empirical sizes of the serial correlation tests.

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8

q T = 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500

M̂Tq 1 5.4 4.8 3.9 4.2 4.8 4.8 4.5 4.4 0.3 0.2 0.2 0.2 0.5 0.3 0.2 0.1

2 5.2 4.9 3.3 4.0 4.9 5.5 3.8 4.4 2.3 1.6 1.7 2.1 1.7 1.7 1.9 1.5

3 5.2 5.4 3.1 4.4 4.6 5.1 3.6 4.9 2.9 2.3 1.7 2.7 2.5 2.7 2.1 2.7

4 5.4 6.1 2.5 4.5 4.5 5.1 3.1 4.6 2.9 3.0 1.7 3.3 2.2 3.1 2.3 3.3

M̃Tq 1 4.6 4.7 3.6 4.3 4.4 5.0 5.4 5.2 4.6 5.2 3.5 5.6 4.7 5.0 4.8 5.2

2 4.9 5.2 4.2 4.0 4.8 4.6 5.4 4.7 3.2 4.6 3.0 4.1 3.5 4.5 2.9 4.2

3 5.0 4.7 3.2 4.2 4.7 5.1 6.0 5.7 3.5 4.2 2.5 3.6 3.4 3.9 3.7 3.1

4 4.5 5.3 2.8 4.3 4.6 5.4 5.1 6.5 3.5 3.9 2.4 3.1 3.6 3.5 3.8 3.4

Qq 1 5.1 4.8 16.8 23.7 5.2 5.4 14.8 18.8 - - - - - - - -

2 4.8 4.4 16.9 25.3 4.5 6.1 19.1 27.9 4.7 4.8 10.7 15.1 4.6 5.9 5.3 6.2

3 4.7 4.4 15.0 24.1 4.9 5.9 20.0 30.9 4.9 4.7 10.3 16.1 5.7 5.5 6.2 7.3

4 5.2 5.0 14.5 22.4 5.2 5.5 20.2 32.1 4.3 4.9 9.5 14.4 4.4 5.5 6.0 7.0

QF RZ
BIC 2 - - - - - - - - 5.6 5.0 4.7 4.2 4.8 5.3 4.9 5.1

3 - - - - - - - - 4.4 4.6 3.3 3.4 4.0 4.8 4.1 4.9

4 - - - - - - - - 3.3 5.0 2.6 3.3 3.5 4.5 3.2 4.9

QF RZ
NW12 2 - - - - - - - - 13.2 6.4 13.2 5.8 14.1 5.2 12.6 6.1

3 - - - - - - - - 13.3 5.5 11.3 4.2 13.5 5.8 13.5 5.8

4 - - - - - - - - 12.9 5.5 12.1 4.0 12.4 5.0 12.4 5.2

WLBIC 1 3.8 4.9 3.1 3.6 4.4 4.9 5.7 6.2 4.7 5.3 3.9 4.5 4.1 5.3 4.9 5.7

2 5.2 4.8 3.6 4.5 5.1 5.3 5.2 5.7 3.8 4.6 3.0 3.8 3.9 4.7 3.9 4.8

3 4.4 4.4 3.5 3.9 4.5 4.8 5.5 6.3 4.3 5.0 2.9 4.3 3.9 4.8 3.3 4.5

4 4.6 5.1 3.7 4.2 4.5 4.5 5.3 6.2 3.5 4.4 2.3 3.5 3.4 4.9 3.3 5.3

H(i) 7.1 7.2 17.0 22.3 7.2 7.5 22.1 32.4 3.4 4.1 5.6 10.9 3.3 4.3 3.8 4.6

H(ii) 7.9 7.4 12.4 17.0 8.8 8.0 25.3 21.2 4.8 4.6 5.5 8.4 5.0 5.9 4.9 5.1

H(iii) 8.1 7.9 11.9 16.1 9.3 7.6 15.9 20.3 6.3 6.0 5.8 9.0 5.5 6.7 6.0 5.8

Note: The entries are rejection frequencies in percentage; the nominal size is 5%.
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Table 3: The data generating processes for power simulations.

DGP9: yt = 1.0 + 1.0xt + et, et = 0.5et−1 + ut

DGP10: yt = 1.0 + 0.5yt−1 + ut + 0.2ut−1

DGP11: yt = 1.0 + 0.5yt−1 + ut + 0.5ut−1

DGP12: yt = 1.0 + 0.5yt−1 + et + 0.5et−1, et = ut + 0.3ut−1et−2

DGP13: yt = 0.5yt−1 + et + 0.2et−1, et = (1.0 + 0.2e2
t−1)

1/2ut

DGP14: yt = 0.9yt−1 + et + 0.2et−1, et = (1.0 + 0.2e2
t−1)

1/2ut

DGP15: yt = 0.9yt−1 + et + 0.2et−1, et = (1.0 + 0.4e2
t−1)

1/2ut

Note: {xt} and {ut} are sequences of i.i.d. N (0, 1) random variables and

independent to each other.
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Table 4: Empirical powers of the serial correlation tests.

DGP9 DGP10 DGP11 DGP12 DGP13 DGP14 DGP15

q T = 100 500 100 500 100 500 100 500 100 500 100 500 100 500

M̂Tq 1 76.9 99.9 6.5 29.1 54.6 97.8 46.4 95.9 5.2 23.4 23.5 70.0 18.0 57.5

2 66.1 99.2 10.2 45.3 59.9 98.5 60.1 98.5 9.3 37.8 16.8 63.7 13.3 51.3

3 57.0 98.6 8.8 36.8 57.0 98.4 56.0 97.9 6.8 30.3 13.9 56.6 10.9 46.1

4 50.6 98.4 7.8 35.9 51.5 98.8 46.2 97.0 6.9 29.1 11.1 54.7 8.0 40.7

M̃Tq 1 76.3 99.7 17.9 60.6 67.8 99.6 66.4 99.0 18.2 51.0 28.8 74.8 23.1 63.3

2 64.5 99.3 11.6 47.2 63.6 98.6 59.8 98.6 12.9 41.9 19.6 65.1 14.4 53.7

3 56.1 98.9 11.8 45.1 57.4 98.8 59.1 98.3 8.5 36.4 16.7 62.7 11.6 48.9

4 48.6 98.1 10.8 38.3 57.3 98.5 50.6 98.6 9.4 33.1 13.2 55.9 11.9 44.7

Qq 1 99.5 100.0 - - - - - - - - - - - -

2 99.2 100.0 22.3 76.6 94.5 100.0 93.0 100.0 24.1 76.1 49.6 97.5 51.6 94.6

3 98.1 100.0 17.0 71.3 86.0 100.0 86.9 100.0 18.4 69.3 38.5 95.4 40.4 91.6

4 97.9 100.0 14.9 64.7 81.2 100.0 79.6 100.0 18.1 64.7 31.3 92.1 33.1 91.2

QF RZ
BIC 2 - - 22.7 78.0 91.7 100.0 88.1 100.0 21.0 74.0 26.9 90.8 24.4 80.8

3 - - 15.7 69.5 81.2 100.0 73.3 100.0 17.3 64.0 21.5 89.1 17.1 77.3

4 - - 13.4 63.3 71.1 100.0 67.1 100.0 11.5 61.2 16.0 84.4 15.8 72.3

QF RZ
NW12 2 - - 35.5 78.3 96.8 100.0 95.2 100.0 33.7 75.8 50.2 92.6 45.4 82.4

3 - - 29.5 69.0 89.0 100.0 85.7 100.0 28.7 64.7 43.6 89.0 38.2 79.6

4 - - 24.5 61.4 80.1 100.0 77.4 100.0 23.4 59.8 43.0 88.0 38.2 77.0

WLBIC 1 89.9 100.0 22.2 82.6 86.8 100.0 82.1 100.0 20.3 72.9 30.1 93.3 23.1 83.8

2 73.0 100.0 16.9 73.9 81.5 100.0 78.8 100.0 16.1 64.8 24.0 89.2 17.7 75.4

3 59.8 100.0 12.9 63.8 76.3 100.0 76.7 100.0 11.1 57.7 16.5 85.7 15.4 72.4

4 42.9 100.0 8.4 56.4 68.5 100.0 66.3 100.0 10.5 52.1 12.6 81.4 10.6 65.0

H(i) 99.0 100.0 11.0 50.6 78.1 100.0 79.4 100.0 13.6 47.4 28.4 84.4 28.0 81.9

H(ii) 95.5 100.0 11.4 30.0 62.4 100.0 60.4 100.0 14.4 36.0 21.1 68.7 21.8 66.0

H(iii) 94.6 100.0 12.4 28.9 59.0 100.0 56.4 100.0 12.5 32.0 24.8 64.0 20.7 61.5

Note: The entries are rejection frequencies in percentage; the nominal size is 5%.
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Table 5: Empirical sizes and powers of the information matrix tests.

Sizes Powers

T IID-N AR(1)-N ARCH-N IID-t(7) IID-Lo IID-χ2(2) IID-LN IID-tJF

100 4.1 3.9 2.3 3.9 4.1 33.8 17.3 6.6

M̂T 500 4.7 4.6 3.5 3.6 4.2 68.2 28.8 19.3

1000 4.6 5.3 3.2 4.1 4.3 85.5 41.5 36.0

100 5.2 4.8 9.1 7.3 6.4 56.8 51.3 11.3

M̃T 500 4.8 5.0 8.1 5.5 5.1 82.5 62.3 27.6

1000 5.0 5.2 6.3 4.8 5.0 90.9 65.9 40.1

Note: The entries are rejection frequencies in percentage; the nominal size is 5%.
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