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1 Introduction

It is now common to employ various time series models to analyze the dynamic behav-

ior of economic and financial variables. The leading choices are linear models, such as

autoregressive (AR) models, moving average (MA) models, and mixed ARMA models.

The linear time series models became popular partly because they have been incorpo-

rated into many “canned” statistics and econometrics packages. Although these models

are quite successful in numerous applications, they are unable to represent many nonlin-

ear dynamic patterns such as asymmetry, amplitude dependence and volatility clustering.

For example, GDP growth rates typically fluctuate around a higher level and are more

persistent during expansions, but they stay at a relatively lower level and less persistent

during contractions. For such data, it would not be reasonable to expect a single, linear

model to capture these distinct behaviors.

In the past two decades, we have witnessed a rapid growth of the development of

nonlinear time series models; see e.g., Tong (1990) and Granger and Teräsvirta (1993)

for more thorough discussions. Nonlinear time series models are, however, not a panacea

and have their own limitations. First, implementing nonlinear models is typically cum-

bersome. For instance, the nonlinear optimization algorithms are easy to get stuck at a

local optimum in the parameter space. Second, most nonlinear models are designed to

describe certain nonlinear patterns of data and hence may not be so flexible as one would

like. The latter problem suggests that the success of a nonlinear model largely depends

on the data set to which it applies. An exception is the so-called artificial neural network

model which, due to its “universal approximation” property, is capable of characterizing

any nonlinear pattern in data; see e.g., Kuan and White (1994). Unfortunately, this

model suffers from the identification problem and is hence vulnerable.

The Markov switching model of Hamilton (1989), also known as the regime switch-

ing model, is one of the most popular nonlinear time series models in the literature.

This model involves multiple structures (equations) that can characterize the time se-

ries behaviors in different regimes. By permitting switching between these structures,

this model is able to capture more complex dynamic patterns. A novel feature of the

Markov switching model is that the switching mechanism is controlled by an unobserv-

able state variable that follows a first-order Markov chain. In particular, the Markovian

property regulates that the current value of the state variable depends on its immediate

past value. As such, a structure may prevail for a random period of time, and it will be

replaced by another structure when a switching takes place. This is in sharp contrast

with the random switching model of Quandt (1972) in which the events of switching
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are independent over time. The Markov switching model also differs from the models of

structural changes. While the former allows for frequent changes at random time points,

the latter admits only occasion and exogenous changes. The Markov switching model is

therefore suitable for describing correlated data that exhibit distinct dynamic patterns

during different time periods.

The original Markov switching model focuses on the mean behavior of variables. This

model and its variants have been widely applied to analyze economic and financial time

series; see e.g., Hamilton (1988, 1989), Engel and Hamilton (1990), Lam (1990), Garcia

and Perron (1996), Goodwin (1993), Diebold, Lee and Weinbach (1994), Engel (1994),

Filardo (1994), Ghysels (1994), Sola and Driffill (1994), Kim and Yoo (1995), Schaller

and van Norden (1997), and Kim and Nelson (1998), among many others. Recently, this

model has also been a popular choice in the study of Taiwan’s business cycles; see Huang,

Kuan and Lin (1998), Huang (1999), Chen and Lin (2000a, b), Hsu and Kuan (2001)

and Rau, Lin and Li (2001). Given that the Markov switching model of conditional

mean is highly successful, it is natural to consider incorporating this switching mecha-

nism into conditional variance models. A leading class of conditional variance models

is the GARCH (generalized autoregressive conditional heteroskedasticity) model intro-

duced by Engle (1982) and Bollerslev (1986). Cai (1994), Hamilton and Susmel (1994)

and Gray (1996) study various ARCH and GARCH models with Markov switching. So,

Lam and Li (1998) also introduce Markov switching to the stochastic volatility model of

Melino and Turnbull (1990), Harvey, Ruiz, and Shephard (1994), and Jacquier, Polson

and Rossi (1994). Other financial applications of switching conditional variance models

include, among others, Hamilton and Lin (1996), Dueker (1997), and Ramchand and

Susmel (1998). Chen and Lin (1999) and Lin, Hung and Kuan (2002) also apply these

models to analyze Taiwan’s financial time series.

This lecture note is organized as follows. In Section 2, we introduce a simple Markov

switching model of conditional mean and its generalizations. We then study two esti-

mation methods (quasi-maximum likelihood method and Gibbs sampling) in Section 3

and discuss how to conduct hypothesis testing in Section 4. Section 5 is an empirical

study of Taiwan’s business cycles based on a bivariate Markov switching model. Section 6

presents the Markov switching model of conditional variance. Section 7 is an empirical

analysis of Taiwan’s short term interest rates. Section 8 concludes this note. Readers

may also consult Hamilton (1994) for a concise treatment of the Markov switching model.

For a more complete discussion of this model and its applications we refer to Kim and

Nelson (1999); computer programs (written in GAUSS by C.-J. Kim) for implementing
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this model are available from the web site:

http://www.econ.washington.edu/user/cnelson/SSMARKOV.htm

Some GAUSS programs written by Y.-L. Huang, S.-H. Hsu and the author are also

available upon request.

2 The Markov Switching Model of Conditional Mean

Numerous empirical evidences suggest that the time series behaviors of economic and

financial variables may exhibit different patterns over time. Instead of using one model

for the conditional mean of a variable, it is natural to employ several models to represent

these patterns. A Markov switching model is constructed by combining two or more

dynamic models via a Markovian switching mechanism. Following Hamilton (1989, 1994),

we shall focus on the Markov switching AR model. In this section, we first illustrate the

features of Markovian switching using a simple model and then discuss more general

model specifications.

2.1 A Simple Model

Let st denote an unobservable state variable assuming the value one or zero. A simple

switching model for the variable zt involves two AR specifications:

zt =

{
α0 + βzt−1 + εt, st = 0,

α0 + α1 + βzt−1 + εt, st = 1,
(2.1)

where |β| < 1 and εt are i.i.d. random variables with mean zero and variance σ2
ε . This

is a stationary AR(1) process with mean α0/(1 − β) when st = 0, and it switches to

another stationary AR(1) process with mean (α0 + α1)/(1− β) when st changes from 0

to 1. Then provided that α1 6= 0, this model admits two dynamic structures at different

levels, depending on the value of the state variable st. In this case, zt are governed by

two distributions with distinct means, and st determines the switching between these two

distributions (regimes).

When st = 0 for t = 1, . . . , τ0 and st = 1 for t = τ0 + 1, . . . , T , the model (2.1) is

the model with a single structural change in which the model parameter experiences one

(and only one) abrupt change after t = τ0. When st are independent Bernoulli random

variables, it is the random switching model of Quandt (1972). In the random switching

model, the realization of st is independent of the previous and future states so that zt
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2.1 A Simple Model 4

may be “jumpy” (switching back and forth between different states). If st is postulated

as the indicator variable 1{λt≤c} such that st = 0 or 1 depending on whether the value

of λt is greater than the cut-off (threshold) value c, (2.1) becomes a threshold model. It

is quite common to choose a lagged dependent variable (say, zt−d) as the variable λt.

While these models are all capable of characterizing the time series behaviors in two

regimes, each of them has its own limitations. For the model with a single structural

change, it is very restrictive because only one change is admitted. Although extending

this model to allow for multiple changes is straightforward, the resulting model estimation

and hypothesis testing are typically cumbersome; see e.g., Bai and Perron (1998) and

Bai (1999). Moreover, changes in such models are solely determined by time which

is exogenous to the model. The random switching model, by contrast, permits multiple

changes, yet its state variables are still exogenous to the dynamic structures in the model.

This model also suffers from the drawback that the state variables are independent over

time and hence may not be applicable to time series data. On the other hand, switching

in the threshold model is dependent and endogenous and results in multiple changes.

Choosing a suitable variable λt and the threshold value c for this model is usually a

difficult task, however.

One approach to circumventing the aforementioned problems is to consider a different

specification for st. In particular, suppose that st follows a first order Markov chain with

the following transition matrix:

P =

[
IP(st = 0 | st−1 = 0) IP(st = 1 | st−1 = 0)

IP(st = 0 | st−1 = 1) IP(st = 1 | st−1 = 1)

]

=

[
p00 p01

p10 p11

]
,

(2.2)

where pij (i, j = 0, 1) denote the transition probabilities of st = j given that st−1 = i.

Clearly, the transition probabilities satisfy pi0+pi1 = 1. The transition matrix governs the

random behavior of the state variable, and it contains only two parameters (p00 and p11).

The model (2.1) with the Markovian state variable is known as a Markov switching model.

The Markovian switching mechanism was first considered by Goldfeld and Quandt (1973).

Hamilton (1989) presents a thorough analysis of the Markov switching model and its

estimation method; see also Hamilton (1994) and Kim and Nelson (1999).

In the Markov switching model, the properties of zt are jointly determined by the ran-

dom characteristics of the driving innovations εt and the state variable st. In particular,

the Markovian state variable yields random and frequent changes of model structures,
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2.2 Some Extensions 5

and its transition probabilities determine the persistence of each regime. While the

threshold model also possesses similar features, the Markov switching model is relatively

easy to implement because it does not require choosing a priori the threshold variable λt.

Instead, the regime classification in this model is probabilistic and determined by data.

A difficulty with the Markov switching model is that it may not be easy to interpret

because the state variables are unobservable.

2.2 Some Extensions

The model (2.1) is readily extended to allow for more general dynamic structures. Con-

sider first a straightforward extension of the model (2.1):

zt = α0 + α1st + β1zt−1 + · · ·+ βkzt−k + εt, (2.3)

where st = 0, 1 are the Markovian state variables with the transition matrix (2.2), and

εt are i.i.d. random variables with mean zero and variance σ2
ε . This is a model with a

general AR(k) dynamic structure and switching intercepts.

For the d-dimensional time series {zt}, we write (2.3) as

zt = α0 +α1st +B1zt−1 + · · ·+Bkzt−k + εt, (2.4)

where st = 0, 1 are still the Markovian state variables with the transition matrix (2.2),

Bi (i = 1, . . . , k) are d × d matrices of parameters, and εt are i.i.d. random vectors

with mean zero and the variance-covariance matrix Σo. Clearly, (2.4) is a VAR (vector

autoregressive) model with switching intercepts. This generalization is easy, but it may

not always be realistic to require d variables to switch at the same time.

What we have discussed thus far are the 2-state Markov switching model because

the state variable is binary. Further generalizations of these models are possible. For

example, we may allow the state variable to assume m values, where m > 2, and obtain

the m-state Markov switching model. Such models are essentially the same as the models

given above, except that the transition matrix P must be expanded accordingly. We

may also set zt to depend on both current and past state variables. Specifically, let

z̃t = zt − α0 − α1st and postulate the following model:

z̃t = β1z̃t−1 + · · ·+ βkz̃t−k + εt. (2.5)

Then, z̃t (and hence zt) depends not only on st but also on st−1, . . . , st−k. As there are

2k+1 possible values of the collection (st, st−1, . . . , st−k), the model (2.5) can be viewed

as (2.3) with 2k+1 states. Another generalization is to allow for time-varying transition
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probabilities. For example, the transition probabilities may be postulated as functions of

some exogenous (or predetermined) variables so that they may vary with time. Clearly, a

time-varying Markov switching model is even more flexible but involves more parameters.

2.3 Markov Trend

The Markov switching model and its variants discussed in the preceding sections are

only suitable for stationary data. Let yt be the observed time series which contains

a unit root. The Markov switching model should be applied to the differenced series

zt = ∆yt = yt − yt−1. When yt are quarterly data containing a seasonal unit root, we

apply the Markov switching model to seasonally differenced series zt = ∆4yt = yt− yt−4.

When a unit root is present in yt, the switching intercept in zt results in a deterministic

trend with breaks in yt. Given zt in (2.3), yt can be expressed as

yt =
(
α0t+ α1

t∑
i=1

si

)
+ β1yt−1 + · · ·+ βkyt−k +

t∑
i=1

εt,

where the two terms in the parenthesis is a trend function with changes, the second term

is a dynamic component, and the last term
∑t

i=1 εt is the stochastic trend. It is clear

that the trend function depends on st; the resulting trend is therefore known as a Markov

trend. The “basic” slope of this trend function is α0. When there is one si = 1, the trend

function moves upward (downward) by α1; when si takes the value 1 consecutively, these

state variables yield a slope change in the trend function. This function would resume

the original slope when si switches to the value 0. In Figure 1, we illustrate two Markov

trend lines, where the black boxes signify the periods at which si = 1. The left figure

shows the trend with α0 > 0 and α1 > 0; the right figure shows the one with α0 > 0 and

α1 < 0. It can be seen that both lines are kinked.

3 Model Estimation

There are various ways to estimate the Markov switching model; see Hamilton (1989,

1990, 1994), Kim (1994), and Kim and Nelson (1999). In this section we focus on the

model (2.3) and discuss its quasi-maximum likelihood estimation and estimation via

Gibbs sampling; estimating (2.4) is completely analogous with minor modifications. We

also discuss the estimation of the more general model (2.5) in Appendix I.
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3.1 Quasi-Maximum Likelihood Estimation 7

Figure 1: The Markov trend function with α1 > 0 (left) and α1 < 0 (right).

3.1 Quasi-Maximum Likelihood Estimation

Given the model (2.3), the vector of parameters is

θ = (α0, α1, β1, . . . , βk, σ
2
ε , p00, p11)′.

Let Zt = {zt, zt−1, . . . , z1} denote the collection of all the observed variables up to time t,

which represents the information set we have at time t. Then, ZT is the information set

based on the full sample. To assess the likelihood of the state variable st, it is important

to evaluate its optimal forecasts (conditional expectations) of st = i, i = 0, 1, based on

different information sets. These forecasts include the prediction probabilities IP(st =

i | Zt−1;θ) which are based on the information prior to time t, the filtering probabilities

IP(st = i | Zt;θ) which are based on the past and current information, and the smoothing

probabilities IP(st = i | ZT ;θ) which are based on the full-sample information. By

deriving the algorithms of these probabilities, we also obtain the quasi-log-likelihood

function as a byproduct, from which the quasi-maximum likelihood estimates (QMLE)

can be computed.

Under the normality assumption, the density of zt conditional on Zt−1 and st = i

(i = 0, 1) is

f(zt | st = i,Zt−1;θ)

=
1√

2πσ2
ε

exp
{
−(zt − α0 − α1i− β1zt−1 − · · · − βkzt−k)2

2σ2
ε

}
.

(3.1)

Given the prediction probability IP(st = i | Zt−1;θ), the density of zt conditional on
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3.1 Quasi-Maximum Likelihood Estimation 8

Zt−1 alone can be obtained from (3.1) as

f(zt | Zt−1;θ) = IP(st = 0 | Zt−1;θ) f(zt | st = 0,Zt−1;θ)

+ IP(st = 1 | Zt−1;θ) f(zt | st = 1,Zt−1;θ).
(3.2)

For i = 0, 1, the filtering probabilities of st are

IP(st = i | Zt;θ) =
IP(st = i | Zt−1;θ) f(zt | st = i,Zt−1;θ)

f(zt | Zt−1;θ)
, (3.3)

by the Bayes theorem, and the relationship between the filtering and prediction proba-

bilities is

IP(st+1 = i | Zt;θ) = p0i IP(st = 0 | Zt;θ) + p1i IP(st = 1 | Zt;θ), (3.4)

where p0i = IP(st+1 = i | st = 0) and p1i = IP(st+1 = i | st = 1) are transition

probabilities. Observe that the equations (3.1)–(3.4) form a recursive system for t =

k, . . . , T .

With the initial values IP(sk = i | Zk−1;θ),1 we can iterate the equations (3.1)–(3.4)

to obtain the filtering probabilities IP(st = i | Zt;θ) as well as the conditional densities

f(zt | Zt−1;θ) for t = k, . . . , T . The quasi-log-likelihood function is therefore

LT (θ) =
1
T

T∑
t=1

ln f(zt | Zt−1;θ),

which is a complex nonlinear function of θ. The QMLE θ̂T now can be computed us-

ing a numerical-search algorithm. For example, the GAUSS program adopts the BFGS

(Broyden-Fletcher-Goldfarb-Shanno) algorithm. The estimated filtering and prediction

probabilities are then easily calculated by plugging θ̂T into the formulae for these prob-

abilities.

To compute the smoothing probabilities IP(st = i | ZT ;θ) we follow the approach of

Kim (1994). By noting that

IP(st = i | st+1 = j,ZT ;θ)

= IP(st = i | st+1 = j,Zt;θ)

=
pij IP(st = i | Zt;θ)
IP(st+1 = j | Zt;θ)

,

1Hamilton (1994, p. 684) suggests setting the initial value IP(sk = i | Zk−1;θ) to its limiting uncon-

ditional counterpart: the third column of the matrix (A′A)−1A′, where

A =

[
I − P

1′

]
,

with I the identity matrix and 1 the two-dimensional vector of ones.
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3.2 Estimation via Gibbs Sampling 9

for i, j = 0, 1, the smoothing probabilities can be expressed as

IP(st = i | ZT ;θ)

= IP(st+1 = 0 | ZT ;θ) IP(st = i | st+1 = 0,ZT ;θ)

+ IP(st+1 = 1 | ZT ;θ) IP(st = i | st+1 = 1,ZT ;θ)

= IP(st = i | Zt;θ)

×
(
pi0 IP(st+1 = 0 | ZT ;θ)

IP(st+1 = 0 | Zt;θ)
+
pi1 IP(st+1 = 1 | ZT ;θ)

IP(st+1 = 1 | Zt;θ)

)
.

(3.5)

Using the filtering probability IP(sT = i | ZT ;θ) as the initial value, we can iterate

the equations (3.3), (3.4) and (3.5) backward to get the smoothing probabilities for

t = T − 1, · · · , k+ 1. These probabilities are also functions of θ; plugging the QMLE θ̂T
into these formulae yields the estimated smoothing probabilities.

3.2 Estimation via Gibbs Sampling

An alternative approach to estimating the Markov switching model is the method of

Gibbs sampling; see e.g., Albert and Chib (1993) and McCulloch and Tsay (1994). Gibbs

sampling is a Markov Chain Monte Carlo simulation method (also known as MCMC

method) introduced by Geman and Geman (1984) for image processing problems, and it

is closely related to the idea of data augmentation of Tanner and Wong (1987).

Similar to the Bayesian analysis, this method treats parameters as random variables.

Suppose that the parameter vector θ can be classified into k groups:

θ = (θ′1,θ
′
2, . . . ,θ

′
k)
′.

Given the observed data ZT , let

π
(
θi | ZT , {θj , j 6= i}

)
, i = 1, . . . , k,

denote the full conditional distribution of θi, which is also the conditional posterior dis-

tribution in the Bayesian analysis. By specifying the prior distributions of parameters

and likelihood functions, the conditional posterior distributions can be derived.

The Gibbs sampler starts from k conditional posterior distributions and randomly

generated initial values:

θ(0) =
(
θ

(0)′
1 , θ

(0)′
2 , . . . ,θ

(0)′
k

)′
.

The ith realization of θ is then obtained via the following procedure.
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3.2 Estimation via Gibbs Sampling 10

1. Randomly draw a realization of θ1 from the full conditional distribution

π
(
θ1 | ZT ,θ

(i−1)
2 , . . . ,θ

(i−1)
k

)
,

and denote this realization as θ(i)
1 .

2. Randomly draw a realization of θ2 from the full conditional distribution

π
(
θ2 | ZT ,θ

(i)
1 ,θ

(i−1)
3 , . . . ,θ

(i−1)
k

)
,

and denote this realization as θ(i)
2 .

3. Proceeds similarly to draw θ
(i)
3 , . . . ,θ

(i)
k .

The ith realization of θ is then

θ(i) =
(
θ

(i)′
1 ,θ

(i)′
2 , . . . ,θ

(i)′
k

)′
.

Repeating the procedure above N times we obtain a Gibbs sequence {θ(1),θ(2), . . . ,θ(N)}.
We can then compute N full conditional distributions of θi based on the Gibbs sequence.

For example, the full conditional distributions of θ1 are

π
(
θ1 | ZT ,θ

(i)
2 ,θ

(i)
3 , . . . ,θ

(i)
k

)
, i = 1, . . . , N.

To get rid of the effect of initial values, it is typical to drop the beginning N1 estimates

in the Gibbs sequence and keep the remaining N2 estimates, where N1 +N2 = N .

Geman and Geman (1984) show that the Gibbs sequence converges in distribution

exponentially fast to the true distribution of θ, i.e.,

θ(N) D−→ π
(
θ | ZT

)
,

as N tends to infinity, and that each subvector θ(N)
i also converges in distribution ex-

ponentially fast to the true marginal distribution of θi. Moreover, for any measurable

function g,

1
N

N∑
i=1

g
(
θ(i)
) a.s.−→ IE[g(θ)],

where a.s.−→ denotes almost sure convergence. See also Gelfand and Smith (1990), Casella

and George (1992), and Chib and Greenberg (1996) for more detailed discussion of the

properties of Gibbs sampling.
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In the current context, in addition to the parameter vector θ, the unobserved state

variables st, t = 1, . . . , T , are also treated as parameters. The augmented parameter

vector now can be classified into four groups: state variables st, transition probabilities

p00 and p11, the intercept and slope parameters α0, α1, β1, . . . , βk, and the variance σ2
ε .

Random drawings from the conditional posterior distributions yield the Gibbs sequence.

The sample average of the Gibbs sequence is the desired estimate of unknown parameters.

4 Hypothesis Testing

To justify whether the Markov switching model is appropriate, it is natural to consider

the following hypotheses: (1) the switching parameters (intercepts) are in fact the same;

(2) the state variables are independent. Rejecting the first hypothesis suggests that

switching does occur. Failure to reject the second hypothesis is an evidence against

the Markovian structure, yet rejecting this hypothesis provides only a partial support

for Markov switching. In addition, one may also want to test the significance of model

parameters as well as some linear (nonlinear) hypotheses of these parameters. In this

section, we will discuss how to conduct proper tests.

4.1 Testing for Switching Parameters

The first hypothesis is that α1 = 0. When the null hypothesis is true, one equation suffices

to characterize zt so that (2.3) reduces to an AR(k) model. Then, the quasi-log-likelihood

value can not be affected by the values of p00 and p11. That is, the parameters p00 and p11

are not identified under the null hypothesis; these parameters are usually referred to as

nuisance parameters. It is well known that when there are unidentified parameters under

the null hypothesis, the quasi-log-likelihood function is flat with respect to these nuisance

parameters so that there is no unique maximum. Consequently, the standard likelihood-

based tests are no longer valid, as discussed in Davies (1977, 1987) and Hansen (1996b).

This is a very serious problem in hypothesis testing.

We now introduce the “conservative” testing procedure proposed by Hansen (1992,

1996a). It is worth noting that the asymptotic theory of the test of Garcia (1998) may

not be valid. Partition the parameter vector θ as

θ = (γ,θ′1)′ = (α1, p00, p11,θ
′
1)′,

where p′ = (p00, p11) is the vector of the nuisance parameters not identified under the

null. Fixing γ = (α1, p00, p11)′, the concentrated QMLE of θ1 is

θ̂1(γ) = argmax LT (γ,θ1).
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4.1 Testing for Switching Parameters 12

which converges in probability to, say, θ1(γ). The concentrated quasi-log-likelihood

functions evaluated at θ̂1(γ) and θ1(γ) are

L̂T (γ) = LT
(
γ, θ̂1(γ)

)
,

LT (γ) = LT (γ,θ1(γ)).

The resulting likelihood ratio statistics are then

L̂RT (γ) = L̂T (γ)− L̂T (0, p00, p11),

LRT (γ) = LT (γ)− LT (0, p00, p11).

where L̂T (0,p) and LT (0,p) are the concentrated quasi-log-likelihood functions under

the null hypothesis. As γ contains the nuisance parameters, it is natural to consider

the likelihood ratios for all possible values of γ. This motivates a supremum statistic:

supγ

√
T L̂RT (γ); see also Andrews (1993) for an analogous test in the context of testing

structural changes at unknown times.

In view of equations (A.1), (A.2) and (8) of Hansen (1992),2

√
T
(
L̂T (γ)− LT (γ)

)
= oIP(1).

It follows that under the null hypothesis,
√
T L̂RT (γ) =

√
T [L̂RT (γ)− LRT (γ)] +

√
T [LRT (γ)−MT (γ)] +

√
T MT (γ)

=
√
T [LRT (γ)−MT (γ)] +

√
T MT (γ) + oIP(1),

where MT (γ) = IE[LRT (γ)] is non-positive when the null hypothesis is true. It follows

that

√
T L̂RT (γ) ≤

√
T QT (γ) + oIP(1), (4.1)

where QT (γ) = LRT (γ)−MT (γ). Under suitable conditions, an empirical-process cen-

tral limit theorem (CLT) holds in the sense that

√
TQT (γ)⇒ Q(γ), (4.2)

where ⇒ stands for weak convergence (of the associated probability measures), and Q is

a Gaussian process with mean zero and the covariance function K(γ1,γ2). Note that an

empirical-process CLT is analogous to a functional CLT; see Andrews (1991) for more

2It should be noted that in our notations, L̂T and LT are averages of individual log-likelihoods, whereas

they are sums of individual log-likelihoods in Hansen (1992).
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4.2 Testing Other Hypotheses 13

details. Equations (4.1) and (4.2) together suggest that when T is sufficiently large, Q(γ)

is approximately an upper bound of
√
T L̂RT (γ) for any γ. We thus have

IP
{

supγ

√
T L̂RT (γ) > c

)
≤ IP

{
supγ Q(γ) > c

}
, (4.3)

under the null hypothesis. The result (4.3) shows that for a given significance level, the

critical value of supγ

√
T L̂RT (γ) is smaller than that of supγ Q(γ).

Based on the derivation above, Hansen (1992) proposed using a standardized supre-

mum statistic

sup
γ
L̂R
∗
T (γ) = sup

γ

√
T L̂RT (γ)/V̂T (γ)1/2, (4.4)

where V̂T (γ) is a variance estimate; the exact form of V̂T (γ) is given by Hansen (1992).

Let V (γ) be the probability limit of V̂T (γ). In the light of (4.1) and (4.2), the Hansen

statistic is such that

sup
γ
L̂R
∗
T (γ) ≤ sup

γ

√
TQT (γ)/V̂T (γ)1/2 + oIP(1)⇒ sup

γ
Q∗(γ),

where Q∗(γ) = Q(γ)/V (γ)1/2 is also a Gaussian process with mean zero and the covari-

ance function K∗(γ1,γ2) = K(γ1,γ2)/[V (γ1)1/2 V (γ2)1/2]. Similar to (4.3), we have

IP
{

supγ L̂R
∗
T (γ) > c

)
≤ IP

{
supγ Q

∗(γ) > c

}
.

Thus, for a given significance level, the critical value of supγ L̂R
∗
T (γ) is also smaller than

that of supγ Q∗(γ). This suggests that, even when the distribution of the standardized

supremum statistic is unknown, we may appeal to supγ Q∗(γ) and obtain “conservative”

critical values for the standardized supremum statistic (the critical values render the true

significance level less than the nominal significance level). Such critical values are larger

than needed and hence ought to have negative effects on test power. Hansen (1992) also

suggested a simulation approach to generate the distribution of supγ Q∗(γ). Implement-

ing Hansen’s test is computationally quite intensive; we will discuss related computing

issues in Appendix II.

4.2 Testing Other Hypotheses

Consider now the test of the independence of state variables. Note that if p00 = p10 and

p01 = p11, then regardless of the previous state, the variable has the same probability of

being in the state 0 (or 1). That is, previous state has no effect on current state so that
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these state variables are independent. Since p00 + p01 = 1 and p10 + p11 = 1, the null

hypothesis of independent state variables can be expressed compactly as

H0 : p00 + p11 = 1.

Once we reject the first hypothesis discussed in the preceding subsection, there is no

longer the “nuisance parameter” problem. Consequently, the hypothesis of independent

state variables can be tested using standard likelihood-based tests, such as the Wald test.

Other hypotheses on model parameters can also be tested by standard likelihood-based

tests; see also Hamilton (1996). We omit the details of those tests.

5 Application: A Study of Taiwan’s Business Cycles

In discussing business cycles, Lucas (1977) emphasizes on the comovement of important

macroeconomic variables such as production, consumption, investment and employment.

Diebold and Rudebusch (1996) further suggest that a model for business cycles should

take into account two features: the comovement of economic variables and persistence

of economic states. Clearly, a univariate Markov switching model is able to characterize

the latter feature but not the former. It is therefore more appropriate to consider a

multivariate model.

There have been numerous applications of the Markov switching model to aggre-

gate output series and business cycles; see e.g., Hamilton (1989), Lam (1990), Good-

win (1993), Diebold, Lee and Weinbach (1994), Durland and McCurdy (1994), Fi-

lardo (1994), Ghysels (1994), Kim and Yoo (1995), Filardo and Gordon (1998), and

Kim and Nelson (1998). Among the studies of Taiwan’s business cycles, Huang, Kuan

and Lin (1998), Huang (1999), and Chen and Lin (2000a) applied univariate Markov

switching models to real GNP or GDP data. Blanchard and Quah (1989) pointed out,

however, that analyzing GDP alone is not enough to characterize the effects of both sup-

ply and demand shocks. Our empirical analysis below is based on Hsu and Kuan (2001)

which applied a bivariate Markov switching model to real GDP and employment growth

rates. Chen and Lin (2000b) also adopted a bivariate model to analyze real GDP and

CP (consumption expenditure). We consider employment rather than CP because CP

itself is already a major component of the GDP series.

The quarterly data of real GDP and employment numbers are taken from the ARE-

MOS database of the Ministry of Education. There ware total 151 observations for the

real GDP (the first quarter of 1962 through the third quarter of 1999) and 87 observations
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Figure 2: The growth rates of GDP (left) and employment (right): 1979 Q1–1999 Q3.

for employment numbers (the first quarter of 1978 through the third quarter of 1999).

In what follows, we will use Q1 to denote the first quarter, Q2 for the second, and so on.

Let ζt denote the vector of GDP and employment. Taking seasonal differences of the log

of ζt yields the annual growth rates of ζt:

zt = log(ζt)− log(ζt−4).

The GDP and employment growth rates from 1979 Q1 through 1999 Q3 are plotted in

Figure 2. It can be seen that these two series do not exhibit any trending behavior.

The estimation results of this section are all computed via Gibbs sampling; see Hsu

and Kuan (2001) for the prior distributions and conditional posterior distributions. We

first apply the bivariate Markov switching model to zt using the observations of the whole

sample (1978 Q1 through 1999 Q3). The estimation result shows that st = 1 is the state

of rapid growth. Figures 3 is the plot of the smoothing probabilities IP(st = 1 | ZT )

which indicate that these probabilities are almost zero in the past 10 years, where the

vertical solid (dashed) lines signify the peaks (troughs) identified by the CEPD (Council

of Economic Planning and Development) of the Executive Yuan. That is, it is highly

unlikely that the economy is in the state of rapid growth during this period (or it is

highly likely that the economy is in the state of low growth). Thus, the Markov switching

model based on the information of the full sample fails to identify any cycle in 1990s.

By contrast, existing studies show that the Markov switching model is quite successful

in identifying Taiwan’s business cycles before 1990 and that their results are close to the

cycles identified by the CEPD.
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Figure 3: The smoothing probabilities of st = 1: bivariate model, 1979 Q1–1999 Q3.

Examining the data more closely we observe that Taiwan’s economy grew rapidly

before 1990 but much slower afterwards. For example, the average GDP growth rates

in 1960s, 1970s and 1980s were, respectively, 9.82%, 10.27% and 8.16%, whereas the

average growth rate in 1990s was only 6.19%. This explains why the Markov switching

model classifies all the growth rates in 1990s into the same state when the full sample is

considered. Nevertheless, from Figure 2 we can see that Taiwan’s economy still experi-

enced some ups and downs during this period. The question is: How can we identify the

business cycles in 1990s?

To properly identify the cycles in 1990s, it seems natural to consider only a subsample

of more recent observations. To be sure, we test whether there was a structural change (at

an unknown time) in these two series using the maximal-Wald test of Andrews (1993) and

estimate the change point using the least-squares method. For the GDP and employment

growth rates, the maximal-Wald statistics are, respectively, 12.036 and 40.360, which

exceed the 5% critical value 9.31. We therefore reject the null hypothesis of no mean

change. The least-squares change-point estimates further indicate that the change point

for the GDP growth rates was 1989 Q4 and that for the employment growth rates was

1987 Q4. Therefore, we shall concentrate on the after-change sample of zt from 1989 Q4

through 1999 Q3.3 Note that the way we determine the change point is different from

that of Rau, Lin and Li (2001).
3Choosing this sub-sample is quite reasonable. The average growth rates of GDP and employment

are 7.81% resp. 2.56% before 1990 and drop to 6.19% resp. 1.28% after 1990. This amounts to a 21%

decrease in the GDP growth rates and a 50% decrease in the employment growth rates.
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The estimation results summarized in Table 1 are obtained by applying the bivariate

Markov switching model to the after-change sample. In this table, the columns under

“prior dist.” are the parameter values of the prior distributions, and the columns under

“posterior dist.” give the parameter estimates and their standard errors obtained from

Gibbs sampling. From this result we can calculate the estimated average growth rates

for GDP: 7.35% for state 1 and 3.26% for state 0. We will therefore term the states 1

and 0 as the rapid- and low-growth states, respectively. These estimates are significantly

lower than those reported in other studies. For example, using the real GDP data from

1961 Q1 through 1996 Q4, the 2-state model of Huang (1999) results in the estimated

average growth rates as 11.3% and 7.3%.4 For employment, the estimated average growth

rates in the rapid- and low-growth periods are 1.46% and 1.15%, respectively.

From Table 1 we also observe that the transition probabilities are p00 = 0.5619 and

p11 = 0.6918. These probabilities are also much smaller than those of other studies

and suggest that both states are less persistent than before. For example, for the low-

and rapid-growth states, the transition probabilities in Huang (1999) are, respectively,

0.927 and 0.804, whereas those in Huang, Kuan and Lin (1998) are, respectively, 0.927

and 0.956. The expected duration is approximately 1/(1 − p11) ≈ 3.2 quarters for the

rapid-growth period and is 1/(1− p00) ≈ 2.3 quarters for the low-growth period.5 These

durations are much shorter than those obtained by Huang, Kuan and Lin (1998), which

are approximately 22.7 quarters for the period of rapid growth and 13.7 quarters for

the period of low growth. Note, however, that the estimated durations of Huang (1999)

are approximately 5 quarters for the rapid-growth period and 13.7 quarters for the low-

growth period. These estimates contradict the usual wisdom that expansions in Taiwan

typically last longer than recessions. To summarize, our estimation results indicate that

the expected growth rates of Taiwan’s GDP are much lower and that the phases of

business cycles have shorter durations in 1990s.

The smoothing (posterior) probabilities of st = 1 are summarized in Table 2 and

plotted in Figure 4. We use the smoothing probabilities to determine the peaks and

troughs of business cycle and take 0.5 as the cut-off value for st = 0 or 1. That is,

the periods with the smoothing probabilities of st = 1 greater (less) than 0.5 are more
4Huang, Kuan and Lin (1998) use the real GNP data from 1962 Q1 through 1995 Q3 and obtain the

estimated average growth rates as 10.12% and 5.74%.
5The expected duration of the state 0 is∑∞

k=1 k pk−1
00 (1− p00) = 1/(1− p00),

and the expected duration of the state 1 is 1/(1− p11); see Hamilton (1989, p. 374).
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Figure 4: The smoothing probabilities of st = 1: bivariate model, 1990 Q1–1999 Q3.

likely to be in the state of rapid (low) growth. We also adopt the simple rule that the

last period with the smoothing probability greater (less) than 0.5 is taken as the peak

(trough). According to this rule, there were two complete cycles in 1990s: one with the

peak at 1995 Q2 and trough at 1995 Q4, and another one with the peak at 1997 Q4 and

trough at 1998 Q4. The former is close to the 8th cycle announced by the CEPD (peak at

1995 Q1 and trough at 1996 Q1) but with a shorter recession period, whereas the latter

agrees with the 9th cycle identified by the CEPD. The 9th cycle shows that Taiwan’s

economy reached the peak while the Asian currency crisis started spreading and was at

the trough when this crisis finally came to an end.

Furthermore, we adopt the prior distributions in Table 1 and separately apply the

univariate Markov switching model to after-change GDP and employment growth rates,

as did in Kim and Nelson (1998). The estimated smoothing probabilities for these two

series are plotted in Figure 5. It is interesting to see that the univariate model for the

after-change sample still cannot identify any cycle during 1990s. This suggests that the

bivariate model does capture important data characteristics that cannot be revealed by

a univariate model.

6 The Markov Switching Model of Conditional Variance

In addition to the Markov switching model of conditional mean, it is also important to

incorporate a Markov switching mechanism into conditional variance models. In this

section, we focus on the GARCH model with Markov switching.
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Figure 5: The smoothing probabilities of st = 1: univariate model for GDP (left) and

employment (right), 1990 Q1–1999 Q3.

Write a simple GARCH(p, q) model as zt =
√
ht εt, where

ht = c+
q∑
i=1

aiz
2
t−i +

p∑
i=1

biht−i, (6.1)

which is the conditional variance of zt given all the information up to time t− 1 and εt

are i.i.d. random variables with mean zero and variance 1. When ht does not depend on

its lagged values, the model above reduces to an ARCH(q) model. When p = q = 1, we

have the GARCH(1,1) model:

ht = c+ a1z
2
t−1 + b1ht−1.

In many empirical studies, it is found that a GARCH(1,1) model usually suffices to de-

scribe the volatility patterns in many time series. Interestingly, the sum of the estimated

a1 and b1 coefficients is typically close to one. From 6.1), we can characterize z2
t using

an ARMA(1,1) model:

z2
t = htε

2
t = c+ (a1 + b1)z2

t−1 − b1(z2
t−1 − ht−1) + (z2

t − ht), (6.2)

where z2
t −ht is the innovation with mean zero. Thus, when a1 + b1 is indeed one, z2

t has

a unit root so that the resulting ht are highly persistent. In this case, {ht} is said to be

an integrated GARCH (IGARCH) process. Lamoureux and Lastrapes (1990) point out

that the detected IGARCH pattern does not have theoretical motivation and may well

be a consequence of ignoring parameter changes in the GARCH model.
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Let Φt−1 denote the information set up to time t− 1 and hi,t = var(zt | st = i,Φt−1).

Cai (1994) considers an ARCH(q) model with switching intercepts: zt =
√
hi,t εt, and

hi,t = α0 + α1i+
q∑
j=1

ajz
2
t−j , i = 0, 1. (6.3)

Hamilton and Susmel (1994) proposed the SWARCH(q) model: zt =
√
hi,t εt, and

hi,t = λiηt = λi

c+
q∑
j=1

ajζ
2
t−j

 , i = 0, 1. (6.4)

That is, the conditional variances in these two regimes are proportional to each other.

Clearly, the conditional variances of (6.3) have left shifts, but those of (6.4) have different

scales. Both models are, of course, very special forms of switching conditional variances.

Extending the models (6.3) and (6.4) to allow for lagged conditional variances is not

straightforward, however. To see this, observe that when the conditional variance hi,t
depends on hi,t−1, it is determined not only by st but also by st−1 due to the presence

of hi,t−1. The dependence of hi,t−1 on hi,t−2 then implies that hi,t must also be affected

by the value of st−2, and so on. Consequently, the conditional variance at time t is

in effect determined by the realization of (st, st−1, . . . , s1) which has 2t possible values.

This “path dependence” property would result in a very complex model and render model

estimation intractable. Gray (1996) circumvents this problem by postulating that hi,t
depends on ht = IE(z2

t | Φt−1), the sum of hi,t weighted by the prediction probability

IP(st = i | Φt−1). That is, zt =
√
hi,t εt, and

hi,t = ci +
q∑
j=1

ai,jz
2
t−j +

p∑
j=1

bi,jht−j , i = 0, 1,

ht = h0,t IP(st = 0 | Φt−1) + h1,t IP(st = 1 | Φt−1).

(6.5)

A salient feature of (6.5) is that hi,t are no longer path dependent because both h0,t−j

and h1,t−j have been used to from ht−j . Thus, this model can be computed without

considering all possible values of (st, . . . , s1).

Gray’s model is readily generalized to allow both conditional mean and conditional

variance to switch. Let µi,t denote the conditional mean IE(zt | st = i,Φt−1) and write

zt = µi,t + vi,t, vi,t =
√
hi,t εt,

hi,t = ci +
q∑
j=1

ai,jv
2
t−j +

p∑
j=1

bi,jht−j .
(6.6)
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In this case, we must compute two weighted sums:

ht = IE(z2
t | Φt−1)− IE(zt | Φt−1)2,

vt = zt − IE(zt | Φt−1),

where IE(zt | Φt−1) and IE(z2
t | Φt−1) are calculated as

IE(zt | Φt−1) = µ0,t IP(st = 0 | Φt−1) + µ1,t IP(st = 1 | Φt−1),

IE(z2
t | Φt−1) = (µ2

0,t + h0,t) IP(st = 0 | Φt−1) + (µ2
1,t + h1,t) IP(st = 1 | Φt−1).

Under this specification, neither ht nor vt is path dependent.

When the state variable assumes k values (k > 2), let Mt denote the vector whose

i th element is µi,t, Ht the vector whose i th element is hi,t, and Ξt|t−1 the vector whose

i th element is the prediction probability IP(st = i | Φt−1). Similar to the 2-state model,

the conditional means and conditional variances in different states can be combined as

ht = (Mt �Mt +Ht)
′Ξt|t−1 − (M ′tΞt|t−1)2,

vt = zt −M ′tΞt|t−1,

where � denotes the element-by-element product.

Comparing to the models of Cai (1994) and Hamilton and Susmel (1994), the switch-

ing GARCH model of Gray (1996) allows all the GARCH parameters to switch and does

not impose any constraint on these parameters. Thus, Gray’s model offers much more

flexibility than Cai’s model and the SWARCH model. Gray’s model can be estimated us-

ing the method discussed in Section 3; see Gray (1996) and Lin, Hung, and Kuan (2002)

for details. Note that in practice, one may, instead of assuming conditional normality,

postulate εt as i.i.d. random variables with t(n) distribution, where n is the degrees of

freedom. Such a specification is capable of describing more erratic conditional variances.

7 Application: A Study of Taiwan’s Short-Term Interest

Rates

In this section we investigate the behaviors of the short-term interest rates in Taiwan.

It is well known that Taiwan’s short-term interest rates were carefully monitored and

controlled by her Central Bank. In general, the Central Bank allows the interest rates

to freely fluctuate within a given range. When the interest rates rise sharply in response

to a major political or economic shock, the Central Bank usually intervenes the market
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to ensure the stability of the interest rates. As such, it is reasonable to believe that

Taiwan’s interest rates may behave differently during different periods. This observation

motivates us to apply the model of Gray (1996).

Let rt denote the interest rate. A leading empirical model of ∆rt is

∆rt = α0 + β0rt−1 + vt, (7.1)

where vt is typically modeled as a GARCH(1,1) process: vt =
√
htεt with

ht = c0 + a0v
2
t−1 + b0ht−1; (7.2)

see e.g., Chan et al. (1992). Letting µ denote the long-run level of rt, α0 = ρµ and

β0 = −ρ, (7.1) becomes

∆rt = ρ(µ− rt−1) + vt.

As long as ρ > 0 (i.e., β0 < 0), ∆rt is positive (negative) when rt−1 is below (above) the

long-run level. In this case, rt will adjust toward the long-run level and hence exhibit

mean reversion. Estimating (7.1) allows us to examine the property of mean reversion

by checking the sign of the estimate of β0. The ratio of the estimates of α0 and β0 is

then an estimate of the long-run level µ. The postulated GARCH model (7.2), as usual,

is used to characterize the volatility of ∆rt.

To allow for regime switching, we following Gray (1996) to specify:

∆rt = αi + βirt−1 + vi,t, i = 0, 1, (7.3)

and vi,t =
√
hi,tεt with

hi,t = ci + aiv
2
t−1 + biht−1, i = 0, 1. (7.4)

Gray (1996) also include the additional term ωir
τi
t−1 in (7.4) so as to capture the level

effect. We do not pursue this possibility here, however.

In our study, we focus on the market rates of the 30-day Commercial Paper in the

monetary market. We choose this data series because Commercial Papers are actively

traded and hence their rates are a better index of short-term interest rates. The weekly

average interest rates are computed from the daily data of the TEJ (Taiwan Economic

Journal) database. There are 258 observations, from Jan. 4, 1994 through Dec. 7, 1998.

During this period, Taiwan experienced numerous major shocks; for a comprehensive list

of these events see Lin, Hung, and Kuan (2002). Our study thus allows us to evaluate how

c© Chung-Ming Kuan, 2002



23

Figure 6: The weekly interest rates rt: Jan. 1994–Dec. 1998.

the market responds to different shocks. We plot rt and ∆rt in Figure 6 and Figure 7,

respectively. Some summary statistics of ∆rt are: the sample average −0.0055%, the

standard deviation 0.441, the skewness coefficient −0.8951, and the kurtosis coefficient

4.2229. We also find that the sample correlation coefficient of ∆rt and rt−1 is −0.3087,

suggesting that rt may be mean reverting.

We consider three cases: (i) model (7.1) with the standard GARCH(1,1) errors (7.2);

(ii) model (7.1) with the switching GARCH(1,1) errors (7.4), and (iii) model of switching

mean (7.3) with the switching GARCH(1,1) errors (7.4). All models are estimated under

the assumption that εt are i.i.d. N (0, 1) random variables. As there are many very small

and insignificant estimates for case (ii), we report only the result based on a special form

of (7.4):

h0,t = c0 + a0v
2
t−1 + b0ht−1,

h1,t = b1ht−1.

Similarly, we report only the result of case (iii) based on:

h0,t = c0 + a0v
2
t−1,

h1,t = c1 + b1ht−1.

The estimation results are summarized in Table 3 in which the numbers are taken from

Lin, Hung, and Kuan (2002). The smoothing probabilities of st = 0 and the estimated

conditional variances of case (iii) are plotted in Figure 8 and Figure 9, respectively.
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Figure 7: The first differences of weekly interest rates ∆rt: Jan. 1994–Dec. 1998.

It can be seen from Table 3 that both AIC and SIC improve when the model allows

for regime switching. For case (iii), the Hansen (1992, 1996a) test statistic is 3.257,

which rejects the null hypothesis of no switching at 1% level. For cases (ii) and (iii),

both transition probabilities are highly significant. The Wald tests of state independence

are 59.53 for case (ii) and 140.39 for case (iii), which are significant at any level. These

results support using the Markov switching model. We also observe the following.

1. All models yield negative estimates of β and hence exhibit mean reversion. For case

(iii), the magnitude of the estimate of β0 is much greater than that of β1, indicating

a much quicker adjustment speed in state 0. When there is no switching in mean,

as in cases (i) and (ii), the magnitude of the estimated β is small and close to that

of β1 in case (iii).

2. For case (iii), the estimated long-run levels in state 0 and state 1 are, respectively,

6.6% and 5%, whereas the estimated long-run levels are 6.2% in case (i) and 5.53%

in case (ii).

3. We find the IGARCH-type volatility persistence for case (i) but not for cases (ii)

and (iii) when the conditional variances are allowed to switch. This is similar to

the finding of Gray (1996). Also, the GARCH parameters in different regimes

do not appear to be proportional, contradicting the assumption of Hamilton and

Susmel (1994).

4. The estimation result of case (iii) suggests that h0,t is approximately a constant (i.e.,
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Figure 8: The estimated smoothing probabilities of st = 0.

Figure 9: The estimated conditional variances ht.

conditional homoskedasticity) and h1,t are mainly determined by ht−1 (i.e., GARCH

effect only). This volatility pattern is quite different from that of Gray (1996).

Based on the result of case (iii), the state 0 may be interpreted as the state of high long-

run level with a quick adjustment speed and high volatility level without persistence. In

contrast, the state state 1 is the state of low long-run level with a very slow adjustment

speed and low volatility level with a quickly diminishing GARCH effect. One possible

explanation of this result is that, when the short-term interest rates are in the high-level

regime, the Central Bank’s intervention successfully suppressed their volatility so that

no ARCH or GARCH effect exists. Without intervention in the low-level regime, the

interest rates exhibit a GARCH effect, yet volatility clustering may last for only a short
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time period.

8 Concluding Remarks

This lecture note presents the Markov switching models of the conditional mean and

conditional variance behaviors of time series. Although these models are well known in

the literature, research on this topic is still promising. In addition to empirical applica-

tions of these models, there is still room for theoretical development. From Section 4.1

and Appendix II we can see that the Hansen test is not completely satisfactory because

it is conservative and computationally very demanding by construction. A proper and

simpler test for the Markov switching model is highly desirable. If a new test can be

derived, it may also be applicable to other models that involve unidentified nuisance

parameters. Such a test would surely be a major contribution to the econometrics liter-

ature. Furthermore, what is important in the Markov switching model is its Markovian

switching mechanism. This switching mechanism may also be imposed on other mod-

els to yield new models and different applications. Research along this line is definitely

worth exploring.
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Appendix I: Estimation of the Model (2.5)

In this Appendix we consider quasi-maximum likelihood estimation of the model (2.5).

Let z̃t = zt − α0 − α1st, model (2.5) is

z̃t = β1z̃t−1 + · · ·+ βkz̃t−k + εt.

We first define a new state variable s∗t = 1, 2, · · · , 2k+1 such that each of these values

represents a particular realization of (st, st−1, . . . , st−k). For example, when k = 2,

s∗t = 1 if st = st−1 = st−2 = 0,

s∗t = 2 if st = 0, st−1 = 0, and st−2 = 1,

s∗t = 3 if st = 0, st−1 = 1, and st−2 = 0,

...

s∗t = 8 if st = st−1 = st−2 = 1.

It is easy to see that s∗t is also a first-order Markov chain. We can also arrange the values

of s∗t so that the transition matrix is

P ∗ =


P 00 0

0 P 10

P 01 0

0 P 11

 ,
with P ji (j, i = 0, 1) is a 2k−1 × 2k block diagonal matrix:

P ji =


pji pji 0 0 · · · 0 0

0 0 pji pji · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · pji pji

 ,

a 2k−1 × 2k block-diagonal matrix.

Let ξt,i = (z̃t, z̃t−1, . . . , z̃t−k)′, where the values of z̃t, . . . , z̃t−k depend on the realiza-

tion of (st, st−1, . . . , st−k), and this realization is such that s∗t = i, i = 1, 2, . . . , 2k+1. For

b = (1,−β1, . . . ,−βk)′, we have

b′ξt,i = z̃t − β1z̃t−1 − . . .− βkz̃t−k.

When k = 2 and i = 3, for example, the realization of (st, st−1, st−2) is (0, 1, 0) so that

b′ξt,i = (zt − α0)− β1(zt−1 − α0 − α1)− β2(zt−2 − α0).
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Under the normality assumption, the density of zt conditional on s∗t = i and Zt−1 is

f(zt | s∗t = i,Zt−1;θ) =
1√

2πσ2
υ

exp

{
−(b′ξt,i)2

2σ2
ε

}
, (8.5)

where i = 1, 2, · · · , 2k+1 and θ = (α0, α1, β1, , . . . , βk, σε, p00, p11)′.

The derivation below is similar to that in Section 3.1. Given IP(s∗t = i | Zt−1;θ), the

density of zt conditional on Zt−1 can be obtained via (8.5) as

f(zt | Zt−1;θ) =
2q+1∑
i=1

IP(s∗t = i | Zt−1;θ) f(zt | s∗t = i,Zt−1;θ). (8.6)

To compute the filtering probabilities IP(s∗t = i | Zt;θ), note that

IP(s∗t = i | Zt;θ) =
IP(s∗t = i | Zt−1;θ) f(zt | s∗t = i,Zt−1;θ)

f(zt | Zt−1;θ)
, (8.7)

and that the (j, i)th element of P ∗ is

p∗ji = IP(s∗t = i | s∗t−1 = j) = IP(s∗t = i | s∗t−1 = j,Zt),

by the Markov property. These in turn yield

IP(s∗t+1 = i | Zt;θ) =
2k+1∑
j=1

p∗ji IP(s∗t = j | Zt;θ). (8.8)

Thus, with the initial values IP(s∗k = i | Zk−1;θ), we can iterate the equations (8.5)–(8.8)

to obtain IP(s∗t = i | Zt;θ) for t = k + 1, . . . , T . The quasi-log-likelihood function can

also be constructed using (8.6), from which the QMLE can be computed.

Then for each t, the desired filtering probability of st is

IP(st = 1 | Zt;θ) =
∑

IP(s∗t = i | Zt;θ),

where the summation is taken over all i that associated with st = 1, and

IP(st = 0 | Zt;θ) = 1− IP(st = 1 | Zt;θ).

For the initial values IP(s∗k = i | Zk−1;θ), we can set it to its limiting unconditional

counterpart: the (2k+1 + 1)th column of the matrix (A′A)−1A′, where

A =

[
I − P ∗

1′

]
,

with I the identity matrix and 1 the 2k+1-dimensional vector of ones.
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Appendix II: Computation of Hansen’s Statistic (4.4)

In this Appendix we discuss some computational issues in implementing Hansen’s statis-

tic (4.4). To compute the concentrated QMLE, the concentrated quasi-log-likelihood

function must be maximized for each value of γ. Note that p00 and p11 in γ could take

any value in [0, 1] and that α1 could be any value on the real line. A practical way is

to consider only finitely many values of γ. This amounts to setting up a set of grid

points in the parameter space and computing the concentrated QMLE only with respect

to these points. For example, Hansen (1992) restricts α1 to be in the range [0, 2] and

set 20 grid points: 0.1, 0.2, . . . , 2, and his Grid 3 for p00 (and p11) contains 8 grid points:

0.12, 0.23, . . . , 0.89. This results in a total of 1280 (= 8×8×20) grid points for γ so that

there will be 1280 optimizations. This is computationally demanding; finer grid points

of course require even more intensive computation.

Hansen (1992, 1996a) suggest a simulation method to generate the distribution of

supγ Q∗(γ), where Q∗ is a Gaussian process with mean zero and the covariance function

K∗(γ1,γ2). Let K̂(γ1,γ2) denote a consistent estimate ofK∗(γ1,γ2); see Hansen (1996a)

for the exact expression of K̂. One can then repeatedly generate Gaussian processes

whose covariance functions are all K̂(γ1,γ2). As a Gaussian process is completely de-

termined by its covariance function, the supremum of each generated process has ap-

proximately the same distribution as supγ Q∗(γ). These supremum values together form

a simulated distribution of supγ Q∗(γ), from which the critical values and p-values of

Hansen’s statistic can be calculated. Following this idea, Hansen (1996a) proposes to

generate a sample of i.i.d. N(0, 1) random variables {u1, . . . , uT+M} and compute∑M
j=0

∑T
t=1 qt

(
γ, θ̂(γ)

)
ut+k.√

1 +M V̂T (γ)
,

where γ takes the grid points discussed in the preceding paragraph, and qt are the

summands of QT (γ). Then conditional on the data used in model estimation, the process

so generated has mean zero and exact covariance function K̂∗(γ1,γ2). This is precisely

the process we need.
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Table 1: The estimation results of the bivariate Markov switching model on GDP and
employment growth rates.

Prior dist. Posterior dist.

parameter average s.d. average s.d.

α01 2 1 1.1073 0.9113
α02 2 1 0.8738 0.8332
α11 2 1 2.3538 1.1602
α12 2 1 1.4057 1.0251
b11 0 1 0.8753 0.2600
b12 0 1 −0.2166 0.2590
b13 0 1 0.0172 0.3204
b14 0 1 0.6703 0.3119
b21 0 1 −0.1205 0.3136
b22 0 1 0.2590 0.3122
b23 0 1 −0.2654 0.3743
b24 0 1 0.0434 0.3655
b31 0 1 0.1176 0.3004
b32 0 1 0.0029 0.2891
b33 0 1 0.3936 0.3964
b34 0 1 0.2330 0.3422
b41 0 1 −0.1672 0.2075
b42 0 1 −0.1363 0.2073
b43 0 1 −0.2740 0.3192
b44 0 1 −0.4507 0.2823
σ11 1 . 0.9781 4.1622
σ12 0 . −0.1305 8.1463
σ22 1 . 2.1819 35.936
p00 0.5 0.0012 0.5619 0.1725
p11 0.5 0.0012 0.6918 0.1488

Note: αi1 and αi2 are, respectively, the intercepts for the GDP and
employment growth rates when st = i, i = 0, 1; for j = 1, . . . , 4,

Bj =
[
bj1 bj3
bj2 bj4

]
; Σ =

[
σ11 σ12

σ12 σ22

]
.
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Table 2: The estimated smoothing probabilities of the bivariate Markov switching model
on GDP and employment growth rates.

quarter prob. quarter prob.

1990 Q1 N/A 1995 Q1 0.7158
Q2 N/A Q2 0.7349
Q3 N/A Q3 0.3133
Q4 N/A Q4 0.2622

1991 Q1 0.6792 1996 Q1 0.7680
Q2 0.8206 Q2 0.7579
Q3 0.7257 Q3 0.7185
Q4 0.6235 Q4 0.7674

1992 Q1 0.8042 1997 Q1 0.4798
Q2 0.7730 Q2 0.7135
Q3 0.7647 Q3 0.7045
Q4 0.8029 Q4 0.7534

1993 Q1 0.7638 1998 Q1 0.2484
Q2 0.7856 Q2 0.2851
Q3 0.7549 Q3 0.1952
Q4 0.7864 Q4 0.2041

1994 Q1 0.7766 1999 Q1 0.6745
Q2 0.7510 Q2 0.8483
Q3 0.7957 Q3 N/A
Q4 0.8218 Q4 N/A
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Table 3: The estimation results of various models on the interest rates.

Model No switching in mean No switching in mean Switching in mean
and variance Switching in variance and variance

estimate t ratio estimate t ratio estimate t ratio

α0 0.5737 3.42 0.3989 3.09 2.3356 4.05
α1 — — — — 0.2566 1.81
β0 −0.0923 −3.46 −0.0721 −3.49 −0.3505 −4.13
β1 — — — — −0.0507 −2.25
c0 0.0155 1.70 0.5450 2.11 0.6699 3.57
c1 — — — — 0.0056 0.41
a0 0.3540 4.60 0.1143 1.17 0.0820 0.54
a1 — — — — — —
b0 0.6756 13.57 0.3821 0.80 — —
b1 — — 0.2363 2.73 0.2175 2.99
p00 — — 0.8660 13.26 0.8891 19.38
p11 — — 0.8827 20.73 0.9052 27.50

AIC 442.45 394.73 382.25
SIC 460.22 422.15 417.78
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