GEOMETRY: HOMEWORK 12

DUE DECEMBER 19

(1) Calculate the exterior derivative of the following differential forms.

(a)
$$dz + x dy - y dz$$
 on \mathbb{R}^3 .

(b)
$$\frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{1 + x^2 + y^2}$$
 on \mathbb{R}^2 .
(c) $\frac{1}{|\mathbf{x}|^n} \sum_{j=1}^n (-1)^{j-1} x^j \, \mathrm{d}x^1 \wedge \cdots \wedge \widehat{\mathrm{d}x^j} \wedge \cdots \wedge \mathrm{d}x^n$ on $\mathbb{R}^n \setminus \{0\}$, where $\widehat{\cdot}$ means that the term is not there.

(2) Check that

$$\mathbf{d}(\omega \wedge \eta) = (\mathbf{d}\omega) \wedge \eta + (-1)^k \omega \wedge (\mathbf{d}\eta)$$

for any $\omega \in \Omega^k(M)$ and $\eta \in \Omega^\ell(M)$.

(3) Consider the 2-form on \mathbb{R}^{2n} defined by

$$\omega = \mathrm{d}x^1 \wedge \mathrm{d}x^2 + \mathrm{d}x^3 \wedge \mathrm{d}x^4 + \dots + \mathrm{d}x^{2n-1} \wedge \mathrm{d}x^{2n}$$

Compute $\omega^n = \omega \wedge \omega \wedge \cdots \wedge \omega$.

(4) For any 1-form α and vector fields U, V, prove that

$$d\alpha(U,V) = U(\alpha(V)) - V(\alpha(U)) - \alpha([U,V]) .$$

Hint: This formula is local in nature. Due to \mathbb{R} -linearity, it suffices to show it for $\alpha = f(\mathbf{x}) dx^1$.

(5) Consider the following two parametrization for \mathbb{S}^2 :

$$F_{+}(x^{1}, x^{2}) = \frac{1}{1 + (x^{1})^{2} + (x^{2})^{2}} \left(2x^{1}, 2x^{2}, 1 - (x^{1})^{2} - (x^{2})^{2}\right) ,$$

$$F_{-}(y^{1}, y^{2}) = \frac{1}{1 + (y^{1})^{2} + (y^{2})^{2}} \left(2y^{1}, -2y^{2}, -1 + (y^{1})^{2} + (y^{2})^{2}\right)$$

For the following differentials forms, find their expression in terms of the y-coordinate.

(a)
$$\frac{4}{(1+(x^1)^2+(x^2)^2)^2} dx^1 \wedge dx^2.$$

(b)
$$\frac{x^1 \, \mathrm{d}x^2 - x^2 \, \mathrm{d}x^1}{(1 + (x^1)^2 + (x^2)^2)^2}$$

(6) On a vector space V of dimension n > 0, an orientation is a non-zero element in $\Lambda^n(V^*)$. Two orientation is said to be equivalent if they differ by a scaling of positive factor. Since $\Lambda^n(V^*) \cong \mathbb{R}$, there are indeed two different equivalent classes of orientations. With a choice of basis $\{\frac{\partial}{\partial x^j}\}_{j=1}^n$ for V, the (class of) orientation is given by $\pm dx^1 \wedge \cdots \wedge dx^n$.

A manifold M is said to be orientable if it admits a *nowhere vanishing n*-form. For simplicity, assume M is connected. Show that M is orientable if and only if it admits a coordinate cover such that the determinant of Jacobian of the coordinate transitions is always positive (on where it is defined).

Note: Part (a) of (5) defines an orietation on \mathbb{S}^2 .

Hint: For a diffeomorphism between open subsets of \mathbb{R}^n , $\mathbf{y} = \mathbf{y}(\mathbf{x})$, a straightforward calculation¹ shows that

$$\mathrm{d}y^1 \wedge \cdots \wedge \mathrm{d}y^n = \mathrm{det} \left[\frac{\partial(y^1, \cdots, y^n)}{\partial(x^1, \cdots, x^n)} \right] \,\mathrm{d}x^1 \wedge \cdots \wedge \mathrm{d}x^n$$

For the direction of construction nowhere vanishing n-form, you may need the partition of unity.

¹Check it by yourself.