GEOMETRY: HOMEWORK 10

DUE NOVEMBER 28

- (1) Compute the flow of each of the following vector fields on \mathbb{R}^2 :
 - (a) $U = y \frac{\partial}{\partial x} x \frac{\partial}{\partial y};$
 - (b) $V = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y};$
 - (c) $W = (y+2)x\frac{\partial}{\partial x} + \frac{\partial}{\partial y}$.
- (2) Determine whether the following distribution is involutive.
 - (a) $\operatorname{span}\left\{\frac{\partial}{\partial z}, \cos z \frac{\partial}{\partial x} + \sin z \frac{\partial}{\partial y}\right\}$ on \mathbb{R}^3 . (b) $\operatorname{span}\left\{\frac{\partial}{\partial x} - \frac{y}{x^2 + y^2} \frac{\partial}{\partial z}, \frac{\partial}{\partial y} + \frac{x}{x^2 + y^2} \frac{\partial}{\partial z}\right\}$ on $\mathbb{R}^3 \setminus \{z \text{-axis}\}$.
- (3) Give an example of vector fields U, V, W on \mathbb{R}^2 such that
 - on the *x*-axis, $U = \frac{\partial}{\partial x} = V;$
 - $L_U W \neq L_V W$ at the origin.

This exercise says that to compute the Lie derivative $L_V W = [V, W]$, it is not sufficient just to know V at a point, or even along an integral curve. The Lie derivative $L_V W$ depends on the behavior of V on an open neighborhood.

(4) (a) Denote by *B* the open unit ball in \mathbb{R}^n . For any two distinct points $\mathbf{x}_0, \mathbf{x}_1 \in B$, show that there is a diffeomorphism $\psi : B \to B$ which sends \mathbf{x}_0 to \mathbf{x}_1 .

Hint: Let σ be the line segment connecting $\mathbf{x}_0, \mathbf{x}_1$. Try to construct a vector field which is equal to $\mathbf{v} = \mathbf{x}_1 - \mathbf{x}_0$ on a neighborhood of σ , and supp $\mathbf{v} \subset B$.

- (b) Let M be a compact, connected manifold. Let $\operatorname{Aut}(M)$ be the group¹ of selfdiffeomorphisms of M. Prove that $\operatorname{Aut}(M)$ acts *transitively* on M. Namely, for any $p, q \in M$, there exists some $\varphi \in \operatorname{Aut}(M)$ such that $\varphi(p) = q$.
- (5) For any three tangent vector fields, U, V, W, check by calculation in coordinate that they obey the *Jacobi identity*:

$$[U, [V, W]] + [W, [U, V]] + [V, [W, U]] = 0.$$
 (\blacklozenge)

¹The binary operation is the composition.

(6) Suppose that there is a diffeomorphism $\psi: M \to N$. Check that

$$\psi_*([U,V]) = [\psi_*U, \psi_*V] \quad \text{for any } U, V \in \Gamma(M; TM) . \tag{(\diamondsuit)}$$

Here, ψ_* is the differential of ψ .

Hint: In local coordinate, ψ is given by $\mathbf{y} = \mathbf{y}(\mathbf{x})$, where \mathbf{x} and \mathbf{y} are local coordinates for M and N, respectively.

(7) Let φ_t be the one-parameter family of diffeomorphism generated by U. It follows from (\diamondsuit) that

$$(\varphi_{-t})_*([V,W]) = [(\varphi_{-t})_*(V), (\varphi_{-t})_*(W)]$$
.

Use this to give another proof of the Jacobi identity (\spadesuit) .