GEOMETRY: HOMEWORK 7

DUE NOVEMBER 7

(1) IFT and submanifold in the Euclidean space Suppose that $q_0 \in \mathbb{R}^m$ is a regular value of a smooth map $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$. That is to say, $DF|_p$ is surjective for any $p \in F^{-1}(q_0)$. Endow $M = F^{-1}(q_0)$ the subspace topology (from \mathbb{R}^{n+m}). Prove that M is a smooth manifold of dimension n.

Hint: You do not have to do the part of para-compactness, or second countability. This exercise is nothing more than rephrasing the implicit function theorem.

Another point is that smoothness is a local property. In fact, we did a similar argument for regular surfaces; see p.2 on the lecture note of the second week.

- (2) sphere, orthogonal group, unitary group For the following sets, apply (1) to show that they are smooth manifolds, and determine their dimension.
 - (a) $\mathbb{S}^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} : |\mathbf{x}| = 1 \}.$
 - (b) $O(n) = \{A \in M(n \times n; \mathbb{R}) : A^T A = \mathbf{I}\}.$
 - (c) $U(n) = \{A \in M(n \times n; \mathbb{C}) : A^*A = \mathbf{I}\}.$

Hint: Instead of identifying $M(n \times n; \mathbb{R})$ with \mathbb{R}^{n^2} (and $M(n \times n; \mathbb{C})$ with \mathbb{R}^{2n^2}), it is more convenient to work with $M(n \times n; \mathbb{R})$ directly. Both left and right multiplication by a matrix are linear maps on $M(n \times n; \mathbb{R})$.

(3) Stiefel manifold Fix $n, k \in \mathbb{N}$ with $k \leq n$. The Stiefel manifold, $V_k(\mathbb{R}^n)$, is the set of ordered k-tuples of orthonormal vectors in \mathbb{R}^n :

 $\mathbf{V}_k(\mathbb{R}^n) = \{ (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k) : \{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \} \text{ is orthonormal (in } \mathbb{R}^n) \} .$

It is not hard to see that $V_1(\mathbb{R}^n) = \mathbb{S}^{n-1}$ and $V_n(\mathbb{R}^n) = O(n)$.

- (a) Show that $V_k(\mathbb{R}^n)$ is a smooth manifold, and determine its dimension. You can put \vec{v}_j 's into an $n \times k$ matrix. Being orthonormal can be translated into a condition on the matrix.
- (b) Consider the map

 $\pi: \qquad \begin{array}{ccc} V_k(\mathbb{R}^n) & \to & \operatorname{Gr}(k,n) \\ (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k) & \mapsto & \operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\} \end{array}$

For any $P \in Gr(k, n)$, what do you know about $\pi^{-1}(P)$? (Just explain it settheoretically.) (4) Flag manifold Fix $n \in \mathbb{N}$. Choose a sequence of integers,

$$0 = \alpha_0 < \alpha_1 < \cdots < \alpha_k = n$$
.

Denote $(\alpha_0, \alpha_1, \dots, \alpha_k)$ by \mathcal{A} . A flag of type \mathcal{A} in \mathbb{R}^n is a sequence of vector subspaces with

$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_k = \mathbb{R}^n \text{ and } \dim V_j = \alpha_j$$
.

For $\ell = (0, 1, 2, ..., n)$, the flag is called a complete flag. Namely, dim $V_j - \dim V_{j-1} = 1$ for all j. Otherwise it is called a partial flag.

The set of all flags of the same type is called the flag manifold:

 $F(\mathcal{A}, n) = \{ \text{flags of type } \mathcal{A} \text{ in } \mathbb{R}^n \} .$

The name suggests that the above set can be shown to be a smooth manifold. Note that for $\mathcal{A} = (0, i, n)$, $F(\mathcal{A}, n) = Gr(i, n)$.

Now, focus on the case n = 4 and $\mathcal{A} = (0, 1, 3, 4)$. The flag manifold F((0, 1, 3, 4), 4) is 5-dimensional. Denote by $\{\vec{e}_j\}_{j=1}^4$ the standard basis of \mathbb{R}^4 .

(a) Construct an injective map from \mathbb{R}^5 to $F(\mathcal{A}, 4)$ by the following hint.

Let $0 \subset V_1 \subset V_2 \subset V_3 = \mathbb{R}^4$ be a flag with dim $V_1 = 1$ and dim $V_2 = 3$.

- Suppose that the orthogonal projection of V₂ to span{*e*₁, *e*₂, *e*₃} is surjective. Regard flags with this property the "nearby" flags. Given any basis of such V₂, it can be extended to a basis of V₃ = ℝ⁴ by adding *e*₄.
- It follows that the orthogonal projection of V_1 onto one of the first three coordinate axes must be surjective. Suppose that it is span $\{\vec{e_1}\}$. Regard flags with this property the "nearby" flags.
- Flags satisfying the above two properties can be parametrized by \mathbb{R}^5 . Work out an injective map from \mathbb{R}^5 to $F(\mathcal{A}, 4)$.
- (b) Construct another map by choosing different coordinate planes. Determine the overlap region, and calculate the transition map. (You are only asked to work out two coordinate charts, not all.)