GEOMETRY: HOMEWORK 5

DUE OCTOBER 17

(1) The complex polynomial $w = u + iv \mapsto w^2$ can be extended to ∞ as a smooth map from \mathbb{S}^2 to itself. In terms of the standard coordinate of \mathbb{R}^3 , the map takes the form:

$$\begin{array}{rcccc} F: & \mathbb{S}^2 & \rightarrow & \mathbb{S}^2 \\ & (x,y,z) & \mapsto & \frac{1}{1+z^2}(x^2-y^2,2xy,2z) \ . \end{array}$$

Choose the outer unit normal as the orientation of \mathbb{S}^2 . Calculate the degree of F by evaluating the integral of \mathscr{J}_F .

Remark:
$$(x^2 - y^2)^2 + (2xy)^2 + (2z)^2 = (x^4 - 2x^2y^2 + y^4) + 4x^2y^2 + 4z^2$$

 $= (x^4 + 2x^2y^2 + y^4) + 4z^2$
 $= (x^2 + y^2)^2 + 4z^2$
 $= (1 - z^2)^2 + 4z^2$ (if $x^2 + y^2 + z^2 = 1$)
 $= (1 + z^2)^2$.

- (2) (a) Endow the orientation (0, 0, 1) for the *xy*-plane. Fix $\delta > \varepsilon > 0$, and choose a smooth function h(r) for $r \ge 0$ which satisfies
 - $h'(r) \leq 0$ for any r > 0;
 - h(r) = 1 for $r \in [0, \varepsilon]$;
 - h(r) = -1 for $r \ge \delta$.

Namely, h(r) decreases from 1 to -1 as r increases. Let $r = \sqrt{x^2 + y^2}$, and consider the map

$$F: \mathbb{R}^2 \mapsto \mathbb{S}^2$$
$$(x,y) \mapsto \left(\sqrt{\frac{1-h^2(r)}{r^2}} x, \sqrt{\frac{1-h^2(r)}{r^2}} y, h(r)\right)$$

Note that $F(\{r \leq \varepsilon\}) = (0, 0, 1)$, and thus it is smooth at the origin. Evaluate $\frac{1}{4\pi} \int \int_{\mathbb{R}^2} \mathscr{J}_F \, \mathrm{d}x \, \mathrm{d}y.$

(b) Given any $n \in \mathbb{N}$ and any compact regular surface S (with an orientation N), explain a strategy to construct a map from S to \mathbb{S}^2 with degree n.

Remark: In [MR, §8.2], the notion of degree is defined for maps between compact regular surfaces. That is to say, the target space need not to be S^2 . The above property is not true in general. For instance, one can prove (with the help of some topology knowledge) that any smooth map from S^2 to a surface with genus ≥ 1 must have degree 0.

(3) Consider $\mathbb{H} = \{(x, y) \in \mathbb{R}^2 | y > 0\}$ with the first fundamental form

$$I_{\mathbb{H}} = rac{1}{y^2} (\mathrm{d}x \cdot \mathrm{d}x + \mathrm{d}y \cdot \mathrm{d}y) \; .$$

It means that for a tangent vector (a, b) at (x, y), its length is $y^{-1}\sqrt{a^2 + b^2}$ but not $\sqrt{a^2 + b^2}$. The goal of this exercise is to demonstrate that the concept of distance of $I_{\mathbb{H}}$ is different from that of the standard one, $dx \cdot dx + dy \cdot dy$.

For a smooth curve $\gamma(t) = (x(t), y(t))$, the tangent vector is $\gamma'(t) = (x'(t), y'(t))$. Its arc-length is defined to be

$$L[\gamma] = \int \sqrt{I_{\mathbb{H}}(\gamma'(t), \gamma'(t))} \, dt = \int \sqrt{\frac{(x'(t))^2 + (y'(t))^2}{(y(t))^2}} \, dt$$

Consider an arc of the unit circle, $\sigma(t) = (\cos t, \sin t)$ for $t \in [\alpha, \beta]$, where $0 < \alpha < \beta < \pi$. Its arc-length is

$$\mathcal{L}[\sigma] = \int_{\alpha}^{\beta} \frac{1}{\sin t} dt = \int_{\alpha}^{\beta} \csc t \, dt = -\log(\csc t + \cot t)|_{t=\alpha}^{\beta}$$

Show that any smooth curve $\gamma(t)$ in \mathbb{H} which connects $(\cos \alpha, \sin \alpha)$ and $(\cos \beta, \sin \beta)$ must have arc-length no less than $L[\sigma]$.

Hint: You may use the polar coordinate to describe the curve,

$$\gamma(t) = (r(t)\cos(\theta(t)), r(t)\sin(\theta(t))) : [0,1] \to \mathbb{H} .$$

The conditions are $\theta(0) = \alpha$, $\theta(1) = \beta$, and r(0) = 1 = r(1).