
GEOMETRY: HOMEWORK 4

DUE OCTOBER 12

1. Some linear algebra

1.1. Change of basis. Let V be an n-dimensional vector space over R. Let {vi}ni=1 and
{wi}ni=1 be two bases for V . Then,

vi =
n∑

j=1

Lj
i wj (1.1)

for some [Lj
i ] ∈ GL(n;R) = {invertible n× n matrices}. It follows that

n∑
i=1

ai vi =
n∑

j=1

(
n∑

i=1

Lj
i a

i

)
wj .

In other words,
∑n

i=1 a
i vi =

∑n
j=1 b

j wj if and only if
n∑

i=1

Lj
i a

i = bj . (1.2)

In the concrete case, Rn, (1.1) and (1.2) read

[
v1 v2 · · · vn

]
=
[
w1 w2 · · · wn

]

L1
1 L1

2 · · · L1
n

L2
1 L2

2 · · · L2
n

... ... . . . ...
Ln
1 Ln

2 · · · Ln
n

 ,


L1
1 L1

2 · · · L1
n

L2
1 L2

2 · · · L2
n

... ... . . . ...
Ln
1 Ln

2 · · · Ln
n



a1

a2

...
an

 =


b1

b2

...
bn

 .

1.2. Change of basis in dual space. Its dual vector space, V ∗ = Hom(V ;R), has two
bases1, {v∗

i }ni=1 and {w∗
i }ni=1. From

w∗
i (vj) = w∗

i (
n∑

k=1

Lk
j wk) = Li

j ,

1Be careful about the dual basis. For instance, consider {(1, 0), (0, 1)} and {(1, 0), (1, 1)} for R2. Use the
standard inner product to identify (R2)∗ with R2. Their dual bases are {(1, 0), (0, 1)} and {(1,−1), (0, 1)},
respectively. From this example, the notation (1, 0)∗ only makes sense with a choice of basis.
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one finds that

w∗
i =

n∑
j=1

Li
j v

∗
j .

Sometimes the index is raised to make the notation more consistent. Write v∗
i by v̂i, and

w∗
i by ŵi. The equation is

ŵi =
n∑

j=1

Li
j v̂

j . (1.3)

Similarly,
∑n

i=1 âi v̂
i =

∑n
j=1 b̂j ŵ

j is equivalent to
n∑

j=1

Lj
i b̂j = âi . (1.4)

1.3. Bilinear form on V . The set of bilinear forms on V is a vector space of dimension
n2. It has the following basis2: {v̂i ⊗ v̂j}ni,j=1, which are defined on the basis by

(v̂i ⊗ v̂j)(vk,vℓ) =

1 when i = k and j = ℓ;

0 otherwise.

In other words, (v̂i ⊗ v̂j)(vk,vℓ) = δikδ
j
ℓ . Another basis, {wk}nk=1, of V leads to another

basis, {ŵk ⊗ ŵℓ}k,ℓ, of bilinear forms on V . One can check that

ŵi ⊗ ŵj =
n∑

k,ℓ=1

Li
k L

j
ℓ (v̂

k ⊗ v̂ℓ) . (1.5)

The set of bilinear forms on V has a natural decomposition into symmetric and anti-
symmetric part. The symmetric part has dimension 1

2
n(n + 1) = n + 1

2
n(n− 1). The basis

is constituted of {v̂i ⊗ v̂i}ni=1 with {v̂i ⊗ v̂j + v̂i ⊗ v̂j}i ̸=j. The anti-symmetric part has
dimension 1

2
n(n− 1), and has basis {v̂i ⊗ v̂j − v̂i ⊗ v̂j}i ̸=j.

2. Tangent planes of a regular surface

Now, let S be a regular surface. Suppose that (Ω1,X) and (Ω2,Y) be two coordinate
chart for S, and X(Ω1) ∩Y(Ω2) ̸= ∅. Denote the coordinate for Ω1 ⊂ R2 by (u1, u2), and
the coordinate for Ω2 ⊂ R2 by (ξ1, ξ2).

For any p ∈ X(Ω1)∩Y(Ω2), apply the discussion of section 1 to V = TpS. The two bases
are {

vi =
∂X

∂ui

}2

i=1

and
{
wj =

∂Y

∂ξj

}2

j=1

. (2.1)

2During the class, we use the notation v̂i · v̂j . The standard notation is ⊗.
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By applying the chain rule on X = Y ◦ (Y−1 ◦X),

∂X

∂ui
=
∑
j

∂Y

∂ξj
∂ξj

∂ui

Comparing it with (1.1),

Lj
i =

∂ξj

∂ui
(2.2)

in this current setting.

2.1. Tangent vector. The modern notation for the above bases of TpS are

∂

∂ui
and ∂

∂ξi
, respectively .

A vector of TpS can be written as
∑

i a
i ∂
∂ui , which just means

∑
i a

i ∂X
∂ui .

The first advantage for this notation is for taking derivative. Suppose that f : R3 ⊃ S → R
is a smooth function. Then, the differential of f in the direction of

∑
i a

i ∂X
∂ui is

(Df)|p(
∑
i

ai
∂X

∂ui
) = (D(f ◦X))

[
a1

a2

]
=
∑
i

ai
∂(f ◦X)

∂ui

∣∣∣∣
p

.

The second advantage is related to the first one. The relation (1.2) says that∑
i

ai
∂

∂ui
=
∑
j

bj
∂

∂ξj
if and only if

∑
i

∂ξj

∂ui
ai = bj . (2.3)

This can be seen by re-doing the chain rule computation:

(Df)(
∑
i

ai
∂X

∂ui
) =

∑
i

ai
∂(f ◦X)

∂ui

=
∑
i

ai
∂
(
(f ◦Y) ◦ (Y−1 ◦X)

)
∂ui

=
∑
i,j

ai
∂(f ◦Y)

∂ξj
∂ξj

∂ui

= (Df)(
∑
j

bj
∂Y

∂ξj
) =

∑
j

bj
∂(f ◦Y)

∂ξi
.

People usually abuse the notation, and write it as∑
i

ai
∂f

∂ui
=
∑
i,j

ai
∂f

∂ξj
∂ξj

∂ui
=
∑
j

bj
∂f

∂ξj
.

By ignoring f , one finds the relation between ai and bj, (2.3).
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2.2. Cotangent vector. A cotangent vector is an element of the dual space of TpS. The
dual space is denoted by T ∗

pS. It has basis {v̂i}2i=1 which is defined by

v̂i

(
∂X

∂uk

)
=

1 if i = k ;

0 otherwise .

Another basis {ŵj}2j=1 is defined by the same way. The modern notation for them are

dui and dξj , respectively .

In the modern notation, the defining relation reads

dui

(
∂

∂uk

)
= δik .

By (1.3) and (2.2), the transition rule between different bases is

dξi =
∑
j

∂ξi

∂uj
duj , (2.4)

which looks just like the chain rule.

2.3. Symmetric bilinear forms. The first and second fundamental forms are symmetric
bilinear forms. That is to say, for each p ∈ S, they are symmetric bilinear forms on TpS,
and are smooth in the sense of smooth coefficient functions in coordinate charts. Denote

⟨∂X
∂ui

,
∂X

∂uj
⟩ by gij(u) , and ⟨∂Y

∂ξk
,
∂Y

∂ξℓ
⟩ by g̃kℓ(ξ) .

Due to (2.4) and (1.5),∑
k,ℓ

g̃kℓ dξ
k ⊗ dξℓ =

∑
k,ℓ,i,j

g̃kℓ
∂ξk

∂ui

∂ξℓ

∂uj
dui ⊗ duj

=
∑
i,j

(∑
k,ℓ

g̃kℓ
∂ξk

∂ui

∂ξℓ

∂uj

)
dui ⊗ duj =

∑
i,j

gij du
i ⊗ duj .

(2.5)

By matching the coefficients in front of the basis,∑
k,ℓ

g̃kℓ
(
ξ(x)

) ∂ξk
∂ui

∂ξℓ

∂uj
= gij(x) . (2.6)
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3. Homework

(1) Consider the spherical coordinate for S2,

(sin ρ cos θ, sin ρ sin θ, cos ρ) .

(a) Work out the expression of the first fundamental form in terms of this spherical
coordinate.

(b) Consider the stereographic projection, 1
1+u2+v2

(2u, 2v, 1− u2 − v2). Find ρ(u, v)

and θ(u, v), and then apply (2.5) and (2.6) to find the expression of the first
fundamental form in terms of the stereographic projection.

(2) Consider the Poincaré metric3 on the unit disk D = {(u, v) ∈ R2|u2 + v2 < 1}:
4

(1− u2 − v2)2
(du · du+ dv · dv) ,

and consider the following metric on the upper half plane H = {(ξ, η) ∈ R2|η > 0}:
1

η2
(dξ · dξ + dη · dη) .

From Gauss’s Theorema Egregium, these data determine their Gaussian curvatures,
KD and KH (by some complicated formula we did not do in class).
(a) Consider the map

D → H

(u, v) 7→ 1

(1− u)2 + v2
(−2v, 1− u2 − v2) .

One can check that this map is a diffeomorphism (you do not have to do this
part). Check that this map defines a local isometry.

(b) For any a > 0, show that (ξ, η) → (aξ, aη) defines a (local) isometry of H. For
any b ∈ R, show that (ξ, η) → (ξ + b, η) defines a (local) isometry of H.
(Hint: To avoid confusion, you can denote the coordinate of the domain by (ξ1, η1), and the
coordinate of the codomain by (ξ2, η2).)

(c) Use part (a) and (b) to conclude4 that KD = KH = constant.
(Remark: The same argument can be used to prove that a round sphere has constant Gaussian
curvature.)

(d) Recall Beltrami’s pseudo-sphere S:

(α(t) cos θ, α(t) sin θ, β(t))

3It just means given a first fundamental form abstractly.
4In fact, the statement for Theorema Egregium is only for regular surface in R3. Let us pretend the

statement works in this abstract setting as well, and see what can be learnt from it.
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where α(t) = et and β(t) =
∫ t

0

√
1− e2sds. We calculate this example in class.

Its first fundamental form and Gaussian curvature are

I = dt · dt+ e2t dθ · dθ and K ≡ −1 ,

respectively. Construct a local isometry between open subsets of S and H. What
is the constant in part (c)?

(3) Let S be a regular surface.
(a) Suppose that the normal of S at some point p is (0, 0, 1). Prove that on a

neighborhood of p, S can be described by the graph of some function over the
xy-plane.

(b) Let Γ be a 2-plane passing through p, and is not (parallel to) TpS. Prove that
for any open neighborhood U of p in S, the points of U cannot be on only one
side of Γ.
(Hint: Let NΓ be a normal vector of Γ. The condition says that there exists some V ∈ TpS

such that ⟨V,NΓ⟩ ̸= 0. From the definition of a regular surface, there exists a curve γ(t) on S

such that γ(0) = p and γ′(0) = V .)

(4) Let S be a regular surface.
(a) At some p ∈ S, suppose that there exist some other point p0 ∈ R3 and an open

neighborhood U of p in S such that

|q − p0| ≤ |p− p0| for any q ∈ U .

Denote |p − p0| by r. Show that p − p0 is parallel to the normal of S at p, and
the Gaussian curvature of S at p is no less than 1/r2, K(p) ≥ 1

r2
.

(Hint: Remember that any symmetric matrix is diagonalizable by an orthonormal basis. Part
(3a) and (3b) may help you.)

(b) Suppose that S is compact. Prove that there exists some p ∈ S where K(p) > 0.
(Hint: Consider r = maxx∈S |x|. By compactness, r is finite. Consider the sphere of radius r

centered at the origin.)

(5) Is the converse of (4a) true? Namely, suppose that K(p) ≥ 1
r2

for some r > 0. Can
you find some p0 ∈ R3 such that

|q − p0| ≤ r

for any q on an open neighborhood of p in S? You only need to give a heuristic
argument.
(Remark: There is a similar statement for plane curves.)
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