GEOMETRY: HOMEWORK 4

DUE OCTOBER 12

1. Some linear algebra

1.1. **Change of basis.** Let *V* be an *n*-dimensional vector space over R. Let $\{v_i\}_{i=1}^n$ and ${\mathbf \{w}_i\}_{i=1}^n$ be two bases for *V*. Then,

$$
\mathbf{v}_i = \sum_{j=1}^n L_i^j \, \mathbf{w}_j \tag{1.1}
$$

for some $[L_i^j]$ \mathcal{F}_i \in GL $(n; \mathbb{R}) = \{$ invertible $n \times n$ matrices $\}$. It follows that

$$
\sum_{i=1}^{n} a^{i} \mathbf{v}_{i} = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} L_{i}^{j} a^{i} \right) \mathbf{w}_{j} .
$$

In other words, $\sum_{i=1}^{n} a^i \mathbf{v}_i = \sum_{j=1}^{n} b^j \mathbf{w}_j$ if and only if

$$
\sum_{i=1}^{n} L_i^j a^i = b^j . \tag{1.2}
$$

In the concrete case, \mathbb{R}^n , (1.1) and (1.2) read

 $\sqrt{ }$

$$
\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_n \end{bmatrix} \begin{bmatrix} L_1^1 & L_2^1 & \cdots & L_n^1 \\ L_1^2 & L_2^2 & \cdots & L_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ L_1^n & L_2^n & \cdots & L_n^n \end{bmatrix},
$$

$$
L_1^1 & L_2^1 & \cdots & L_n^1
$$

$$
L_1^n & L_2^n & \cdots & L_n^n
$$

$$
\vdots & \vdots & \ddots & \vdots \\ L_1^n & L_2^n & \cdots & L_n^n
$$

$$
\vdots & \vdots & \ddots & \vdots \\ L_1^n & L_2^n & \cdots & L_n^n
$$

1.2. **Change of basis in dual space.** Its dual vector space, $V^* = \text{Hom}(V; \mathbb{R})$, has two bases¹, $\{v_i^*\}_{i=1}^n$ and $\{w_i^*\}_{i=1}^n$. From

$$
\mathbf{w}_i^*(\mathbf{v}_j) = \mathbf{w}_i^*(\sum_{k=1}^n L_j^k \mathbf{w}_k) = L_j^i ,
$$

¹Be careful about the dual basis. For instance, consider $\{(1,0), (0,1)\}$ and $\{(1,0), (1,1)\}$ for \mathbb{R}^2 . Use the standard inner product to identify $(\mathbb{R}^2)^*$ with \mathbb{R}^2 . Their dual bases are $\{(1,0), (0,1)\}$ and $\{(1,-1), (0,1)\}$, respectively. From this example, the notation $(1,0)^*$ only makes sense with a choice of basis.

one finds that

$$
\mathbf{w}_i^* = \sum_{j=1}^n L_j^i \mathbf{v}_j^*.
$$

Sometimes the index is raised to make the notation more consistent. Write \mathbf{v}_i^* by $\hat{\mathbf{v}}^i$, and \mathbf{w}_i^* by $\hat{\mathbf{w}}^i$. The equation is

$$
\hat{\mathbf{w}}^i = \sum_{j=1}^n L_j^i \,\hat{\mathbf{v}}^j \tag{1.3}
$$

Similarly, $\sum_{i=1}^{n} \hat{a}_i \hat{\mathbf{v}}^i = \sum_{j=1}^{n} \hat{b}_j \hat{\mathbf{w}}^j$ is equivalent to

$$
\sum_{j=1}^{n} L_i^j \,\hat{b}_j = \hat{a}_i \,. \tag{1.4}
$$

1.3. **Bilinear form on** *V*. The set of bilinear forms on *V* is a vector space of dimension n^2 . It has the following basis²: $\{\hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^j\}_{i,j=1}^n$, which are defined on the basis by

$$
(\hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^j)(\mathbf{v}_k, \mathbf{v}_\ell) = \begin{cases} 1 & \text{when } i = k \text{ and } j = \ell; \\ 0 & \text{otherwise.} \end{cases}
$$

In other words, $(\hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^j)(\mathbf{v}_k, \mathbf{v}_\ell) = \delta^i_k \delta^j_\ell$ \mathcal{V}_{ℓ} . Another basis, ${\mathbf{w}_k}_{k=1}^n$, of *V* leads to another basis, ${\{\hat{\mathbf{w}}^k \otimes \hat{\mathbf{w}}^{\ell}\}_{k,\ell}}$, of bilinear forms on *V*. One can check that

$$
\hat{\mathbf{w}}^i \otimes \hat{\mathbf{w}}^j = \sum_{k,\ell=1}^n L_k^i L_\ell^j \left(\hat{\mathbf{v}}^k \otimes \hat{\mathbf{v}}^\ell \right).
$$
 (1.5)

The set of bilinear forms on *V* has a natural decomposition into symmetric and antisymmetric part. The symmetric part has dimension $\frac{1}{2}n(n+1) = n + \frac{1}{2}$ $\frac{1}{2}n(n-1)$. The basis is constituted of $\{\hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^i\}_{i=1}^n$ with $\{\hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^j + \hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^j\}_{i \neq j}$. The anti-symmetric part has dimension $\frac{1}{2}n(n-1)$, and has basis $\{\hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^j - \hat{\mathbf{v}}^i \otimes \hat{\mathbf{v}}^j\}_{i \neq j}$.

2. Tangent planes of a regular surface

Now, let *S* be a regular surface. Suppose that (Ω_1, \mathbf{X}) and (Ω_2, \mathbf{Y}) be two coordinate chart for *S*, and $\mathbf{X}(\Omega_1) \cap \mathbf{Y}(\Omega_2) \neq \emptyset$. Denote the coordinate for $\Omega_1 \subset \mathbb{R}^2$ by (u^1, u^2) , and the coordinate for $\Omega_2 \subset \mathbb{R}^2$ by (ξ^1, ξ^2) .

For any $p \in \mathbf{X}(\Omega_1) \cap \mathbf{Y}(\Omega_2)$, apply the discussion of section 1 to $V = T_p S$. The two bases are

$$
\left\{ \mathbf{v}_{i} = \frac{\partial \mathbf{X}}{\partial u^{i}} \right\}_{i=1}^{2} \quad \text{and} \quad \left\{ \mathbf{w}_{j} = \frac{\partial \mathbf{Y}}{\partial \xi^{j}} \right\}_{j=1}^{2} . \quad (2.1)
$$

²During the class, we use the notation $\hat{\mathbf{v}}^i \cdot \hat{\mathbf{v}}^j$. The standard notation is \otimes .

By applying the chain rule on $\mathbf{X} = \mathbf{Y} \circ (\mathbf{Y}^{-1} \circ \mathbf{X}),$

$$
\frac{\partial \mathbf{X}}{\partial u^i} = \sum_j \frac{\partial \mathbf{Y}}{\partial \xi^j} \frac{\partial \xi^j}{\partial u^i}
$$

Comparing it with (1.1),

$$
L_i^j = \frac{\partial \xi^j}{\partial u^i} \tag{2.2}
$$

in this current setti[ng.](#page-0-0)

2.1. **Tangent vector.** The modern notation for the above bases of T_pS are

$$
\frac{\partial}{\partial u^i} \quad \text{and} \quad \frac{\partial}{\partial \xi^i} , \text{ respectively} .
$$

A vector of T_pS can be written as $\sum_i a^i \frac{\partial}{\partial i}$ $\frac{\partial}{\partial u^i}$, which just means $\sum_i a^i \frac{\partial \mathbf{X}}{\partial u^i}$ *∂uⁱ* .

The first advantage for this notation is for taking derivative. Suppose that $f : \mathbb{R}^3 \supset S \to \mathbb{R}$ is a smooth function. Then, the differential of *f* in the direction of $\sum_i a^i \frac{\partial \mathbf{X}}{\partial u^i}$ *∂uⁱ* is

$$
(Df)|_p \left(\sum_i a^i \frac{\partial \mathbf{X}}{\partial u^i}\right) = (D(f \circ \mathbf{X})) \begin{bmatrix} a^1 \\ a^2 \end{bmatrix} = \sum_i a^i \left. \frac{\partial (f \circ \mathbf{X})}{\partial u^i} \right|_p.
$$

The second advantage is related to the first one. The relation (1.2) says that

$$
\sum_{i} a^{i} \frac{\partial}{\partial u^{i}} = \sum_{j} b^{j} \frac{\partial}{\partial \xi^{j}} \quad \text{if and only if} \quad \sum_{i} \frac{\partial \xi^{j}}{\partial u^{i}} a^{i} = b^{j} . \quad (2.3)
$$

This can be seen by re-doing the chain rule computation:

$$
(Df)(\sum_{i} a^{i} \frac{\partial \mathbf{X}}{\partial u^{i}}) = \sum_{i} a^{i} \frac{\partial (f \circ \mathbf{X})}{\partial u^{i}}
$$

$$
= \sum_{i} a^{i} \frac{\partial ((f \circ \mathbf{Y}) \circ (\mathbf{Y}^{-1} \circ \mathbf{X}))}{\partial u^{i}}
$$

$$
= \sum_{i,j} a^{i} \frac{\partial (f \circ \mathbf{Y})}{\partial \xi^{j}} \frac{\partial \xi^{j}}{\partial u^{i}}
$$

$$
= (Df)(\sum_{j} b^{j} \frac{\partial \mathbf{Y}}{\partial \xi^{j}}) = \sum_{j} b^{j} \frac{\partial (f \circ \mathbf{Y})}{\partial \xi^{i}}.
$$

People usually abuse the notation, and write it as

$$
\sum_i a^i \frac{\partial f}{\partial u^i} = \sum_{i,j} a^i \frac{\partial f}{\partial \xi^j} \frac{\partial \xi^j}{\partial u^i} = \sum_j b^j \frac{\partial f}{\partial \xi^j}.
$$

By ignoring f , one finds the relation between a^i and b^j , (2.3).

2.2. **Cotangent vector.** A cotangent vector is an element of the dual space of T_pS . The dual space is denoted by T_p^*S . It has basis $\{\hat{\mathbf{v}}^i\}_{i=1}^2$ which is defined by

$$
\hat{\mathbf{v}}^i \left(\frac{\partial \mathbf{X}}{\partial u^k} \right) = \begin{cases} 1 & \text{if } i = k ; \\ 0 & \text{otherwise} . \end{cases}
$$

Another basis ${\hat{\mathbf{w}}^j}_{j=1}^2$ is defined by the same way. The modern notation for them are

$$
du^i
$$
 and $d\xi^j$, respectively.

In the modern notation, the defining relation reads

$$
\mathrm{d} u^i \left(\frac{\partial}{\partial u^k} \right) = \delta^i_k \ .
$$

By (1.3) and (2.2), the transition rule between different bases is

$$
d\xi^{i} = \sum_{j} \frac{\partial \xi^{i}}{\partial u^{j}} du^{j} , \qquad (2.4)
$$

whi[ch lo](#page-1-1)oks ju[st l](#page-2-0)ike the chain rule.

2.3. **Symmetric bilinear forms.** The first and second fundamental forms are symmetric bilinear forms. That is to say, for each $p \in S$, they are symmetric bilinear forms on T_pS , and are smooth in the sense of smooth coefficient functions in coordinate charts. Denote

$$
\langle \frac{\partial \mathbf{X}}{\partial u^i}, \frac{\partial \mathbf{X}}{\partial u^j} \rangle
$$
 by $g_{ij}(u)$, and $\langle \frac{\partial \mathbf{Y}}{\partial \xi^k}, \frac{\partial \mathbf{Y}}{\partial \xi^{\ell}} \rangle$ by $\tilde{g}_{k\ell}(\xi)$.

Due to (2.4) and (1.5) ,

$$
\sum_{k,\ell} \tilde{g}_{k\ell} d\xi^k \otimes d\xi^{\ell} = \sum_{k,\ell,i,j} \tilde{g}_{k\ell} \frac{\partial \xi^k}{\partial u^i} \frac{\partial \xi^{\ell}}{\partial u^j} du^i \otimes du^j
$$
\n
$$
= \sum_{i,j} \left(\sum_{k,\ell} \tilde{g}_{k\ell} \frac{\partial \xi^k}{\partial u^i} \frac{\partial \xi^{\ell}}{\partial u^j} \right) du^i \otimes du^j = \sum_{i,j} g_{ij} du^i \otimes du^j.
$$
\n(2.5)

By matching the coefficients in front of the basis,

$$
\sum_{k,\ell} \tilde{g}_{k\ell}(\xi(x)) \frac{\partial \xi^k}{\partial u^i} \frac{\partial \xi^\ell}{\partial u^j} = g_{ij}(x) .
$$
 (2.6)

(1) Consider the spherical coordinate for \mathbb{S}^2 ,

 $(\sin \rho \cos \theta, \sin \rho \sin \theta, \cos \rho)$.

- (a) Work out the expression of the first fundamental form in terms of this spherical coordinate.
- (b) Consider the stereographic projection, $\frac{1}{1+u^2+v^2}(2u, 2v, 1-u^2-v^2)$. Find $\rho(u, v)$ and $\theta(u, v)$, and then apply (2.5) and (2.6) to find the expression of the first fundamental form in terms of the stereographic projection.
- (2) Consider [the](#page-3-1) Poincaré metric³ on the unit di[sk](#page-3-2) $D = \{(u, v) \in \mathbb{R}^2 | u^2 + v^2 < 1 \}$:

$$
\frac{4}{(1-u^2-v^2)^2}(\mathrm{d}u\cdot\mathrm{d}u+\mathrm{d}v\cdot\mathrm{d}v)\;,
$$

and consider the following metric on the upper half plane $\mathbb{H} = \{(\xi, \eta) \in \mathbb{R}^2 | \eta > 0\}$:

$$
\frac{1}{\eta^2} (d\xi \cdot d\xi + d\eta \cdot d\eta) .
$$

From Gauss's Theorema Egregium, these data determine their Gaussian curvatures, K_D and $K_{\mathbb{H}}$ (by some complicated formula we did not do in class).

(a) Consider the map

$$
D \rightarrow \mathbb{H}
$$

 $(u, v) \rightarrow \frac{1}{(1-u)^2 + v^2}(-2v, 1 - u^2 - v^2).$

One can check that this map is a diffeomorphism (you do not have to do this part). Check that this map defines a local isometry.

- (b) For any $a > 0$, show that $(\xi, \eta) \to (a\xi, a\eta)$ defines a (local) isometry of H. For any $b \in \mathbb{R}$, show that $(\xi, \eta) \to (\xi + b, \eta)$ defines a (local) isometry of H. (Hint: To avoid confusion, you can denote the coordinate of the domain by (ξ_1, η_1) , and the coordinate of the codomain by (ξ_2, η_2) .)
- (c) Use part (a) and (b) to conclude⁴ that $K_D = K_{\mathbb{H}} = \text{constant}$. (Remark: The same argument can be used to prove that a round sphere has constant Gaussian curvature.)
- (d) Recall Beltrami's pseudo-sphere *[S](#page-4-1)*:

$$
(\alpha(t)\cos\theta, \alpha(t)\sin\theta, \beta(t))
$$

³It just means given a first fundamental form abstractly.

⁴In fact, the statement for Theorema Egregium is only for regular surface in \mathbb{R}^3 . Let us pretend the statement works in this abstract setting as well, and see what can be learnt from it.

where $\alpha(t) = e^t$ and $\beta(t) = \int_0^t$ *√* 1 *− e* ²*^s*d*s*. We calculate this example in class. Its first fundamental form and Gaussian curvature are

> $I = dt \cdot dt + e^{2t}$ and $K \equiv -1$,

respectively. Construct a local isometry between open subsets of *S* and H. What is the constant in part (c)?

(3) Let *S* be a regular surface.

- (a) Suppose that the normal of *S* at some point p is $(0, 0, 1)$. Prove that on a neighborhood of *p*, *S* can be described by the graph of some function over the *xy*-plane.
- (b) Let Γ be a 2-plane passing through *p*, and is *not* (parallel to) T_pS . Prove that for any open neighborhood *U* of *p* in *S*, the points of *U* cannot be on only one side of Γ.

(Hint: Let N_{Γ} be a normal vector of Γ . The condition says that there exists some $V \in T_pS$ such that $\langle V, N_{\Gamma} \rangle \neq 0$. From the definition of a regular surface, there exists a curve $\gamma(t)$ on *S* such that $\gamma(0) = p$ and $\gamma'(0) = V$.)

- (4) Let *S* be a regular surface.
	- (a) At some $p \in S$, suppose that there exist some other point $p_0 \in \mathbb{R}^3$ and an open neighborhood *U* of *p* in *S* such that

$$
|q - p_0| \le |p - p_0| \quad \text{for any} \quad q \in U.
$$

Denote $|p - p_0|$ by *r*. Show that $p - p_0$ is parallel to the normal of *S* at *p*, and the Gaussian curvature of *S* at *p* is no less than $1/r^2$, $K(p) \geq \frac{1}{r^2}$ $\frac{1}{r^2}$.

(Hint: Remember that any symmetric matrix is diagonalizable by an orthonormal basis. Part (3a) and (3b) may help you.)

- (b) Suppose that *S* is *compact*. Prove that there exists some $p \in S$ where $K(p) > 0$. (Hint: Consider $r = \max_{\mathbf{x} \in S} |\mathbf{x}|$. By compactness, *r* is finite. Consider the sphere of radius *r* centered at the origin.)
- (5) Is the converse of (4a) true? Namely, suppose that $K(p) \geq \frac{1}{r^2}$ $\frac{1}{r^2}$ for some $r > 0$. Can you find some $p_0 \in \mathbb{R}^3$ such that

$$
|q - p_0| \le r
$$

for any *q* on an open neighborhood of *p* in *S*? You only need to give a heuristic argument.

(Remark: There is a similar statement for plane curves.)