GEOMETRY: HOMEWORK 4

DUE OCTOBER 12

1. SOME LINEAR ALGEBRA

1.1. Change of basis. Let V' be an n-dimensional vector space over R. Let {v;}!, and
{w;}; be two bases for V. Then,

j=1

for some [L?] € GL(n;R) = {invertible n x n matrices}. It follows that
SEUED DI por I
i=1 j=1 \i=1

In other words, > i | a’v; = 37 | b/ w; if and only if

n

d Lla=b. (1.2)

=1

In the concrete case, R", (El!) and () read

L% L% L;
L L3 - L?
[Vl Vg o o- Vn}:[wl Wy - Wy . . . >
L? LS L
Ltk oo o] [a b
2y - L2 |a?| (¥
Ly Ly --- L7 a™ b

1.2. Change of basis in dual space. Its dual vector space, V* = Hom(V;R), has two
basesﬁ], {vi}i, and {w;}" ;. From

wi(v;) =wi() Lywi) =L,
k=1

Be careful about the dual basis. For instance, consider {(1,0), (0,1)} and {(1,0),(1,1)} for R?. Use the
standard inner product to identify (R?)* with R2. Their dual bases are {(1,0), (0,1)} and {(1,-1),(0,1)},

respectively. From this example, the notation (1,0)* only makes sense with a choice of basis.
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one finds that
n
wi =Y Liv.
j=1

Sometimes the index is raised to make the notation more consistent. Write v} by v', and
w} by w'. The equation is

W= L (1.3)
=1
Similarly, > 7", a; V' =377, b; Wi is equivalent to
d Libj=a. (1.4)
=1

1.3. Bilinear form on V. The set of bilinear forms on V is a vector space of dimension
n?. Tt has the following basist: {Vi® \A/j}zjzl, which are defined on the basis by

. 4 1 whent=Fkand j=/

(V' @ V) (vio vr) = !
0 otherwise.

In other words, (V! ® ¥7)(vy,ve) = 6.07. Another basis, {wy}?_,, of V leads to another

basis, {W* ® W'}, of bilinear forms on V. One can check that

W ew =Y L L ev). (1.5)
k=1

The set of bilinear forms on V' has a natural decomposition into symmetric and anti-

symmetric part. The symmetric part has dimension n(n + 1) = n + in(n — 1). The basis
is constituted of {v' @ v} | with {V' ® v/ + V' ® ¥/},;. The anti-symmetric part has
dimension 3n(n — 1), and has basis {V' @ v/ — v @ ¥/}, ;.

2. TANGENT PLANES OF A REGULAR SURFACE

Now, let S be a regular surface. Suppose that (©;,X) and (2,Y) be two coordinate
chart for S, and X(Q;) NY () # @. Denote the coordinate for ; C R? by (u',u?), and
the coordinate for Q, C R? by (£, £2).

For any p € X(£2;) NY(€2), apply the discussion of section EI to V =1T,S. The two bases

are
0X)* oY

=1 j=1

?During the class, we use the notation ¥ - ¥/. The standard notation is ®.
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By applying the chain rule on X =Y o (Y*1 o X),

oY 0¢
(9uZ Z 0&1 Jut

Comparing it with (),

.08
L =— 2.2
= (22)
in this current setting.
2.1. Tangent vector. The modern notation for the above bases of T,,S are
0 and 0 espectivel
- and —— , T ively .
auz 8€Z ) p y
10X
Aut
The first advantage for this notation is for takmg derivative. Suppose that f:R3 D> S -+ R
is a smooth function. Then, the differential of f in the direction of }_, a’ gif is
i0X a' : 0(f o X)
DI = o) (] - T 23|
The second advantage is related to the first one. The relation (@) says that
; 0 -0 , , 853 4
; a5 = ; v o if and only if 50" =0 . (2.3)

This can be seen by re-doing the chain rule computation:

on (YloX))

—ECL -
Ul

B on ) O¢
Z 98 ui

b7
= (Df)( Z agj Z agz
People usually abuse the notation, and write it as
i 9f N~ 9F og’
Z oul OfJ ou’ Z 051 '

By ignoring f, one finds the relation between a’ and ¥/, (@)
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2.2. Cotangent vector. A cotangent vector is an element of the dual space of T,S. The
dual space is denoted by T*S. It has basis {¥'}?_; which is defined by

V _— _—
duk 0 otherwise .

Another basis {w’ }?:1 is defined by the same way. The modern notation for them are
du’ and d¢’ | respectively .

In the modern notation, the defining relation reads

o i

By () and (@), the transition rule between different bases is
o¢!

de’ = ou’

dud (2.4)

which looks just like the chain rule.

2.3. Symmetric bilinear forms. The first and second fundamental forms are symmetric
bilinear forms. That is to say, for each p € S, they are symmetric bilinear forms on 7,5,

and are smooth in the sense of smooth coefficient functions in coordinate charts. Denote

0X 0X oY J0Y _
<%,w> by gi;(u), and <8_5k’8_55> by Gre(§) -

Due to (@) and (@),

N oEx ¢t
S et @ de = 3 g X i g du
Kt

k03,5 dut du?
oc* oe! (2.5)
:Z<Z§kéa 8J>du ® du’ = Zgwdu ® du’ .
i \ kt i
By matching the coefficients in front of the basis,
. ok et

- o = gij(T) - 2.6
;gu (66)) G s = 910 (2.6)



3. HOMEWORK

(1) Consider the spherical coordinate for S?,
(sin pcos @, sin psin 6, cos p) .

(a) Work out the expression of the first fundamental form in terms of this spherical
coordinate.

(b) Consider the stereographic projection, ﬁ(Zu, 20,1 — u? — v?). Find p(u,v)
and 0(u,v), and then apply (@) and @) to find the expression of the first

fundamental form in terms of the stereographic projection.

(2) Consider the Poincaré metricl on the unit disk D = {(u,v) € R?|u? +v? < 1}:

4

m(dUdU"’dUdU) s

and consider the following metric on the upper half plane H = {(£,7n) € R?|n > 0}:
1
—(d€ - g + dn - dy) .
Ui

From Gauss’s Theorema Egregium, these data determine their Gaussian curvatures,
Kp and Ky (by some complicated formula we did not do in class).
(a) Consider the map

D —- H

(u,v) (—20,1 —u® —v?) .

One can check that this map is a diffeomorphism (you do not have to do this
part). Check that this map defines a local isometry.

(b) For any a > 0, show that (£,n) — (a, an) defines a (local) isometry of H. For
any b € R, show that (£,n) — (£ + b,n) defines a (local) isometry of H.
(Hint: To avoid confusion, you can denote the coordinate of the domain by (£1,71), and the
coordinate of the codomain by (£2,72).)

(c) Use part (a) and (b) to concludell that K, = Ky = constant.
(Remark: The same argument can be used to prove that a round sphere has constant Gaussian
curvature.)

(d) Recall Beltrami’s pseudo-sphere S:

(c(t) cos B, a(t)sinb, B(t))

31t just means given a first fundamental form abstractly.
4n fact, the statement for Theorema Egregium is only for regular surface in R®. Let us pretend the

statement works in this abstract setting as well, and see what can be learnt from it.
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where «a(t) = €' and §(t) = fot V1 —e?sds. We calculate this example in class.
Its first fundamental form and Gaussian curvature are

I=dt-dt+e*df-dd  and =1,

respectively. Construct a local isometry between open subsets of S and H. What

is the constant in part (c)?

(3) Let S be a regular surface.

(a) Suppose that the normal of S at some point p is (0,0,1). Prove that on a
neighborhood of p, S can be described by the graph of some function over the
xy-plane.

(b) Let I' be a 2-plane passing through p, and is not (parallel to) 7,,S. Prove that
for any open neighborhood U of p in S, the points of U cannot be on only one
side of I'.

(Hint: Let Nt be a normal vector of I. The condition says that there exists some V' € T,,S
such that (V, Np) # 0. From the definition of a regular surface, there exists a curve y(t) on S
such that v(0) = p and v/(0) = V)

(4) Let S be a regular surface.
(a) At some p € S, suppose that there exist some other point py € R* and an open
neighborhood U of p in S such that

l¢ —pol <|p—po| forany ¢qeU.

Denote |p — po| by r. Show that p — p is parallel to the normal of S at p, and
the Gaussian curvature of S at p is no less than 1/72, K(p) > 4.
(Hint: Remember that any symmetric matrix is diagonalizable by an orthonormal basis. Part
(3a) and (3b) may help you.)

(b) Suppose that S is compact. Prove that there exists some p € S where K(p) > 0.

(Hint: Consider r = maxxegs |x|. By compactness, r is finite. Consider the sphere of radius r

centered at the origin.)

(5) Is the converse of (4a) true? Namely, suppose that K(p) > = for some r > 0. Can
you find some py € R?® such that

lg —po| <7

for any ¢ on an open neighborhood of p in S7 You only need to give a heuristic
argument.

(Remark: There is a similar statement for plane curves.)
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