GEOMETRY: HOMEWORK 3

DUE OCTOBER 3

(1) Let S be the torus $\{(x, y, z) \in \mathbb{R}^3 : (\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1\}$. The map

$$\begin{split} \mathbf{X}: & (-\pi,\pi)\times(-\pi,\pi) \ \to \ S \\ & (\theta,\phi) \qquad \mapsto \ ((2+\cos\theta)\cos\phi,(2+\cos\theta)\sin\phi,\sin\theta) \end{split}$$

serves as a coordinate chart for S. Also, recall the stereographic projection for \mathbb{S}^2 :

$$\tilde{\mathbf{X}}: \mathbb{R}^2 \to \mathbb{S}^2$$
 $(u,v) \mapsto \frac{1}{1+u^2+v^2}(2u,2v,1-u^2-v^2).$

One can solve for $\tilde{\mathbf{X}}^{-1}: (x, y, z) \mapsto (x, y)/(1+z).$

Denote by **N** the outer unit normal of S. Let $P = (3, 0, 0) \in S$, $Q = (1, 0, 0) \in \mathbb{S}^2$, $O = (0, 0) \in \theta\phi$ -plane and $E = (1, 0) \in uv$ -plane.

- (a) Work out $(\mathbf{N} \circ \mathbf{X})(\theta, \phi)$, and calculate $D(\mathbf{N} \circ \mathbf{X})|_O$ (a 3×2 matrix).
- (b) Work out $(\tilde{\mathbf{X}}^{-1} \circ \mathbf{N} \circ \mathbf{X})(\theta, \phi)$ and calculate $D(\tilde{\mathbf{X}}^{-1} \circ \mathbf{N} \circ \mathbf{X})|_{O}$ (2 × 2).
- (c) Calculate $D\tilde{\mathbf{X}}|_{E}$ (3 × 2), and check that

$$D(\mathbf{N} \circ \mathbf{X})|_{O} = D\tilde{\mathbf{X}}|_{E} \cdot D(\tilde{\mathbf{X}}^{-1} \circ \mathbf{N} \circ \mathbf{X})|_{O}$$

(d) Note that $\mathbf{N}(P) = Q$ and $T_P S = \{yz\text{-plane}\} = T_Q \mathbb{S}^2$. Write down $D\mathbf{N}|_P$ as a 2×2 matrix by using the basis $\{(0, 1, 0), (0, 0, 1)\}$.

Hint: One way to do this is to calculate $D\mathbf{X}|_O$ and use part (a).

(e) Note that

$$\frac{1}{2}\nabla((\sqrt{x^2+y^2}-2)^2+z^2) = \left(\frac{\sqrt{x^2+y^2}-2}{\sqrt{x^2+y^2}}x, \frac{\sqrt{x^2+y^2}-2}{\sqrt{x^2+y^2}}y, z\right)$$

is a smooth map from $\mathbb{R}^3 \setminus \{z\text{-axis}\}$ to \mathbb{R}^3 . Denote this map by $\bar{\mathbf{N}}$. It is not hard to check that $\bar{\mathbf{N}}|_S$ is the Gauss map. Or, $\bar{\mathbf{N}}$ is an *extension* of \mathbf{N} to an open set containing S. Calculate $D\bar{\mathbf{N}}|_P$ (3 × 3). Check that $D\bar{\mathbf{N}}|_P$ maps the *yz*-plane to itself, and coincides with $D\mathbf{N}|_P$.

Remark: By the chain rule, and the definition of tangent space and differential map, one can verify that any smooth extension of N has the above property.

- (2) For the following surfaces, find the first and second fundamental forms, and calculate their Gaussian and mean curvatures. You can choose **N** for your convenience.
 - (a) Catenoid: the surface S_1 given by rotating the curve $\{r = \cosh t, z = t\}$ on the rz-plane along the z-axis.
 - (b) *Helicoid*: the surface S_2 given by $\{(s \cos t, s \sin t, t) : s > 0, t \in \mathbb{R}\}$.

(3) Construct a local isometry between (open subsets of) the catenoid S_1 and the helicoid S_2 .

Note: You can compare the fundamental forms and the curvatures at the corresponding points.

(4) Let S be a connected regular surface, with an orientation **N**. Suppose that at any $p \in S$, the differential of the Gauss map is always a multiple of the identity map. Namely, there exists $\lambda : S \to \mathbb{R}$ such that $D\mathbf{N}|p(V) = \lambda(p) V$ for any $V \in T_pS$. Prove that S is part of a plane, or part of a sphere.

Hint: At first, prove that λ is in fact a constant. If $\lambda \equiv 0$, show that S belongs to a plane. If the constant is not zero, make a guess on the *center* of the sphere, and prove that your expression actually a (constant) point.