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Abstract. We introduce a (variation of quadrics) ansatz for constructing explicit, real-valued

solutions to broad classes of complex Hessian equations on domains in Cn+1 and real Hessian

equations on domains in Rn+1. In the complex setting, our method simultaneously addresses

the deformed Hermitian–Yang–Mills/Leung–Yau–Zaslow (dHYM/LYZ) equation, the Monge–

Ampère equation, and the J-equation. Under this ansatz each PDE reduces to a second-order

system of ordinary differential equations admitting explicit first integrals. These ODE sys-

tems integrate in closed form via abelian integrals, producing wide families of explicit solutions

together with a detailed description. In particular, on C3, we construct entire dHYM/LYZ

solutions of arbitrary subcritical phase, and on R3 we produce entire special Lagrangian so-

lutions of arbitrary subcritical phase. More generally, in any complex or real dimension, our

ansatz yields entire solutions of certain subcritical phases for both the dHYM/LYZ and special

Lagrangian equations. Some of these solutions develop singularities on compact regions. In the

special Lagrangian case we show that, after a natural extension across the singular locus, these

blow-up solutions coincide with previously known complete special Lagrangian submanifolds

obtained via a different ansatz.

1. Introduction

Let X ⊂ Cn+1 be a domain and let u ∈ C2(X) be a real-valued function. We study the

complex Hessian equation:

cnσn+1(∂∂̄u) + cn−1σn(∂∂̄u) + · · ·+ c0σ1(∂∂̄u) + c−1 = 0 (1.1)

where c−1, c0, · · · , cn are real constants, and σk(∂∂̄u), k = 1, · · · , n+ 1 are the k-th symmetric

functions of the complex Hessian of u. The coefficients c−1, c0, · · · , cn of (1.1) determine two
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polynomials F and G in the variables p1, · · · , pn:

F (p1, · · · , pn) =
n∑
k=0

ckσk(p) and G(p1, . . . , pn) =
n∑
k=0

ck−1σk(p) (1.2)

where σk(p), k = 0, · · ·n are the k-the symmetric functions of pi, i = 1, · · · , n.
By introducing a suitable ansatz, we reduce the PDE (1.1) to a system of second-order

ordinary differential equations determined by F and G. Concretely, if pi(s), i = 1, . . . , n are C2

functions of s that satisfy the ODE system

p′′i
2

· F (p1, . . . , pn) = (p′i)
2 ∂F

∂pi
(p1, . . . , pn) for i = 1, . . . , n ,

r′′ · F (p1, . . . , pn) = −G(p1, . . . , pn) ,
(1.3)

then the function

u(z1, . . . , zn+1) = 2
n∑
j=1

pj(Re zn+1) (Re zj)
2 + 4 r(Re zn+1)

solves the complex Hessian equation (1.1) (see Proposition 5.1). Here (z1, · · · , zn+1) are stan-

dard complex coordinates on Cn+1 and Re zi denotes the real part of zi, i = 1 · · ·n+ 1 .

The same ansatz—and the very same reduction to an ODE system—applies to the corre-

sponding real Hessian equation on Rn+1, i.e.

f(x1, . . . , xn, xn+1) =
1

2

n∑
j=1

pj(xn+1)x
2
j + r(xn+1)

satisfies the equation

cnσn+1(∇2f) + cn−1σn(∇2f) + · · ·+ c0σ1(∇2f) + c−1 = 0 (1.4)

where σk(∇2f), k = 1, · · · , n+ 1 are the k-th symmetric functions of the real Hessian of f .

We then focus on Hessian equations whose coefficients c0, · · · , cn satisfy a recursive relation.

Definition 1.1. Let a0 and a1 be real numbers. The complex Hessian equation (1.1)/real

Hessian equation (1.4) is said to be of recursive type (a0, a1) if the coefficients c0, c1, · · · cn
satisfy the recursive relation:

ck−1 = a1ck − a0ck+1 for k = 1, . . . , n− 1

In particular, the coefficients c0, · · · , cn are determined by a0, a1, cn−1 and cn. Many classical

nonlinear PDEs lie in this class—including the deformed Hermitian–Yang–Mills/Leung–Yau–

Zaslow (dHYM/LYZ) equation, the real and complex Monge–Ampère equation, the J-equation,

and the special Lagrangian equation—so that one may recover each by choosing the appropriate

recursive relation (see Proposition 5.4 for a complete classification of recursive-type equations).
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For any such recursive-type equation, we show that the associated second-order ODE system

is completely integrable: in particular, it admits enough first integrals to reduce the dynamics

to quadratures.

Theorem 1.2. Suppose (1.1)/ (1.4) is of recursive type (a0, a1). Then its associated 2nd order

ODE system (1.3) is completely integrable. In fact, denoting

ξi =
p2i + a1pi + a0

p′i
, i = 1, . . . , n ,

then

F 2∏n
i=1 p

′
i

and ξi − ξ1, i = 2, . . . , n

are first integrals of the system. Moreover, ξi, i = 1 · · ·n satisfy the following ODE system:

(ξ′i)
2 = k1 + k2

n∏
j=1

ξj

for explicit real constants k1, k2 depending only on a0, a1, cn−1 and cn.

Theorem 1.2 can be used to construct non-polynomial entire solutions for both dHYM/LYZ

equation on Cn+1 and special Lagrangian equation on Rn+1, when n ≥ 3. The equations are of

recursive type (a0 = 1, a1 = 0) and take the following form:

cos θ(σ1 − σ3 + · · ·+ (−1)k−1σ2k−1 + · · · )− sin θ(1− σ2 + · · ·+ (−1)k−1σ2k−2 + · · · ) = 0

for some θ ∈ R. Note that θ and θ + π give equivalent equations. On the other hand, for a C2

function u defined on a domain of Cn+1, one can consider Θ =
∑n+1

j=1 arctanλj , where λj ’s are

eigenvalues of ∂∂̄u. This real-valued function Θ is said to be the phase of u. If u solves the

dHYM/LYZ equation, Θ is a constant, and Θ − θ ∈ Zπ. However, for a priori estimate and

relevant PDE techniques, the value of Θ matters. If |Θ| = (n−1)π2 , the function is said to be of

critical phase; the range |Θ| > (n−1)π2 is called supercritical phase; the range |Θ| < (n−1)π2 is

referred as the subcritical phase. Known results are primarily concentrated in the critical and

supercritical phases; see [8, 3, 4, 2, 14, 15] for dHYM/LYZ equation and [19, 16, 20] for special

Lagrangian equations. For the relation between these conditions and a priori estimates of

Hessian equations, we refer to [10, 6, 1]. We apply Theorem 1.2 to subcritical, entire solutions

to both dHYM/LYZ equation and special Lagrangian equation.

Theorem 1.3 (Theorem 3.2 and Theorem 4.2). For any integer n ≥ 3 and any Θ ∈ [−π
2 ,

π
2 ],

• there exist subcritical, non-polynomial entire solutions to the dHYM/LYZ equation on

Cn+1 with phase Θ;

• there exist subcritical, non-polynomial entire solutions to the special Lagrangian equa-

tion on Rn+1 with phase Θ.
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Entire solutions to the special Lagrangian equation on R3 were previously constructed by

Warren [17,18] (with phase π/2) and by Li [13] (with phase 0).

The non-entire solutions produced by Theorem 1.2 develop singularities on compact regions.

In the special Lagrangian case we show in Section 4 that, after a natural extension across the sin-

gular locus, these blow-up solutions coincide with previously known complete special Lagrangian

submanifolds obtained via a different ansatz studied by Harvey-Lawson [7], Lawlor [11], and

Joyce [9].

Section 2 is devoted to the dHYM/LYZ equation. In Section 3, we investigate entire solutions

to the dHYM/LYZ equation on Cn+1. In Section 4, we turn to the special Lagrangian equation,

demonstrating that the blow-up solutions obtained earlier can be extended to complete special

Lagrangian submanifolds. In Section 5, we deal with general equations of recursive type. The

appendix contains two important calculation lemmas.

2. The deformed Hermitian–Yang–Mills/Leung–Yau–Zaslow Equation

The Leung–Yau–Zaslow (LYZ) equation, also known as the deformed Hermitian–Yang–Mills

(dHYM) equation in the literature (see Collins–Xie–Yau [5, 8]) is a fully nonlinear partial dif-

ferential equation. It governs a Hermitian metric on a line bundle over a Kähler manifold, or

more generally for a real (1, 1)-form. Suppose (X,ω) is a Kähler manifold and [α] ∈ H1,1(X,R)
is a (1, 1) class. The case of a line bundle consists of setting [α] = c1(L) where c1(L) is the first

Chern class of a holomorphic line bundle L→ X. Suppose that the complex dimension of X is

n+ 1 and consider the topological constant

ẑ([ω], [α]) =

∫
X
(ω + iα)n+1.

Notice that ẑ depends only on the class of ω and α. Suppose that ẑ ̸= 0. Then this is a complex

number

ẑ([ω], [α]) = reiθ

for some real r > 0 and angle θ ∈ (−π, π] which is uniquely determined.

Fix a smooth representative differential form α in the class [α]. For a smooth function

u : X → R, the dHYM/LYZ equation for (X,ω) with respect to [α] isIm(e−iθ(ω + i(α+ i
2∂∂̄u))

n+1) = 0

Re(e−iθ(ω + i(α+ i
2∂∂̄u))

n+1) > 0.
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Take X to be a domain of Cn+1, α = 0, and ω = i
2

∑n+1
j=1 dzj ∧ dz̄k for the standard complex

coordinates z1, . . . , zn+1 of Cn+1, the LYZ equation for u : X → R becomes

Im
(
e−iθ det

(
In+1 + i

[ ∂2u

∂zj∂z̄k

]
1≤j,k≤n+1

))
= 0 , (2.1)

Re
(
e−iθ det

(
In+1 + i

[ ∂2u

∂zj∂z̄k

]
1≤j,k≤n+1

))
> 0 . (2.2)

Recall that the sum of the arctangent of the eigenvalues of
[

∂2u
∂zj∂z̄k

]
1≤j,k≤n+1

is called the phase

of u, and belongs to (−n+1
2 π, n+1

2 π). If u satisfies (2.1), its phase is a constant, and is equal to

θ modulo πZ.

Our ansatz assumes the potential function u is of the form:

u(z1, . . . , zn, zn+1) =
n∑
j=1

2pj(s)(xj)
2 + 4r(s) (2.3)

where pj(s) and r(s) are real-valued functions in s = Re zn+1, and xj = Re zj , j = 1, . . . , n.

We compute

∂2u

∂zj∂z̄k
= pj(s)δjk for j, k = 1, . . . , n ,

∂u

∂zj∂z̄n+1
= p′j(s)xj for j = 1, . . . , n ,

∂2u

∂zn+1∂z̄n+1
=

n∑
j=1

1

2
p′′j (s)(xj)

2 + r′′(s) .

It follows that the coefficient matrix of ∂∂̄u is



p1 0 · · · 0 x1p
′
1

0 p2 · · · 0 x2p
′
2

...
...

. . .
...

...

0 0 · · · pn xnp
′
n

x1p
′
1 x2p

′
2 · · · xnp

′
n

(∑n
j=1

1
2(xj)

2p′′j (s) + r′′(s)
)


. (2.4)

5



With Lemma A.1 in the appendix, we compute

det
(
In+1 + i

[ ∂2u

∂zj∂z̄k

]
1≤j,k≤n+1

)
= (1 + ip1) · · · (1 + ipn)

(
1 + i

( n∑
j=1

1

2
(xj)

2p′′j (s) + r′′(s)

))

+

n∑
j=1

(xj)
2(p′j(s))

2(1 + ip1) · · · ̂(1 + ipj) · · · (1 + ipn)

= F ·
(
1 + i

( n∑
j=1

1

2
(xj)

2p′′j (s) + r′′(s)

))
− i

n∑
j=1

(xj)
2(p′j(s))

2 ∂F

∂pj

(2.5)

where

F = (1 + ip1) · · · (1 + ipn) . (2.6)

Denoting

Fθ = Re(e−iθF), (2.7)

we obtain:

Definition 2.1. For any θ ∈ (−π, π], p1(s), · · · , pn(s) and r(s) are said to satisfy the θ-angle

ODE system on the interval I ⊂ R if

Fθ(p1, . . . , pn)
p′′j
2

=
∂Fθ
∂pj

(p′j)
2 for j ∈ {1, . . . , n} and (2.8)

Fθ(p1, . . . , pn) r
′′ = −Fθ+π

2
(p1, . . . , pn) , (2.9)

for Fθ = Re(e−iθ(1 + ip1) · · · (1 + ipn)) and any s ∈ I . As we will see in Lemma 2.3, θ and

θ + π indeed correspond to equivalent ODE systems.

Proposition 2.2. Suppose p1(s), · · · , pn(s) and r(s) satisfy the ODE system (2.8) (2.9) with

p′j(s) ̸= 0 and Fθ(p1, . . . , pn) > 0. The function u formed by (2.3) satisfies the dHYM/LYZ

equation (2.1) on the domain X.

It follows that

(
1

p′j
)′ = −2∂pj (logFθ) (2.10)

and

r′′ = −
Fθ+π

2

Fθ
.

Lemma 2.3. For any θ ∈ R, the polynomial Fθ defined by (2.7) has the following properties.

(i) Fθ = −Fθ+π.
(ii) (Fθ)

2 + (Fθ+π
2
)2 =

∏n
j=1(1 + p 2

j ).
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(iii) For any j ∈ {1, . . . , n},

pj Fθ − (1 + p 2
j )
∂Fθ
∂pj

= Fθ+π
2
.

Proof. Properties (i) and (ii) follow directly from the definition. We compute

pjF− (1 + p 2
j )
∂F

∂pj
= (pj − i(1− ipj))F = −iF ,

and property (iii) follows. □

2.1. First integrals of the ODE system. In this section, we show that the ODE system

(2.8) admits n first integrals and the system is integrable.

Suppose that p′j and Fθ(p1, . . . , pn) are nonzero. By (2.8),

d

ds

(∏n
j=1 p

′
j

(Fθ)2

)
=

∏n
k=1 p

′
k

(Fθ)2

n∑
j=1

(
p′′j
p′j
Fθ − 2

∂Fθ
∂pj

p′j

)
= 0 .

Thus, there exists a constant c0 ̸= 0 such that∏n
j=1 p

′
j

(Fθ)2
= c0 . (2.11)

For j ∈ {1, . . . , n}, let

ξj =
1 + p 2

j

p′j
. (2.12)

According to (2.8) and Lemma 2.3 (iii),

ξ′j = 2pj − (1 + p 2
j )

p′′j
(p′j)

2

=
2

Fθ

(
pj Fθ − (1 + p 2

j )
∂Fθ
∂pj

)
=

2Fθ+π
2

Fθ
(2.13)

for any j ∈ {1, . . . , n}. Hence, there exist constants c2, . . . , cn such that

ξ1 − ξj = cj (2.14)

for j ∈ {2, . . . , n}. It is convenient to set c1 to be 0.

By (2.13), Lemma 2.3 (ii), (2.12) and (2.11),

(ξ′j)
2

4
=

(
Fθ+π

2

Fθ

)2

=

∏n
k=1(1 + p 2

k )

(Fθ)2
− 1 =

∏n
k=1(p

′
i ξk)

(Fθ)2
− 1

= c0

n∏
k=1

ξk − 1 (2.15)
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for j ∈ {1, . . . , n}. Consider j = 1, and apply (2.14); one finds that

ξ′1 = ±2

√√√√c0

n∏
j=1

(ξ1 − cj)− 1 . (2.16)

2.2. Limits of s when n ≥ 3. It follows from the definition (2.12) of ξj and p′k ̸= 0 that ξj

does not change sign. We would like to argue that pk(s) cannot be defined for all s ∈ R when

n ≥ 3.

At first, suppose that ξi ≥ 0 and is bounded from above, ξi ≤ C for some C > 0. By (2.12),

arctan pk =
∫

1
ξk
ds, and the lower bound of ξk implies that pk must blow up for finite s.

On the other hand, suppose that ξ1 is unbounded from above. It follows from (2.16) that∫
ds =

±1

2

∫
dξ1√

c0
∏n
j=1(ξ1 − cj)− 1

.

If one considers the improper integral of the right hand side (to ξ1 = ∞), it diverges only when

n = 2. Therefore, pk(s) cannot be defined for all s ∈ R if n ≥ 3.

2.3. The isotropic Case. In this subsection, we consider the isotropic case of Proposition 2.2.

That is, p1 = · · · = pn. Abbreviate them as p, and let φ = arctan p. Equations (2.8) and (2.9)

read as follows.

(1 + p2)
1
2 Re(e−iθeinφ)

p′′

2
= − Im(e−iθei(n−1)φ) (p′)2 , (2.17)

Re(e−iθeinφ) r′′ = − Im(e−iθeinφ) , (2.18)

and we assume that p′ ̸= 0 and Re(e−iθeinφ) ̸= 0. Note that (2.18) implies that

r′′ = tan(θ − nφ) ⇔ arctan r′′ = θ − nφ+ kπ (2.19)

where k is the unique integer such that |θ − nφ+ kπ| < π
2 .

For a solution to (2.1), its phase be evaluated at x1 = · · · = xn = 0. By (2.19), the phase is

n arctan p+ arctan r′′ = nφ+ θ − nφ+ kπ = θ + kπ .

The above discussion gives the following:

(p′)n = c0
(
Re(e−iθ(1 + ip)n)

)2
,

or equivalently, in terms of φ,

(φ′)n = c0
(
cos(nφ− θ)

)2
.

One infers that

(nφ− θ)′ = c′0
(
cos(nφ− θ)

) 2
n (2.20)
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for some constant c′0. By analyzing the linearization at where nφ− θ − π
2 ∈ Zπ, it is not hard

to find that for n ≥ 3, nφ− θ cannot be defined for all s.

Proposition 2.4. When n ≥ 3 and p1(s) = · · · = pn(s), there is no non-constant entire

solution to (2.8) and (2.9).

3. Entire solutions of dHYM/LYZ

3.1. On C3. When n = 2, i.e., on C3, (2.16) can be solved explicitly and we obtain explicit

solutions to the dHYM/LYZ equation. In particular, when the constant c0 (2.11) is positive,

the solution is defined on the whole space.

3.1.1. When c0 is positive. When c0 > 0, the polynomial c0ξ
2
1 − c0c2ξ1 − 1 must have one

positive root and one negative root. Denote its roots by α2 and −β2 for α, β > 0. It follows

that c0 = (αβ)−2, c2 = α2 − β2, and (2.16) becomes

±1 =
αβ

2

ξ′1√
(ξ1 − α2)(ξ1 + β2)

.

We now assume that ξ1 > α2, and the case where ξ1 < −β2 is similar. By integrating both

sides and translating s,

tanh(
s

αβ
) =

√
ξ1 − α2√
ξ1 + β2

⇒ ξ1 = α2 cosh2(
s

αβ
) + β2 sinh2(

s

αβ
) .

Together with (2.14),

ξ2 = β2 cosh2(
s

αβ
) + α2 sinh2(

s

αβ
) .

With ξ1, p1 can be found by (2.12):

(arctan p1)
′ =

1

ξ1
=

1

α2 cosh2( s
αβ ) + β2 sinh2( s

αβ )

⇒ arctan p1 = arctan

(
β

α
tanh(

s

αβ
)

)
+ ψ1

⇒ p1 =
α sinψ1 cosh(

s
αβ ) + β cosψ1 sinh(

s
αβ )

α cosψ1 cosh(
s
αβ )− β sinψ1 sinh(

s
αβ )

, (3.1)

for some ψ1 ∈ R. Similarly,

p2 =
β sinψ2 cosh(

s
αβ ) + α cosψ2 sinh(

s
αβ )

β cosψ2 cosh(
s
αβ )− α sinψ2 sinh(

s
αβ )

(3.2)

for some ψ2 ∈ R.
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Using (2.11) and Proposition 2.2, one finds that

Fθ =
αβ

(α cosψ1 cosh(
s
αβ )− β sinψ1 sinh(

s
αβ ))(β cosψ2 cosh(

s
αβ )− α sinψ2 sinh(

s
αβ ))

. (3.3)

We compute

F = (1 + ip1)(1 + ip2)

=
Fθ
αβ

ei(ψ1+ψ2)

(
αβ +

i

2
(α2 + β2) sinh(

2s

αβ
)

)
.

It follows that

eiθ = ei(ψ1+ψ2) , (3.4)

Fθ+π
2
=
α2 + β2

2αβ
sinh(

2s

αβ
)Fθ .

By (2.9),

r′′ = −α
2 + β2

2αβ
sinh(

2s

αβ
) ⇒ r = −αβ(α

2 + β2)

8
sinh(

2s

αβ
) , (3.5)

up to adding an affine function in s. With the explicit formulae (3.1), (3.2) and (3.5), the phase

of (2.4) is a constant, and is equal to

ψ1 + ψ2 (3.6)

In order for these expressions to be defined for all s, the denominators have to be nonzero

for all s. It means that

α

β
≥ tanψ1 tanh(

s

αβ
) and

β

α
≥ tanψ2 tanh(

s

αβ
)

for all s, and thus

α

β
≥ | tanψ1| and

β

α
≥ | tanψ2| (3.7)

It follows from arctan α
β + arctan α

β = π
2 that the phase, ψ1 + ψ2, belongs to [−π

2 ,
π
2 ]. We

summarize the discussion in the following proposition.

Proposition 3.1. For any positive α, β, and ψ1, ψ2 ∈ [−π
2 ,

π
2 ] satisfying (3.7), the potential

function 2p1(s)(x1)
2 + 2p2(s)(x2)

2 + 4r(s) is an entire solution to the LYZ equation on C3,

with phase ψ1 + ψ2. Here, s = Re z3, and the functions are given by (3.1), (3.2) and (3.5). In

particular, the LYZ equation with non-supercritical phase on C3 admits entire solutions.
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3.1.2. When c0 is negative. Suppose that c0 < 0. From (2.15), the polynomial c0ξ
2
1 − c0c2ξ1− 1

must be positive somewhere. Therefore, the quadratic polynomial admits two real roots of the

same sign. Assume that the roots are α2 > β2 > 0, with α, β > 0. We leave it for the readers

to verify that the case of negative roots corresponds to switching the roles of ξ1 and ξ2 in the

following discussion.

In this case, c0 = −(αβ)−2 and c2 = α2 + β2, and (2.16) becomes

±1 =
αβ

2

ξ′1√
(α2 − ξ1)(ξ1 − β2)

.

With a similar computation,

ξ1 = α2 cos2(
s

αβ
) + β2 sin2(

s

αβ
) and ξ2 = −β2 cos2( s

αβ
)− α2 sin2(

s

αβ
) .

By integration their reciprocals,

p1 =
α sinψ1 cos(

s
αβ ) + β cosψ1 sin(

s
αβ )

α cosψ1 cos(
s
αβ )− β sinψ1 sin(

s
αβ )

,

p2 =
β sinψ2 cos(

s
αβ )− α cosψ2 sin(

s
αβ )

β cosψ2 cos(
s
αβ ) + α sinψ2 sin(

s
αβ )

for some ψ1, ψ2 ∈ R. The denominators of p1 and p2 cannot be nonzero for all s, and the

solution cannot be extended to an entire solution in this case.

3.2. On Cn+1 with n+ 1 ≥ 4. In [13, Theorem 2], Li constructed non-quadratic solutions to

the special Lagrangian equation 4.1 with θ = 0 by using the ansatz f = 1
2p(x3)x

2
1 + q(x3)x2 +

r(x3).

It suggests that we may obtain entire solutions in higher dimensions by modifying the solu-

tions given by Proposition 3.1 based this type of ansatz. Specifically, when n ≥ 3, consider

ũ(z1, z2, z3, . . . , zn, zn+1) = 2p1(s)(x1)
2 + 2p2(s)(x2)

2 + 4

n∑
j=3

qj(s)xj + 4r(s) (3.8)

where s = Re zn+1 and xj = Re zj for j = 1, . . . , n. After a direct computation, the coefficient

matrix of ∂∂̄ũ is 

p1 0 0 · · · 0 x1p
′
1

0 p2 0 · · · 0 x2p
′
2

0 0 0 · · · 0 q′3
...

...
...

. . .
...

...

0 0 0 · · · 0 q′n
x1p

′
1 x2p

′
2 q′3 · · · q′n

1
4

d2

ds2
ũ


. (3.9)
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It follows that

det

(
In+1 + i

[
∂2u

∂zj∂z̄k

]
1≤j,k≤n+1

)
= (1 + ip1)(1 + ip2)

[
1 + (x1)

2 (p′1)
2

1 + ip1
+ (x2)

2 (p′2)
2

1 + ip2
+

n∑
j=3

(q′j)
2

+ i
(1
2
p′′1(s)(x1)

2 +
1

2
p′′2(s)(x2)

2 +
n∑
j=3

q′′j (s)xj + r′′(s)
)]

.

Let F = (1 + ip1)(1 + ip2), and Fθ = Re(e−iθF ) as before. The LYZ equation (2.1) becomes

the following system:

Fθ(p1, p2)
p′′j
2

=
∂Fθ
∂pj

(p′j)
2 for j = 1, 2 , (3.10)

Fθ(p1, p2) q
′′
k = 0 for k = 3, . . . , n , (3.11)

Fθ(p1, p2) r
′′ = −Fθ+π

2
(p1, p2)

(
1 +

n∑
k=3

(q′k)
2
)
. (3.12)

The equation (3.10) is analyzed in Section 3.1.1. From (3.11), one infers that qk(s) = γks+ κk

for some constants γk, κk. Note that κk’s do not show up in ∂∂̄ũ. By comparing (3.12) with

(3.5), it is not hard to find that

r = −αβ(α
2 + β2)

8
(1 +

n∑
k=3

(γk)
2) sinh(

2s

αβ
) .

We summarize the discussion in the following theorem.

Theorem 3.2. Suppose that n ≥ 3. For any α, β > 0, ψ1, ψ2 ∈ [−π
2 ,

π
2 ] satisfying (3.7) and

γ3, . . . , γn ∈ R, the function ũ defined by

α sinψ1 cosh(
s
αβ ) + β cosψ1 sinh(

s
αβ )

α cosψ1 cosh(
s
αβ )− β sinψ1 sinh(

s
αβ )

2(x1)
2 +

β sinψ2 cosh(
s
αβ ) + α cosψ2 sinh(

s
αβ )

β cosψ2 cosh(
s
αβ )− α sinψ2 sinh(

s
αβ )

2(x2)
2

+ 4
n∑
k=3

γk s xk − 4
αβ(α2 + β2)

8

(
1 +

n∑
k=3

(γk)
2
)
sinh(

2s

αβ
)

is an entire solution to the LYZ equation (2.1) on Rn+1 with phase θ = ψ1+ψ2. Here, xj = Re zj

for j = 1, . . . , n and s = Re zn+1.

In other words, the LYZ equation admits non-polynomial entire solutions on Cn with any

phase within [−π
2 ,

π
2 ].

12



Remark 3.3. More generally, for u =
∑n

j=1(2pj(s)(xj)
2 + 4qj(s)xj) + 4r(s), the dHYM/LYZ

equation (2.1) becomes

Fθ(p1, . . . , pn)
p′′j
2

=
∂Fθ
∂pj

(p′j)
2 for j = 1, . . . , n ,

Fθ(p1, . . . , pn)
q′′j
2

=
∂Fθ
∂pj

p′j q
′
j for j = 1, . . . , n ,

Fθ(p1, . . . , pn) r
′′ =

n∑
j=1

∂Fθ
∂pj

(q′j)
2 − Fθ+π

2
(p1, . . . , pn) .

4. Solutions to the special Lagrangian equation

According to Leung–Yau–Zaslow in [12], a dHYM connection is mirror to a special Lagrangian

sections via the Fourier-Mukai transform under the setting of semi-flat Calabi–Yau metrics.

If one works out the transformation with respect to the standard metric on Cn+1, each of

the solutions of the dHYM/LYZ equation we obtained in previous sections corresponds to a

solution of the special Lagrangian equation (4.1). In this section, we explore the geometry of

the corresponding special Lagrangian submanifold.

Proposition 4.1. Let p1(s), · · · , pn(s) and r(s) be solutions of the θ-angle ODE system in

Definition 2.1. Consider the following function f defined on a domain X ⊂ Rn+1 by

f(x1, . . . , xn, s) =
1

2

n∑
j=1

pj(s)x
2
j + r(s) .

Then, f satisfies the special Lagrangian equation with angle θ:

Im

(
e−iθ det

(
In+1 + i

[
∂2f

∂xj∂xk

]
1≤j,k≤n+1

))
= 0 . (4.1)

Proof. Write s as xn+1. The Hessian matrix of f is

[
∂2f

∂xj∂xk

]
1≤j,k≤n+1

=


p1(s) 0 · · · 0 x1p

′
1(s)

0 p2(s) · · · 0 x2p
′
2(s)

...
...

. . .
...

...

0 0 · · · pn(s) xnp
′
n(s)

x1p
′
1(s) x2p

′
2(s) · · · xnp

′
n(s)

∑n
j=1

1
2p

′′
j (s)x

2
j + r′′(s)

 .

With this, the computation is the same as that in Section 2. □

The correspondence also holds true for the more general ansatz described in Remark 3.3. To

be more precise, suppose that pj(s), qj(s) and r(s) obey the system of equations in Remark 3.3.

Then, f =
∑n

j=1(
1
2pj(s)(xj)

2 + qj(s)xj) + r(s) satisfies (4.1). Therefore, Proposition 3.1 and

Theorem 3.2 lead to the following theorem:
13



Theorem 4.2. When n ≥ 3 and any θ ∈ [−π
2 ,

π
2 ], the special Lagrangian equation with angle θ

(4.1) admits non-polynomial entire solutions on Rn+1. The phase of the solution is exactly θ.

4.1. Extensions of solutions to the special Lagrangian equation. According to Proposi-

tion 4.1, the graph of ∇f defines a special Lagrangian submanifold in Cn+1, which is graphical

on a domain X ⊂ Rn+1. However, ∇f may blow up at the boundary of X, and the correspond-

ing special Lagrangian submanifold ceases to be graphical. In this subsection, we demonstrate

that the submanifold admits a global extension (cf. [7,11,9]) as a complete (non-graphical), em-

bedded, special Lagrangian in Cn+1. It is natural to ask whether similar extension mechanisms

can be applied to the dHYM/LYZ formulation on the mirror side.

We begin by recalling the following result of Joyce.

Theorem 4.3 ([9, Theorem1 7.1]). Let w1, . . . , wn : (−ε, ε) → C\{0} and β : (−ε, ε) → C\{0}
be differentiable functions satisfying

dwj
dt

= w1 · · ·wj−1wj+1 · · ·wn, j = 1, . . . , n ,

dβ

dt
= w1 · · ·wn .

(4.2)

Define a subset N ⊂ Cn+1 by

N =

{(
w1(t)ξ1, . . . , wn(t)ξn,−

ξ21 + · · ·+ ξ2n
2

+ β(t)

)
: t ∈ (−ε, ε), ξj ∈ R

}
. (4.3)

Then N is a special Lagrangian submanifold of Cn+1.

To relate our construction with Joyce’s theorem, we begin with the expression for the graph

of ∇f :

(x1, . . . , xn, s) 7→

(1 + ip1(s))x1, . . . , (1 + ipn(s))xn, s+ i

1

2

n∑
j=1

x2jp
′
j(s) + r′(s)


where p1(s), . . . , pn(s) and r(s) satisfy (2.8) and (2.9). The angle θ will be specified later.

Moreover, assume that the constant (2.11) is positive,∏n
j=1 p

′
j(s)

(Fθ)2
= c0 > 0 , and assume that p′j(s) > 0

for j = 1, . . . , n. Other cases can be treated similarly by appropriately adjusting signs, and

they correspond to quadrics of other signatures.

1The dimension m in Joyce’s theorem corresponds to n + 1 here. For convenience, we specialize to the case

a = n. One can also work out the transformation for quadrics of other signature.
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We claim that our ansatz corresponds to the solution given by Theorem 4.3 through the

following relation:(1 + ip1(s))x1, . . . , (1 + ipn(s))xn, s+ i

1

2

n∑
j=1

x2jp
′
j(s) + r′(s)


= −i

(
w1(t)ξ1, . . . , wn(t)ξn,−

ξ21 + · · ·+ ξ2n
2

+ β(t)

)
.

(4.4)

To facilitate this, introduce the parameters (ξ1, . . . , ξn, t) related to (x1, . . . , xn, s) by

t =
√
c0s and ξj =

√
p′j(s)xj

for j = 1 . . . , n. Define the complex-valued functions ωj(t) and β(t) by

ωj(t) = i

1 + ipj(s)√
p′j(s)

 ,

β(t) = i(s+ ir′(s)) .

It remains to verify that this parameterization satisfies the ODE system 4.2. By (2.8),

d

ds

1 + ipj(s)√
p′j(s)

 = i
√
p′j − (1 + ipj)

√
p′j ·

∂pjFθ

Fθ
.

With the identity Fθ− iFθ+π
2
= eiθF̄ and the relation pjFθ− (1+p2j )∂pjFθ = Fθ+π

2
(see Lemma

2.3), it can be simplified as

d

ds

1 + ipj√
p′j

 =

√
p′j

1− ipj
· ie

iθF̄

Fθ
,

and hence

dωj
dt

=
i

ω̄j
·
(
e−iθF

Fθ

)
· ds
dt

.

Similarly, it follows from (2.9) that

dβ

dt
= i(1 + ir′′(s))

ds

dt
= i

(
e−iθF

Fθ

)
· ds
dt

.

On the other hand,

ω1 · · ·ωn =

n∏
j=1

 i(1 + ipj(s))√
p′j(s)

 =
inF

√
c0Fθ

.

15



Therefore, ωj(t) and β(t) satisfy

dωj
dt

= i

(
e−iθω1 · · ·ωn

inωj

)
and

dβ

dt
= i

(
e−iθω1 · · ·ωn

in

)
.

Finally, by choosing the angle θ such that eiθin = −i, we recover the ODE system (4.2). This

verifies the correspondence 4.4.

5. General equations of recursive type

In this section, we fix real constants cn, . . . , c−1 and study solutions of a general real Hessian

equation of the form

cnσn+1(∇2f) + cn−1σn(∇2f) + · · ·+ c0σ1(∇2f) + c−1 = 0. (5.1)

Denote the coordinate of Rn+1 by (x1, . . . , xn, s), and consider the following ansatz for f :

f =
1

2

n∑
j=1

pj(s)x
2
j + r(s) . (5.2)

We also consider solutions of a general complex Hessian equation of the form

cnσn+1(∂∂̄u) + cn−1σn(∂∂̄u) + · · ·+ c0σ1(∂∂̄u) + c−1 = 0. (5.3)

Denote the coordinate of Cn+1 by (z1, . . . , zn, zn+1), and consider the following ansatz for u:

u = 2

n∑
j=1

pj(Re zn+1)(Re zi)
2 + 4r(Re zn+1) . (5.4)

Proposition 5.1. Suppose pi(s), i = 1 . . . n and r(s) satisfy the following ODE system

p′′i
2

· F (p1, . . . , pn) = (p′i)
2 ∂F

∂pi
(p1, . . . , pn) for i = 1, . . . , n and (5.5)

r′′ · F (p1, . . . , pn) = −G(p1, . . . , pn), (5.6)

where

F (p1, . . . , pn) =
n∑
k=0

ckσk(p) and G(p1, . . . , pn) =
n∑
k=0

ck−1σk(p) .

Then a function u of the form (5.4) satisfies the complex Hessian equation (5.3), and a function

f of the form (5.2) satisfies the real Hessian equation (5.1).

Proof. The proof extends the argument of Proposition 2.2 (the dHYM/LYZ case) and Propo-

sition 4.1 (the special Lagrangian case). We only deal with the real case (5.1) here and the
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complex case (5.3) can be dealt with similarly. By Lemma A.1, (5.1), under the ansatz (5.2),

becomes

0 = Ξ0(s) +
n∑
i=1

(xi)2Ξi(s) (5.7)

where

Ξ0(s) = (cn−1σn(p) + · · ·+ c0σ1(p) + c−1) + (cnσn(p) + · · ·+ c1σ1(p) + c0) r
′′ and

Ξi(s) = (cnσn(p) + · · ·+ c1σ1(p) + c0)
p′′i
2

− (cnσn−1(p|i) + · · ·+ c1σ1(p|i) + c1) (p
′
i)
2 .

As before, σk(p|i) = σk(p1, . . . , p̂i, . . . , pn). Note that (5.7) is equivalent to Ξi(s) = 0 = Ξ0(s)

for i = 1, . . . , n. □

Again, the main task is to solve (5.5) for pi, and then r can be found by integrating (5.6)

twice. Let Ri(s) be 1/p′i(s), and (5.5) becomes the following first order systemp′i = 1
Ri

,

R′
i = −2∂ logF∂pi

(5.8)

for i = 1, . . . , n.

Remark 5.2. It is not hard to see that with the symplectic form
∑n

i=1 dpi ∧ dRi, the ODE

system is Hamiltonian with respect to H(pi, Ri) =
∑n

i=1 logRi + 2 logF and thus R1 · · ·RnF 2

is a first integral. However, since there is no other continuous symmetry of H for general F ,

this perspective is not particularly useful.

Definition 5.3. The ODE system (5.5) is said to be of recursive type (a0, a1) if there exist

real numbers a0 and a1 such that the coefficients of F satisfy the recursive relation:

ck−1 = cka1 − ck+1a0 for k = 1, . . . , n− 1 .

In particular, c0, c1, · · · , cn−2 are determined by a0, a1, cn−1 and cn. All recursive types F

can be classified according to the following proposition (cn and cn−1 are not necessarily real in

this proposition):

Proposition 5.4. Let n ≥ 1 and let a0, a1 ∈ R. Suppose

F (p1, . . . , pn) =

n∑
k=0

ck σk(p1, . . . , pn)

is a symmetric polynomial in (p1, . . . , pn), where σk denotes the k-th elementary symmetric

function. Assume the coefficients {ck} satisfy the recurrence

ck−1 = a1 ck − a0 ck+1 , k = 1, 2, . . . , n− 1 .
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Let r1, r2 be the (not necessarily distinct) roots of the quadratic equation

r2 − a1r + a0 = 0 .

Then F must take one of the following forms:

Case 1: r1 ̸= r2.

F (p1, . . . , pn) = A
n∏
i=1

(pi + r1) +B
n∏
i=1

(pi + r2) ,

where the constants A,B are given by

A =
cn−1 − cnr2
r1 − r2

and B =
−(cn−1 − cnr1)

r1 − r2
.

Case 2: r1 = r2 = u ̸= 0.

F (p1, . . . , pn) = A
n∏
i=1

(pi + u) +Bu · d

du

( n∏
i=1

(pi + u)
)
,

where A = cn and B = cn−1

u − cn.

Case 3: r1 = r2 = 0.

F (p1, . . . , pn) = cn σn(p1, . . . , pn) + cn−1 σn−1(p1, . . . , pn) .

Proof. Case 1: r1 ̸= r2. One can verify directly that the sequence Bk = Arn−k1 +Brn−k2 satisfies

the recurrence ck−1 = a1 ck − a0 ck+1 for k = 1, 2, . . . , n − 1, with initial conditions Bn = cn,

Bn−1 = cn−1. Moreover, the identity

n∑
k=0

Bk σk(p1, . . . , pn) = A

n∏
i=1

(pi + r1) +B

n∏
i=1

(pi + r2)

follows from the generating function for elementary symmetric polynomials.

Case 2: r1 = r1 = u ̸= 0. In this case, the recurrence becomes ck−1 = 2u ck − u2 ck+1. It

is not hard to verify that Bk = Aun−k + B(n − k)un−k satisfies the recurrence, with initial

conditions Bn = cn, Bn−1 = cn−1. Furthermore,

n∑
k=0

Bk σk(p1, . . . , pn) = A
n∏
i=1

(pi + u) +Bu · d

du

( n∏
i=1

(pi + u)
)

follows from term-wise differentiation of the generating polynomial.

Case 3: r1 = r2 = 0. In this case, the recurrence becomes ck−1 = 0, implying c0 = · · · =
cn−2 = 0. Only cn−1 and cn may be nonzero, and thus F (p) = cnσn(p) + cn−1σn−1(p). □

In case 1, by setting a0 = 1, a1 = 0, we have r1 = i, r2 = −i , and this corresponds to the

dHYM/LYZ equation in the complex case and the special Lagrangian equation in the real case.

Case 3 gives the Monge–Ampère equation and the J-equation.
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Theorem 5.5. Suppose the ODE system (5.5) is of recursive type (a0, a1). Define

ξi =
p2i + a1pi + a0

p′i
, i = 1, . . . , n ,

then

ξi − ξ1 , i = 2, . . . , n

are first integrals of the system. In addition, ξi, i = 1, . . . , n satisfy the following ODE system:

(ξi)
′2 = (a21 − 4a0) +

4

c
(c2n−1 − a1cn−1cn + a0c

2
n)

n∏
j=1

ξj ,

where c is the constant such that F 2 = c p′1 · · · p′n.

Proof. Let ξi = Ri(p
2
i + a1pi + a0). It follows from a direct computation that

ξ′i =
1

F
(−2(p2i + a1pi + a0)

∂F

∂pi
+ (2pi + a1)F ).

By Lemma A.2,

(ξ′i)
2 = (a21 − 4a0) +

4

F 2
(c2n−1 − a1cn−1cn + a0c

2
n)

n∏
j=1

(p2j + a1pj + a0)

This together with F 2 = c p′1 · · · p′n and the definition of ξi finishes the proof of this theorem. □

Appendix A. Some Algebraic Calculations

Lemma A.1. For the (n+ 1)× (n+ 1) Hermitian matrix

Hn+1 =


P1 0 · · · 0 Q1

0 P2 · · · 0 Q2

...
...

. . .
...

...

0 0 · · · Pn Qn

Q̄1 Q̄2 · · · Q̄n R

 ,

det(λIn+1 −Hn+1) = (λ− P1)(λ− P2) · · · (λ− Pn)(λ−R)

−
n∑
i=1

|Qi|2(λ− P1) · · · ̂(λ− Pi) · · · (λ− Pn) .

Proof. When n = 2 or 3, the assertion can be proved by a direct computation.
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Suppose this lemma is true when the size is no greater than n. When the size is n+1, expand

det(λIn+1 −Hn+1) along the first column.

det


λ− P1 0 · · · 0 −Q1

0 λ− P2 · · · 0 −Q2

...
...

. . .
...

...

0 0 · · · λ− Pn −Qn
−Q̄1 −Q̄2 · · · −Q̄n λ−R

 = (λ− P1) · det


λ− P2 · · · 0 −Q2

0
. . .

...
...

0 · · · λ− Pn −Qn
−Q̄2 · · · −Q̄n λ−R



+ (−1)n(−Q̄1) · det


0 · · · 0 −Q1

λ− P2 · · · 0 −Q2

...
. . .

...
...

0 · · · λ− Pn −Qn


It follows from the induction hypothesis that the first term on the right hand side is equal to

(λ− P1) ·

(λ− P2) · · · (λ− Pn)(λ−R)−
n∑
j=2

|Qj |2(λ− P2) · · · ̂(λ− Pj) · · · (λ− Pn)

 .

A direct computation on the determinant shows that the second term on the right hand side is

equal to

(−1)n(−Q̄1) ·
[
(−1)n−1(−Q1)(λ− P2) · · · (λ− Pn)

]
.

Putting these together finishes the proof of this lemma. □

Lemma A.2. Let a0 a1, cn−1, and cn be real numbers. Let q(x) be the quadratic polynomial

q(x) = x2 + a1x+ a0 and F (p1, . . . , pn) be the symmetric polynomial in p1, . . . , pn given by

F (p1, . . . , pn) =
n∑
k=0

ckσk

with

ck−1 = a1ck − a0ck+1, k = 1, . . . , n− 1

and σk the k-th symmetric function in p1, · · · , pn. Then for every i = 1, . . . , n

(q′(pi)F − 2q(pi)∂piF )
2 = (a21 − 4a0)F

2 + 4(c2n−1 − a1cn−1cn + a0c
2
n)

n∏
j=1

q(pj) . (A.1)

Proof. Note that F only depends on the coefficients a0, · · · , an. For the sake of the proof, we

introduce a temporary constant

c−1 = a1c0 − a0c1

which is distinct from the earlier c−1 and does not appear in the final formula.
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The first step is to prove that

q′(pi)F − 2q(pi)∂piF = −a1F + 2

n∑
k=0

ck−1σk . (A.2)

For i = 1, . . . , n and k = 0, . . . , n − 1, denote by σk(p|i) the k-th symmetric function of

p1, · · · , pn with pi excluded. We have

σk(p) = piσk−1(p|i) + σk(p|i) , k = 0, . . . , n (A.3)

where we adopt the convention that σ−1(p|i) = 0 and σn(p|i) = 0. In particular, ∂piF =∑n
k=0 ckσk−1(p|i).
With these, we compute that q′(pi)F − 2q(pi)∂piF is given by

(2pi + a1)

n∑
k=0

ck(piσk−1(p|i) + σk(p|i))− 2(p2i + a1pi + a0)

n∑
k=0

ckσk−1(p|i)

= (−a1pi − 2a0)
n∑
k=0

ckσk−1(p|i) + (2pi + a1)
n∑
k=0

ckσk(p|i)

= (−a1pi − 2a0)

n−1∑
k=0

ck+1σk(p|i) + (2pi + a1)

n−1∑
k=0

ckσk(p|i)

=
n−1∑
k=0

[
pi(2ck − a1ck+1) + cka1 − 2ck+1a0

]
σk(p|i)

=
n∑
k=0

pi(2ck−1 − a1ck)σk−1(p|i) +
n−1∑
k=0

(cka1 − 2ck+1a0)σk(p|i),

where the indexes are shifted after the second and the fourth equalities. With the recursive

relation and the definition of c−1, we have cka1 − 2ck+1a0 = 2ck−1 − a1ck for k = 0, · · ·n − 1.

Regrouping terms yields:

n∑
k=0

(2ck−1 − a1ck)(piσk−1(p|i) + σk(p|i)) .

Applying (A.3), we obtain the desired expression

−a1F + 2

n∑
k=0

ck−1σk(p)

and complete the proof of (A.2).

We now verify the identity (A.1) case-by-case by using Proposition 5.4.

Case 1: r1 ̸= r2. Suppose r1 ̸= r2 are distinct (real or complex conjugate) roots of the

characteristic equation r2−a1r+a0 = 0. Then, a1 = r1+r2 and a0 = r1r2. By Proposition 5.4,
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the function F must be of the form

F =

n∑
k=0

(Arn−k1 +Brn−k2 )σk = AP +BQ, (A.4)

where

P =
n∑
k=0

rn−k1 σk =
n∏
j=1

(pj + r1) and Q =
n∑
k=0

rn−k2 σk =
n∏
j=1

(pj + r2)

for some constants A,B. (These constants may be complex if r1 and r2 are complex conjugates.)

The coefficients of F are therefore given by ck = Arn−k1 +Brn−k2 . Using this, we compute

n∑
k=0

ck−1σk = Ar1P +Br2Q . (A.5)

Substituting (A.4) and (A.5), we find(
−a1F + 2

n∑
k=0

ck−1σk

)2

= (r1 − r2)
2

[
F 2 − 4AB

n∏
j=1

q(pj)

]
,

where q(pj) = (pj + r1)(pj + r2). Expressing (r1 − r2)
2 and AB in terms of a0, a1, cn−1, and

cn, we obtain(
−a1F + 2

n∑
k=0

ck−1σk

)2

= (a21 − 4a0)F
2 + 4(c2n−1 − a1cn−1cn + a0c

2
n)

n∏
j=1

q(pj) .

Case 2: r1 = r2 = u ̸= 0. Suppose the characteristic equation has a repeated root u, so that

a1 = 2u and a0 = u2. Then F takes the form

F =
n∑
k=0

(A+B(n− k))un−kσk = AP +BQ , (A.6)

where

P =

n∑
k=0

un−kσk =

n∏
j=1

(pj + u) and Q =

n∑
k=0

(n− k)un−kσk = u
dP

du
.

Thus, the coefficients of F are

ck = Aun−k +B(n− k)un−k . (A.7)
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From this, we compute

n∑
k=0

ck−1σk =
n∑
k=0

[
Aun−k+1 +B(n− k + 1)un−k+1

]
σk

= u

n∑
k=0

[
Aun−k +B(n− k)un−k +Bun−k

]
σk

= u(A+B)P + uBQ .

(A.8)

Combining (A.6) and (A.8), we have

−a1F + 2
n∑
k=0

ck−1σk = a1BP ,

and hence (
−a1F + 2

n∑
k=0

ck−1σk

)2
= a21B

2
n∏
j=1

q(pj) .

Since a1 = 2u,

B = − 2

a1

(
cn−1 −

a1
2
cn

)
,

so the identity becomes(
−a1F + 2

n∑
k=0

ck−1σk

)2
= 4
(
cn−1 −

a1
2
cn

)2 n∏
j=1

q(pj) .

Case 3: r1 = r2 = 0. In this case, a0 = a1 = 0, and the recurrence implies ck = 0 for all

k < n − 1. Therefore, F = cnσn + cn−1σn−1, and the identity (A.1) follows immediately by a

direct substitution. □

References

[1] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations.

III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261–301.

[2] J. Chu, M.-C. Lee, and R. Takahashi, A Nakai-Moishezon type criterion for supercritical deformed

Hermitian-Yang-Mills equation, J. Differential Geom. 126 (2024), no. 2, 583–632.

[3] T. C. Collins, A. Jacob, and S.-T. Yau, (1, 1) forms with specified Lagrangian phase: a priori estimates and

algebraic obstructions, Camb. J. Math. 8 (2020), no. 2, 407–452.

[4] T. C. Collins and Y. Shi, Stability and the deformed Hermitian-Yang-Mills equation, Surv. Differ. Geom.,

vol. 24, Int. Press, Boston, MA, 2022, pp. 1–38.

[5] T. C. Collins, D. Xie, and S.-T. Yau, The deformed Hermitian-Yang-Mills equation in geometry and physics,

Geometry and physics. Vol. I, Oxford Univ. Press, Oxford, 2018, pp. 69–90.

[6] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl.

Math. 35 (1982), no. 3, 333–363.

[7] R. Harvey and H. B. Lawson Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157.

23



[8] A. Jacob and S.-T. Yau, A special Lagrangian type equation for holomorphic line bundles, Math. Ann. 369

(2017), no. 1-2, 869–898.

[9] D. Joyce, Constructing special Lagrangian m-folds in Cm by evolving quadrics, Math. Ann. 320 (2001),

no. 4, 757–797.

[10] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat.

46 (1982), no. 3, 487–523, 670 (Russian).

[11] G. Lawlor, The angle criterion, Invent. Math. 95 (1989), no. 2, 437–446.

[12] N. C. Leung, S.-T. Yau, and E. Zaslow, From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai

transform, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1319–1341.

[13] C. Li, Non-polynomial entire solutions to Hessian equations, Calc. Var. Partial Differential Equations 60

(2021), no. 4, Paper No. 123, 6.

[14] C.-M. Lin, The deformed Hermitian-Yang-Mills equation, the Positivstellensatz, and the solvability, Adv.

Math. 433 (2023), Paper No. 109312, 71.

[15] , On the solvability of general inverse σk equations, preprint, available at arXiv:2310.05339.

[16] D. Wang and Y. Yuan, Hessian estimates for special Lagrangian equations with critical and supercritical

phases in general dimensions, Amer. J. Math. 136 (2014), no. 2, 481–499.

[17] M. Warren, Nonpolynomial entire solutions to σk equations, Comm. Partial Differential Equations 41 (2016),

no. 5, 848–853.

[18] , A Bernstein result and counterexample for entire solutions to Donaldson’s equation, Proc. Amer.

Math. Soc. 144 (2016), no. 7, 2953–2958.

[19] Y. Yuan, Global solutions to special Lagrangian equations, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1355–

1358.

[20] , Special Lagrangian equations, Progr. Math., vol. 333, Birkhäuser/Springer, Cham, 2020, pp. 521–
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