AN ANSATZ FOR CONSTRUCTING EXPLICIT SOLUTIONS OF
HESSIAN EQUATIONS
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ABSTRACT. We introduce a (variation of quadrics) ansatz for constructing explicit, real-valued
solutions to broad classes of complex Hessian equations on domains in C*™! and real Hessian
equations on domains in R™™*. In the complex setting, our method simultaneously addresses
the deformed Hermitian—Yang-Mills/Leung—Yau—Zaslow (dHYM/LYZ) equation, the Monge—
Ampere equation, and the J-equation. Under this ansatz each PDE reduces to a second-order
system of ordinary differential equations admitting explicit first integrals. These ODE sys-
tems integrate in closed form via abelian integrals, producing wide families of explicit solutions
together with a detailed description. In particular, on C3, we construct entire dHYM/LYZ
solutions of arbitrary subcritical phase, and on R® we produce entire special Lagrangian so-
lutions of arbitrary subcritical phase. More generally, in any complex or real dimension, our
ansatz yields entire solutions of certain subcritical phases for both the dHYM/LYZ and special
Lagrangian equations. Some of these solutions develop singularities on compact regions. In the
special Lagrangian case we show that, after a natural extension across the singular locus, these
blow-up solutions coincide with previously known complete special Lagrangian submanifolds

obtained via a different ansatz.

1. INTRODUCTION

Let X C C""! be a domain and let v € C?(X) be a real-valued function. We study the

complex Hessian equation:
CnOnt1(00U) + 107, (00U) + - - - + coo1 (00u) +c_1 =0 (1.1)

where ¢_1,¢g,- -+ , ¢, are real constants, and o1,(00u),k = 1,--- ,n + 1 are the k-th symmetric
functions of the complex Hessian of u. The coefficients c¢_1,cg, -, ¢, of (1.1)) determine two
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polynomials F' and G in the variables py,--- , pn:

n n
F(p1,---,pn) = Y cror(p) and G(pi,...,pa) = Y cr-10k(p) (1.2)
k=0 k=0
where oy (p),k = 0,---n are the k-the symmetric functions of p;,i =1,--- ,n.

By introducing a suitable ansatz, we reduce the PDE (l.1) to a system of second-order
ordinary differential equations determined by F' and G. Concretely, if p;(s), i = 1,...,n are C?
functions of s that satisfy the ODE system

oF
L F(py, .., pn) = (P92 DPly--oyP fori=1,...,n ,
s P01 pn) = G5 (1) "
T// : F(pl) cee 7pn) - _G(pl) cee 7pn) )

/!
p;

then the function

W21y v oy Znp1) = Qij(Re Znt1) (Re 2j)? + 47 (Re zp41)
j=1

solves the complex Hessian equation (1.1) (see Proposition [5.1)). Here (z1,--- ,2p+1) are stan-
dard complex coordinates on C"*! and Re z; denotes the real part of z;,i =1---n+1.

The same ansatz—and the very same reduction to an ODE system—applies to the corre-
sponding real Hessian equation on R"*! i.e.

1 n
@1, @, angr) = §ij($n+1)l‘§ + 7(@n41)
j=1

satisfies the equation
Cn0n+1(v2f) + Cnflo'n(v%f) + -+ coon (VQf) +c1=0 (1'4)

where 0 (V2f),k =1,--- ,n+ 1 are the k-th symmetric functions of the real Hessian of f.

We then focus on Hessian equations whose coefficients cq, - - - , ¢, satisfy a recursive relation.

Definition 1.1. Let ap and a; be real numbers. The complex Hessian equation (1.1])/real
Hessian equation (|1.4) is said to be of recursive type (ag,a1) if the coefficients cg,c1,---cp
satisfy the recursive relation:

Cp—1 = aicp —apcpr1 fork=1,...,n—1

In particular, the coefficients ¢y, - - - , ¢, are determined by ag, a1, ¢,—1 and ¢,. Many classical
nonlinear PDEs lie in this class—including the deformed Hermitian—Yang—Mills/Leung—Yau—
Zaslow (dAHYM/LYZ) equation, the real and complex Monge—Ampere equation, the J-equation,
and the special Lagrangian equation—so that one may recover each by choosing the appropriate

recursive relation (see Proposition for a complete classification of recursive-type equations).
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For any such recursive-type equation, we show that the associated second-order ODE system
is completely integrable: in particular, it admits enough first integrals to reduce the dynamics
to quadratures.

Theorem 1.2. Suppose (1.1)) /(1.4) is of recursive type (ap,a1). Then its associated 2nd order
ODE system (1.3)) is completely integrable. In fact, denoting

_ P? +ai1p; + ag

é‘.
1 p;/

, 1=1,...,n,
then
F2
|y
are first integrals of the system. Moreover, &,1 = 1---n satisfy the following ODE system:

and &—51, 2':2,...,71

&’ =k +k]]¢

=1

for explicit real constants k1, ke depending only on ag, a1, cn—1 and c,.

Theorem can be used to construct non-polynomial entire solutions for both dHYM/LYZ
equation on C"*! and special Lagrangian equation on R"*!, when n > 3. The equations are of

recursive type (ap = 1,a; = 0) and take the following form:
cosf(oy —og+ -+ (—1)k7102k_1 +---)—sinf(l—og+---+ (—1)k7102k_2 +---)=0

for some 6 € R. Note that § and 6 + 7 give equivalent equations. On the other hand, for a C?
function « defined on a domain of C**!, one can consider © = 2?211 arctan \j, where \;’s are
eigenvalues of d0u. This real-valued function © is said to be the phase of u. If uw solves the
dHYM/LYZ equation, © is a constant, and © — 6 € Zm. However, for a priori estimate and
relevant PDE techniques, the value of © matters. If |©] = (n—1)7, the function is said to be of
critical phase; the range |©| > (n —1)7 is called supercritical phase; the range |©| < (n—1)7 is
referred as the subcritical phase. Known results are primarily concentrated in the critical and
supercritical phases; see [8}[3/4}2,/14,/15] for dHYM/LYZ equation and [19,|16,120] for special
Lagrangian equations. For the relation between these conditions and a priori estimates of
Hessian equations, we refer to [10,6,(1]. We apply Theorem to subcritical, entire solutions
to both dHYM/LYZ equation and special Lagrangian equation.

Theorem 1.3 (Theorem and Theorem W.2)). For any integer n > 3 and any © € -7, T],

e there exist subcritical, non-polynomial entire solutions to the dHYM/LYZ equation on
C"+ with phase O;

e there exist subcritical, non-polynomial entire solutions to the special Lagrangian equa-
tion on R™ with phase ©.



Entire solutions to the special Lagrangian equation on R? were previously constructed by
Warren [17,[18] (with phase 7/2) and by Li [13] (with phase 0).

The non-entire solutions produced by Theorem [I.2] develop singularities on compact regions.
In the special Lagrangian case we show in Section[d] that, after a natural extension across the sin-
gular locus, these blow-up solutions coincide with previously known complete special Lagrangian
submanifolds obtained via a different ansatz studied by Harvey-Lawson [7], Lawlor |11], and
Joyce [9)].

Section [2]is devoted to the dHYM/LYZ equation. In Section [3| we investigate entire solutions
to the dHYM/LYZ equation on C"*!. In Section 4] we turn to the special Lagrangian equation,
demonstrating that the blow-up solutions obtained earlier can be extended to complete special
Lagrangian submanifolds. In Section [5] we deal with general equations of recursive type. The

appendix contains two important calculation lemmas.

2. THE DEFORMED HERMITIAN—YANG-MILLS/LEUNG-YAU-ZASLOW EQUATION

The Leung—Yau—Zaslow (LYZ) equation, also known as the deformed Hermitian—Yang—Mills
(dHYM) equation in the literature (see Collins—Xie—Yau [58]) is a fully nonlinear partial dif-
ferential equation. It governs a Hermitian metric on a line bundle over a Kéahler manifold, or
more generally for a real (1,1)-form. Suppose (X,w) is a Kéhler manifold and [o] € HY (X, R)
is a (1,1) class. The case of a line bundle consists of setting [a] = ¢1(L) where ¢1(L) is the first
Chern class of a holomorphic line bundle . — X. Suppose that the complex dimension of X is
n + 1 and consider the topological constant

Z([w], [o]) = /X(w + i)™,

Notice that Z depends only on the class of w and «. Suppose that Z £ 0. Then this is a complex

number
2([w], [o]) = re?
for some real r > 0 and angle 6 € (—m, 7] which is uniquely determined.

Fix a smooth representative differential form « in the class [a]. For a smooth function
u: X — R, the dHYM/LYZ equation for (X,w) with respect to [a] is

Im (e~ (w + (e + £00u))"*1) =0

Re(e " (w + i(a + £00u))" 1) > 0.
1



Take X to be a domain of C"*!, o = 0, and w = % Z;jll dz; A\ dzj, for the standard complex

coordinates 21, ..., 2,41 of C*"T! the LYZ equation for u : X — R becomes
4 0%u
I (*”d t(I [ } )):o, 2.1
me et{tnt1 42 02j0Z,11<j,k<n+1 (2.1)
: 0%u
Re (e det(T | ] ))>o. 2.2
“\° i F 0202 11<jk<n+1 (2:2)

Recall that the sum of the arctangent of the eigenvalues of [%] | <jk<ntl is called the phase
of u, and belongs to (—”T‘HW, ”THW) If u satisfies (2.1)), its phase is a constant, and is equal to
6 modulo 7Z.

Our ansatz assumes the potential function w is of the form:

n
u(21, .oy 2y 1) = 3 2pj(s)(x5)° + 4r(s) (2.3)
j=1
where p;(s) and r(s) are real-valued functions in s = Rez,41, and z; = Rez;,j =1,...,n.
We compute
0%u .
52505 =pj(s)djr forj,k=1,...,n,
ou ,
—— =1y, ; forj=1,...
95505 pj(s)x; for j R T
827’1’ - 1 /! 2 "
v ;22?]'(8)(933) +r(s) .

It follows that the coefficient matrix of dou is

P1 o -- 0 1P}

0 P2 - 0 Toph

: : : : (2.4)
0 0 - pn xnpl,
oph waph e warh (S5 3(@)%0)(9) +1(s)) |
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With Lemma in the appendix, we compute
0%u

det <In+1 i {Ozjazk} 1§j,k§n+1)
, . =1, oy ,
= (1+im) <1+zpn>(1+z(j§:jlz<m> pis+1"s) )
n . (2.5)
+ ) (@) (P5(9)* (L + ipy) -+ (L+ips) - -+ (1 + ipn)
j=1
i nlw.Q’.’S (s _Z'nx,2/452§
(183 gt +1710) ) <53 el gy
where
§=1+ip1)--- (1 +ipn) . (2.6)
Denoting
Fy = Re(e ™ 5), (2.7)
we obtain:

Definition 2.1. For any 6 € (—m, 7], p1(s), -+ ,pn(s) and r(s) are said to satisfy the #-angle
ODE system on the interval I C R if

P OF .

Fo(prs ... opn) 2= 22 (0))? forje{l,....,n} and (2.8)
2 apj

F@(p17°"7pn)r//:_F9+g(pla"'7pn) ) (29)

for Fy = Re(e (1 +ip1)--- (1 +ip,)) and any s € I . As we will see in Lemma 6 and
0 4+ 7 indeed correspond to equivalent ODE systems.

Proposition 2.2. Suppose p1(s), -+ ,pn(s) and r(s) satisfy the ODE system (2.8]) (2.9) with
pi(s) # 0 and Fy(p1,...,pn) > 0. The function u formed by (2.3) satisfies the dHYM/LYZ
equation (2.1)) on the domain X.

It follows that

1
(=) = —20y, (log Fp) (2.10)
Pj
and
v Forg
Fy
Lemma 2.3. For any 0 € R, the polynomial Fy defined by (2.7) has the following properties.

() Fyp = —Fypn.
(i) (Fp)* + (Foyz)® = [Tj=i (1 +p7).



(iii) For any j € {1,...,n},
piFo—(1+p}) —— =Fyyz .

Proof. Properties (i) and (ii) follow directly from the definition. We compute

2, 0%

J

= (p; —i(1 —ip;)) § = —i¥ ,
and property (iii) follows. O

2.1. First integrals of the ODE system. In this section, we show that the ODE system
(2.8) admits n first integrals and the system is integrable.

Suppose that p;» and Fy(p1,...,pn) are nonzero. By ([2.8]),

d<H?:1p9> _ Hk 1p1<; i( vy 8F9p/,> =0.
ds\ (Fo)? 2 op; "

Thus, there exists a constant ¢y # 0 such that

[I-1 7]
W = Co - (2].].)
For j € {1,...,n}, let
1+p?
=T (2.12)
Pj
According to (2.8) and Lemma (iii),
P
& =2p; — (L+p})
j J AR
2 0Fy 2Fy,x
(-0t == 2.13)
for any j € {1,...,n}. Hence, there exist constants ca, ..., c, such that
G- = (2.14)
for j € {2 .,n}. It is convenient to set ¢; to be 0.
By (1), Lenma B3 69, (1) and (211
2
@>:<%@):Hhm+ﬁy4znzmmw_l
4 Fy (Fp)? (£p)?
n
= [[& -1 (2.15)
k=1



for j € {1,...,n}. Consider j = 1, and apply (2.14); one finds that

G==2 o [Ja—c)-1. (2.16)
j=1

2.2. Limits of s when n > 3. It follows from the definition (2.12) of §; and pj. # 0 that ¢;
does not change sign. We would like to argue that pg(s) cannot be defined for all s € R when
n > 3.

At first, suppose that & > 0 and is bounded from above, §; < C for some C > 0. By (12.12]),
arctanpy, = [ gikds, and the lower bound of & implies that pi must blow up for finite s.

On the other hand, suppose that &; is unbounded from above. It follows from ([2.16)) that

_*l dé;
/ds_ 2 /\/Congl(gl—cj)—l‘

If one considers the improper integral of the right hand side (to {5 = c0), it diverges only when
n = 2. Therefore, py(s) cannot be defined for all s € R if n > 3.

2.3. The isotropic Case. In this subsection, we consider the isotropic case of Proposition [2.2]
That is, py = - -+ = p,. Abbreviate them as p, and let ¢ = arctan p. Equations (2.8) and ({2.9))
read as follows.

(1+ pQ)% Re(e*wem“ﬁ) ]?2" =— Im(e*wei(”*l)“") (p)?, (2.17)
Re(e_wei’w) = — Im(e_wem“o) , (2.18)

and we assume that p’ # 0 and Re(e~?e™®) #£ 0. Note that implies that
" =tan(f —ny) < arctanr”’ =0 —np+kn (2.19)

where k is the unique integer such that |6 — ny + k7| < 3.
For a solution to (2.1]), its phase be evaluated at 1 = --- = x,, = 0. By (12.19)), the phase is

narctanp + arctanr” =np +60 —np + kr = 0 + kr .
The above discussion gives the following:
()" = co(Re(e (1 +ip)")" .
or equivalently, in terms of ¢,

(¢')" = co(cos(ng — 0))* .

One infers that

3

(ng — 6) = ¢{(cos(np — 0))
8

(2.20)



for some constant ¢j. By analyzing the linearization at where np — 6 — 5 € Zn, it is not hard
to find that for n > 3, ny — 6 cannot be defined for all s.

Proposition 2.4. When n > 3 and pi1(s) = -+ = pn(s), there is no non-constant entire

solution to (2.8)) and ({2.9)).

3. ENTIRE SOLUTIONS OF DHYM/LYZ

3.1. On C3. When n = 2, i.e., on C3, (2.16)) can be solved explicitly and we obtain explicit
solutions to the dHYM/LYZ equation. In particular, when the constant ¢y (2.11)) is positive,
the solution is defined on the whole space.

3.1.1. When cy is positive. When c¢g > 0, the polynomial coé? — coceéy — 1 must have one
positive root and one negative root. Denote its roots by o? and —3? for a, 8 > 0. It follows

that ¢o = (aB)72, c2 = o® — 2, and (2.16)) becomes

R
2 /(& —a?) (& + 87

We now assume that & > a2, and the case where & < —f3? is similar. By integrating both

+1

sides and translating s,

tanh(i) = Va—a = =0 coshg(i) + B2 sinh2(i) )

b = ot 2 of oB
Together with (2.14)),
_ 2 2, 5 2120 5
& = 3% cosh (aﬁ) + a“ sinh <aﬁ) .
With &1, p1 can be found by ([2.12]):
1
t = — =
(arctanpy) &1 ol coshQ(aiﬁ) + B2 sinhz(aiﬁ)

= arctanp; = arctan <5 tanh(s)> + 1
« af

asin iy cosh(;5) + B cos ¥y sinh(5)
= Dn= 5 : - R (3.1)
avcostpy cosh(z5) — Bsiney sinh(5)
for some 1, € R. Similarly,
by — Bsinpy cosh(;5) + acos g sinh(5) (32)
B cos by cosh(5) — asinyy sinh( ) ’

for some o € R.

©



Using (2.11)) and Proposition one finds that
of

F = . .
? ™ (acos ¢y cosh(;) — Bsin vy sinh(5)) (B cos vy cosh(Z5) — avsin gy sinh(;)) (3.3)
We compute
§ =1 +ip1)(1+ip2)
_ 5o i) (a4 L(a? 4 82) sinh(ZE)
af 2 aB’)
It follows that
62'0 = ei(leﬂ/&) , (34)
a?+ 5% . 2s
F9+% = 20[,3 lnh(?ﬁ) Fg .
By (2.9),
2 2 2 2
7 ot + 3% 2s aB(a” +57) . 2s
r 5B in (aﬁ) = r S sin (aﬂ) , (3.5)

up to adding an affine function in s. With the explicit formulae (3.1]), (3.2]) and (3.5)), the phase
of (2.4) is a constant, and is equal to

1+ 1o (3.6)

In order for these expressions to be defined for all s, the denominators have to be nonzero
for all s. It means that

> tan; tanh 2 and > tan o tanh 2
B B
« «

=/ Q

for all s, and thus
o p
3 > |tanty| and o > | tan ¢y (3.7)

It follows from arctan% + arctan% = 5 that the phase, 91 + 12, belongs to [-7,5]. We

summarize the discussion in the following proposition.

Proposition 3.1. For any positive «, 3, and 11,v2 € [—7, 5] satisfying (3.7), the potential
function 2p1(s)(x1)? + 2p2(s)(x2)? + 4r(s) is an entire solution to the LYZ equation on C3,

with phase 11 + 1. Here, s = Re z3, and the functions are given by (3.1)), (3.2) and (3.5). In

particular, the LYZ equation with non-supercritical phase on C* admits entire solutions.
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3.1.2. When cqg is negative. Suppose that cg < 0. From , the polynomial co? — cocaéy — 1
must be positive somewhere. Therefore, the quadratic polynomial admits two real roots of the
same sign. Assume that the roots are o® > 32 > 0, with «, 8 > 0. We leave it for the readers
to verify that the case of negative roots corresponds to switching the roles of £ and & in the

following discussion.

In this case, ¢ = —(aB)~2 and c3 = o + $2, and ([2.16]) becomes

af 51

+1 = — .
2 /(a2 -&)(& - B?)

With a similar computation,

2

) -

&1 = a? cos?(

i) + 62 Sinz(aiﬁ) and 52 = —ﬁQ COS2(i) _ 012 SIHZ(QB

af af

By integration their reciprocals,

asin iy cos(55) + B cos vy sin(5)
= acos iy cos(zg) — Bsineysin(Sy)

Bsinpg cos(55) — cvcos g sin(gz)
Pz = B costhg cos(5) + asinipg sin( )

for some 1,12 € R. The denominators of p; and py cannot be nonzero for all s, and the

solution cannot be extended to an entire solution in this case.

3.2. On C""! with n+ 1> 4. In [13| Theorem 2], Li constructed non-quadratic solutions to
the special Lagrangian equation with @ = 0 by using the ansatz [ = %p(mg)x% + q(x3)z0 +
r(x3).

It suggests that we may obtain entire solutions in higher dimensions by modifying the solu-
tions given by Proposition [3.1] based this type of ansatz. Specifically, when n > 3, consider

(21,22, 23, -, 20, Zng1) = 2p1(8)(21)” + 2pa(s) (w2) +4qu s)zj + 4r(s) (3.8)

where s = Rez,41 and z; = Rez; for j = 1,...,n. After a direct computation, the coefficient

matrix of 9O is

(p1 0 0 - 0 ]
0 p2 0 -+ 0 x9ph
0 0 0 0 g
. ’ (3.9)
0 0 0 0
2 .
) woph gy - @, Gl

11



It follows that

82
det (In+1 +1 [ ] )
020z, 1<, k<n+1

0 e B, N2
(L ipn) (Lt ip) |14 (@) 2L+ ()P 22+ D ()

=3
—l—z’(%p'{( )(z1)? +1p2 )(x2) +Z s)z; +1r"( ))}

Let § = (1 +ip1)(1 + ip2), and Fp = Re(e " F) as before. The LYZ equation (2.1)) becomes
the following system:

Fy = —%(p})? for j =1,2 1
(p17p2) 9 8]7] (p]) or j )4y (3 0)

Fe(plapZ)quO fOI'k‘:?),...,TL, (311)

Fy(pr,p2) " = —Fpyz (p1,p2) (14D (4)%) - (3.12)

k=3

The equation ([3.10]) is analyzed in Section From (3.11)), one infers that gx(s) = vis + ki

for some constants 7, k. Note that z’s do not show up in 90%. By comparing ([3.12)) with
(3.9)), it is not hard to find that

aB(a? 2 “ s
r= —7/8( +5 )(1+Z(’yk) )smh(jﬁ

8 )
k=3

We summarize the discussion in the following theorem.

Theorem 3.2. Suppose that n > 3. For any o, 3 > 0, 11,92 € [—7, 5] satisfying (3.7) and
Y3, ---5Yn € R, the function @ defined by

asin ¥y cosh(—ﬁ) + B cos iy sinh(aiﬁ) o(p2 B sin 1y cosh(aiﬁ) + acos o sinh(iﬂ) 0
a cos Py Cosh(—ﬁ) B sin sinh(iﬁ) (1)" + B cos g cosh(aiﬁ) — asin )y sinh(iﬂ) (z2)"
Ba —l—ﬁz
—|—4k237ksm R T (14‘2’)’1@ )smh Ozﬂ)

is an entire solution to the LYZ equation ([2.1) on R™*! with phase 6 = 1)1 +1)2. Here, z; = Rez;j
forj=1,...,n and s = Rezp11.
In other words, the LYZ equation admits non-polynomial entire solutions on C" with any

phase within -7, 5.

12



Remark 3.3. More generally, for u = Z?Zl(ij(s)(xj)Q + 4q;(s)z;) + 4r(s), the dHYM/LYZ
equation (2.1)) becomes

"
p; 0Fy , ;.9 )
FG(le--apn)EZ%(pj) forj=1,...,n,
q OFy |, ,
Fe(p17~--7pn)2=8p]p]q] forj=1,...,n,
8Fg
F(pla 7pn T —Z 8p / Fe—i-%(pla-"upn) .
J

4. SOLUTIONS TO THE SPECIAL LAGRANGIAN EQUATION

According to Leung—Yau—Zaslow in [12], a dHYM connection is mirror to a special Lagrangian
sections via the Fourier-Mukai transform under the setting of semi-flat Calabi—Yau metrics.
If one works out the transformation with respect to the standard metric on C"*!, each of
the solutions of the dHYM/LYZ equation we obtained in previous sections corresponds to a
solution of the special Lagrangian equation . In this section, we explore the geometry of
the corresponding special Lagrangian submanifold.

Proposition 4.1. Let p1(s), - ,pn(s) and r(s) be solutions of the 6-angle ODE system in
Definition . Consider the following function f defined on a domain X C R™! by

1 n
flz1,...,xn,s) = 3 ij(s):n? +7r(s) .
j=1
Then, f satisfies the special Lagrangian equation with angle 0:

2
Im [ e det | PRI ) [ of ] =0. (4.1)
OOy, 1<j,k<n+1

Proof. Write s as x,4+1. The Hessian matrix of f is

[ pi(s) 0 - 0 11 (s)
[ o f 0 pa(s) - 0 Taph(s)
ox -&Ek] enil : : : : :
R B 0 - pals) AL
[21p () waph(s) -+ waph(s) Doj_y 5P (s)as +1"(s)]
With this, the computation is the same as that in Section [2} O

The correspondence also holds true for the more general ansatz described in Remark To
be more precise, suppose that p;(s), ¢;(s) and r(s) obey the system of equations in Remark
Then, f = Z?Zl(%pj(s)(xj)2 + qj(s)zj) + r(s) satisfies (4.1). Therefore, Proposition and

Theorem [3.2] lead to the following theorem:
13



Theorem 4.2. Whenn >3 and any 0 € [-5, 5
admits non-polynomial entire solutions on R™ 1. The phase of the solution is exactly 0.

7], the special Lagrangian equation with angle 0

4.1. Extensions of solutions to the special Lagrangian equation. According to Proposi-
tion the graph of Vf defines a special Lagrangian submanifold in C"*!, which is graphical
on a domain X C R**!. However, V f may blow up at the boundary of X, and the correspond-
ing special Lagrangian submanifold ceases to be graphical. In this subsection, we demonstrate
that the submanifold admits a global extension (cf. [7,/11,9]) as a complete (non-graphical), em
bedded, special Lagrangian in C"*!. It is natural to ask whether similar extension mechanisms
can be applied to the dHYM/LYZ formulation on the mirror side.

We begin by recalling the following result of Joyce.

Theorem 4.3 ([9, Theoremﬂ 7.1]). Let wi,...,wy : (—€,e) = C\{0} and B : (—e,e) — C\ {0}
be differentiable functions satisfying

dwj .
H:wl"'wj—le-‘rl"'wn? .7217"‘777’7
(4.2)
¥ _ or—wm
dr — w1 n .
Define a subset N C C"+1 by
2 2
+...+ oy
N= {<w1<t>a, (0, T ﬁ(t)> e (—e0) 6 € R} C3)

Then N is a special Lagrangian submanifold of C*+1.

To relate our construction with Joyce’s theorem, we begin with the expression for the graph

of Vf:
(@1, sy 8) = | (L4 ipa(s)zs, -, (14 ipa(s))an, s + i Z:c r'(s)

where p1(s),...,pn(s) and r( satlsfy and . The angle 6 will be specified later.
Moreover, assume that the constant ( is posmve,

[T5=, P(s)
(Fp)?

for j = 1,...,n. Other cases can be treated similarly by appropriately adjusting signs, and

=¢9 >0, and assume that pj(s) >0

they correspond to quadrics of other signatures.

IThe dimension m in Joyce’s theorem corresponds to n + 1 here. For convenience, we specialize to the case
a = n. One can also work out the transformation for quadrics of other signature.
14



We claim that our ansatz corresponds to the solution given by Theorem through the
following relation:

(I4+ipi(s))x1,..., (L4 ipn(s))xn, s +1i 3 Zl‘?p;(s) +1/(s)
=1 (4.4)
24 ... 2
- (wma, ) - ﬁ(t)) .

To facilitate this, introduce the parameters ({1, ...,&,,t) related to (x1,..., 2y, s) by

t=y/cos and & = /pj(s)x;

for j =1...,n. Define the complex-valued functions w;(t) and §(t) by

w; (t) — 14 ipj(s) 7
p(s)
B(t) =i(s+ir'(s)) .

It remains to verify that this parameterization satisfies the ODE system By (2.8),

d [ 1+41p;(s . . Op,; Fa
L) iy
pj(s) 0

With the identity Fy —iFy,z = ¢ F and the relation p; Fy — (1 +pj2~)3pj Fy=Fpyz (see Lemma
, it can be simplified as
/ O
d (1+ip;\ VP ieF

ds p9 1-— ipj Fg ’

and hence

dwj _ i (eTUF ds
dt Wj Fy dt -

Similarly, it follows from (2.9) that

dg . o, wds e PF\ ds
i = il
Ay ( F, )t
On the other hand,
o1 — ﬁ i(1+ipj(s)) i"F



Therefore, w;(t) and [(t) satisfy

dwj e Pw;---w, dg e Pw-w,
— = — and — =i ——|.
dt 1"W; dt "

Finally, by choosing the angle # such that e = —i, we recover the ODE system (#.2)). This
verifies the correspondence (4.4
5. GENERAL EQUATIONS OF RECURSIVE TYPE

In this section, we fix real constants ¢, ..., c_1 and study solutions of a general real Hessian

equation of the form

CnOn+1 (VQf) + Cnflo'n(v2f) +oet Coal(VQf) +c1=0. (5'1)
Denote the coordinate of R"*! by (x1,...,2,,s), and consider the following ansatz for f:
)
f= 5ij(s):cj +1(s) . (5.2)
j=1
We also consider solutions of a general complex Hessian equation of the form
CnOn11(00U) + cp_10,(00U) + - - - + coor1 (00u) + c—1 = 0. (5.3)
Denote the coordinate of C"*! by (z1,...,2n, 2nt1), and consider the following ansatz for u:
n
u= Qij(Re zni1)(Re z;)? 4 4r(Re 2" ) . (5.4)
j=1

Proposition 5.1. Suppose p;(s),i =1...n and r(s) satisfy the following ODE system

Py OF :
?-F(pl,...,pn) = (p;)28p'(p1,...,pn) fori=1,...,n and (5.5)

" F(p1,...,on) = =G(p1,- ., pn), (5.6)

where
F(pi,..opn) = Y _ckok(p) and G(p1,....pn) =D cr10k(p) -
k=0 k=0

Then a function u of the form (5.4) satisfies the complex Hessian equation (5.3), and a function
f of the form (5.2)) satisfies the real Hessian equation (5.1)).

Proof. The proof extends the argument of Proposition (the dHYM/LYZ case) and Propo-

sition K. e special Lagrangian case). We only deal wi e real case (. ere an e
ition 4.1| (th ial L i W ly deal with th 1 (5.1) h d th
16



complex case (5.3) can be dealt with similarly. By Lemma (5.1), under the ansatz (5.2]),

becomes
0=Eo(s) + >_(z")’Ei(s) (5.7)
where

Zo(s) = (cn—10n(p) + - + coo1(p) + c—1) + (cnon(p) + - -+ + c101(p) + co) v and
/!
p;

Zi(s) = (aon(p) + -+~ +c101(p) + c0) 5 = (en0n-1(pli) + - + c1o1(pli) + 1) (p)? -
As before, o(p|i) = ox(p1,-..,Di,---,pn). Note that (5.7 is equivalent to =Z;(s) = 0 = Eg(s)
fori=1,...,n. O

Again, the main task is to solve (5.5 for p;, and then r can be found by integrating (5.6))
twice. Let R;(s) be 1/pj(s), and (5.5]) becomes the following first order system

/ 1
D; = R (
i 5.8)
_ dlog F
R, = _2760101'

fori=1,...,n.

Remark 5.2. It is not hard to see that with the symplectic form ) ;" , dp; A dR;, the ODE
system is Hamiltonian with respect to H(p;, R;) = >, log R; + 2log F and thus Ry - -- R, F”?
is a first integral. However, since there is no other continuous symmetry of H for general F,
this perspective is not particularly useful.

Definition 5.3. The ODE system (/5.5) is said to be of recursive type (ag,a1) if there exist
real numbers ag and a; such that the coefficients of F' satisfy the recursive relation:

Cp—1 = cxa] —cpy1ag fork=1,....,.n—1.
In particular, cg,c1,- - ,c¢p_o are determined by ag, a1, c,—1 and ¢,. All recursive types F

can be classified according to the following proposition (¢, and ¢,_; are not necessarily real in
this proposition):

Proposition 5.4. Let n > 1 and let ag, a1 € R. Suppose
n
F(pi,....pn) = Y cron(p1, .-, pn)
k=0

is a symmetric polynomial in (pi,...,pn), where oy denotes the k-th elementary symmetric

function. Assume the coefficients {cy} satisfy the recurrence

Ch—1 = Q1 Ck — Q0 Ck+1 » k=1,2,....n—1.

17



Let 1,79 be the (not necessarily distinct) roots of the quadratic equation
2 —air+ag=0.

Then F must take one of the following forms:

Case 1: 11 # 19.
n

Fou o) = AT+ )+ B[ [0 ).
i=1 i=1

where the constants A, B are given by
A= Cn—1 — CpT2 and B — _(Cn—l - Cnrl) .

KT —T9 rhn —T9

Case 2: 1 =ro =u # 0.

F(pi,- o) = AT [+ ) + Bu- (T +w)

i=1 =1

_ _ Cn—1
where A = ¢, and B = = — ¢y

Case 8: 11 =19 = 0.
F(plv---apn) = cngn(p17--'upn) + Ccp—1 Un—l(p17-'~7pn) .

Proof. Case 1: r1 # r3. One can verify directly that the sequence By = Ar’f_k —|—B7‘§‘_k satisfies
the recurrence cx_1 = ajcp —agcgyr for k= 1,2,...,n — 1, with initial conditions B, = c,,
B,,_1 = ¢,_1. Moreover, the identity

n

> Bio(pr,--opa) = AL [ i+ 1) + B[ (0i +72)
k=0

i=1 i=1
follows from the generating function for elementary symmetric polynomials.
Case 2: r1 = r; = u # 0. In this case, the recurrence becomes c_1 = 2ucy — u? cpp1. It
is not hard to verify that By = Au™* + B(n — k)u" " satisfies the recurrence, with initial

conditions B, = ¢,, B,,_1 = ¢,,—1. Furthermore,

i=1

ZBk ok(p1,. .- pn) = AH(pi +u)+ Bu - %(H(pz + u))
k=0 i=1

follows from term-wise differentiation of the generating polynomial.

Case 3: 11 = ro = 0. In this case, the recurrence becomes c¢;_1 = 0, implying ¢cg = -+ =
¢n—2 = 0. Only ¢,—1 and ¢, may be nonzero, and thus F(p) = ¢,0n(p) + cn—10n-1(p)- O

In case 1, by setting agp = 1,a; = 0, we have r; = i,79 = —t , and this corresponds to the
dHYM/LYZ equation in the complex case and the special Lagrangian equation in the real case.

Case 3 gives the Monge-Ampere equation and the J-equation.
18



Theorem 5.5. Suppose the ODE system ([5.5)) is of recursive type (ag,a1). Define

_ Pg + a1p; + ag

éﬂ
7 p;

then
‘gi_fla i:27"'7n
are first integrals of the system. In addition, &, i =1,...,n satisfy the following ODE system:

(&) = (ai —4aq) +

oI

n
2 2
(ch_1 —aren1cn+a0cy) [[ &
j=1

where c is the constant such that F? = cp) ---pl,.

Proof. Let & = R; (1012 + a1p; + ap). It follows from a direct computation that

1

OF
= —(=2(p? ;
& F( (pi + a1pi + QO)api

+ (2pi +a1)F).
By Lemma [A22]

4 n
(6)? = (af — 4a0) + 55 (chy — arenren + aocy) [ [ (6 + arp; + ao)
j=1

This together with F?2 = ¢p) - - - p/, and the definition of ¢; finishes the proof of this theorem. [J

APPENDIX A. SOME ALGEBRAIC CALCULATIONS

Lemma A.1. For the (n+1) x (n+ 1) Hermitian matriz

'p1 o --.. 0 Q1_
0 P - 0 Qo
Hppr= | P s
0 0 -+ P, Qn
Q1 Q2 -+ Qn R

det(Mos1 — Hop1) = A= P)(A = Py) -+ (A — P,)(A — R)

=Y IQiPA =P (A=B)--- (A= Pa) .
i=1

Proof. When n = 2 or 3, the assertion can be proved by a direct computation.
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Suppose this lemma is true when the size is no greater than n. When the size is n+1, expand
det(AL,+1 — Hp4+1) along the first column.

A-P, 0 - 0 -
0 1 A=Py -~ 0 —g; A- P 0 —@
det | : , : C | = (= Pp)-det :
0 0 - A—P, —Qn 0 AP =G
| -1 —Q2 -+ —Qn X—R —@ —Q@n A-R
0 0 —Q1

0 o A—=P n _Qn
It follows from the induction hypothesis that the first term on the right hand side is equal to

A= P [(A=Po)-- (A= P)A = R) = Y Qi = Po) - (A= By) -+ (A= P)
j=2

A direct computation on the determinant shows that the second term on the right hand side is
equal to

D"(=Q1) - [ H=QUA = Po)--- (A= P)] .
Putting these together finishes the proof of this lemma. (|

Lemma A.2. Let ay a1, ¢n—1, and ¢, be real numbers. Let q(x) be the quadratic polynomial
q(x) = 22 + ayx + ag and F(py,...,pn) be the symmetric polynomial in p1,...,pn given by

n
F(pi,....,pn) = Y _ cron
k=0

with
Ch—1 = a1ck — agCk+1, k=1,...,n—1
and oy the k-th symmetric function in p1,--- ,pn. Then for everyi=1,...,n
n
(¢ (pi)F — 2q(pi)0y, F)* = (af — 4ao) F* + 4(ch 1 — arcn1cn +aocy) [ [ alps) . (A1)
j=1
Proof. Note that F only depends on the coefficients ag, - -- ,a,. For the sake of the proof, we

introduce a temporary constant
C_1 = aicyp — apcy

which is distinct from the earlier ¢_; and does not appear in the final formula.
20



The first step is to prove that

q' (pi)F —2q(pi)0p, F = —ar F + Zch_lak . (A.2)
k=0

Fori =1,...,nand k = 0,...,n — 1, denote by o(p|i) the k-th symmetric function of
P1, -, P With p; excluded. We have

or(p) = piok—1(pli) + ox(pli) , k=0,...,n (A.3)

where we adopt the convention that o_;(p|i) = 0 and o,(pli) = 0. In particular, 9, F =
> k=0 ckok—1(pli).
With these, we compute that ¢'(p;)F — 2¢(p;)0p, F is given by

n n

(2pi +a1) Y ck(piok—1(pli) + ok (pli)) — 2(p} + a1ps + a0) Y ckow—1(pli)
k=0 k=0

= (—a1pi — 2a0) Y _ crop-1(pli) + (2pi + 1) Y cxor(pli)

k=0 k=0
n—1 n—1

= (—a1pi — 2a0) Y 10w (pli) + (20 +a1) Y ckor(pli)
k=0 k=0

i
L

[pi(QCk — a1Cp+1) + cgar — 20k+1a0} or(pli)

n—1

pi(2ck—1 — arck)or—1(pli) + Y _(crar — 2cxr1a0)ok(pli),
0 k=0

(= 117

b
Il

where the indexes are shifted after the second and the fourth equalities. With the recursive
relation and the definition of c_1, we have cxa; — 2cpr1a0 = 2¢x—1 — arci, for k =0,---n — 1.
Regrouping terms yields:

n

> (2ck-1 — arcr) (piok—1(pli) + ok (pli)) -
k=0

Applying (A.3]), we obtain the desired expression

n
—alF + 2 Z Ckflo'k(p)
k=0

and complete the proof of (A.2]).
We now verify the identity (A.1]) case-by-case by using Proposition

Case 1: r1 # rg. Suppose r; # rg are distinct (real or complex conjugate) roots of the

characteristic equation r?> —ai;r+ag = 0. Then, a; = r; +72 and ag = r172. By Proposition
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the function F' must be of the form

F=) (A" 4+ Bry "o, = AP+ BQ, (A.4)
k=0
where

n n

P=> rop =[] +r) and Q=> riFor =] +r2)
k=0

k=0 j=1 j=1

for some constants A, B. (These constants may be complex if r; and r9 are complex conjugates.)

The coeflicients of F' are therefore given by ¢ = Ar?ik + Brgfk. Using this, we compute

Z Ccp—10, = Ar1P + BroQ . (A.5)
k=0
Substituting (A.4) and (A.5)), we find
n 2 n
<—a1F +2 Z Ck—10'k> = (ry — ro)? [FQ —4AB H q(pj)] ,

k=0 Jj=1

where ¢(pj) = (pj + r1)(pj + r2). Expressing (r; — r2)? and AB in terms of ag, a1, ¢,_1, and

Cpn, we obtain

n 2 n
(—CuF +2) Ck10k> = (af — 4a0)F? + 4(ch_; — arcn—16n + aoch) [ a(p)) -
k=0 j=1

Case 2: 11 =19 = u # 0. Suppose the characteristic equation has a repeated root u, so that
a; = 2u and ag = u?. Then F takes the form

F=) (A+B(n-k)u" "o, =AP+BQ, (A.6)
k=0
where
P = u ko = i+ u) and = n—ku" Fop = u—r0m .
kZ:O " j]zll(pj ) Q ,;)( ) = us

Thus, the coefficients of F' are

cr = Au"F 4+ B(n — E)u™ " . (A.7)
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From this, we compute
n n
Z CL_10f = [Au"ikﬂ + B(n —k+ 1)u"*k+1} oL
k=0 k=0

=u Zn: [Au”_k + B(n — k:)u”_k + Bu"_k} Ok (A.8)
k=0

=u(A+ B)P +uBQ .
Combining (A.6]) and (A.8), we have

n
—a1 F + Qch_lak =a1BP ,
k=0

and hence

n 2 n
(—aﬂ7+2§:Cm4mJ ZNﬁBzIIQ@ﬁ-
j=1

k=0

Since a1 = 2u,

so the identity becomes

n n
2 a 2
(—a1F + 2 Z Ck—l(fk) = 4<Cn—1 - Elcn) H (I(pj) .
j=1

k=0

Case 3: m1 = ro = 0. In this case, ag = a1 = 0, and the recurrence implies ¢, = 0 for all
k < n — 1. Therefore, F' = ¢,0y, + ¢p—10,—1, and the identity (A.1)) follows immediately by a
direct substitution. O
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