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Abstract. In this paper, we construct solutions of Lagrangian mean curvature flow which

exist and are embedded for all time, but form an infinite-time singularity and converge to an

immersed special Lagrangian as t Ñ 8. In particular, the flow decomposes the initial data into

a union of special Lagrangians intersecting at one point. This result shows that infinite-time

singularities can form in the Thomas–Yau [33] ‘semi-stable’ situation. A precise polynomial

blow-up rate of the second fundamental form is also shown.

The infinite-time singularity formation is obtained by a perturbation of an approximate

family Nεptq constructed by gluing in special Lagrangian ‘Lawlor necks’ of size εptq, where the

dynamics of the neck size εptq are driven by the obstruction for the existence of nearby special

Lagrangians to Nεptq. This is inspired by the work of Brendle and Kapouleas [3] regarding

ancient solutions of the Ricci flow.
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1. Introduction

1.1. Singularities of Lagrangian Mean Curvature Flow. The celebrated theorem of Yau

[35] states that if the canonical bundle of a Kähler manifold is holomorphically trivial, then it

admits a Ricci flat Kähler metric, referred to as the Calabi–Yau metric. Over the past four

decades, understanding the Lagrangian submanifolds minimal with respect to such a metric

(known as special Lagrangians [9]) has been a major direction in differential geometry. Calabi–

Yau manifolds and their special Lagrangians also appear in various proposals of theoretical

physics. In particular, Strominger, Yau and Zaslow [30] have proposed to use special Lagrangian

fibrations to understand the mirror symmetry of Calabi–Yau manifolds.

The basic question about the existence of a special Lagrangian representative for a given

homology class in a Calabi–Yau manifold is still open. In contrast, the Lagrangian condition

is symplectic-topological, and so it is easier to find Lagrangian submanifolds. Moreover, the

Lagrangian condition is preserved along the mean curvature flow if the ambient metric is Calabi–

Yau [27,29], a process known as Lagrangian mean curvature flow. One can therefore naturally

deform a Lagrangian submanifold by its mean curvature vector to decrease its volume, and hope

that the flow will exist forever and converge to a special Lagrangian submanifold. Motivated by

mirror symmetry, Thomas and Yau [32,33] proposed a conjectural picture for Lagrangian mean

curvature flow, relating the behavior of the flow to a “stability” property of the Lagrangian

cycle; these conjectures have since been refined and reformulated by Joyce [16].

In practice, the Lagrangian mean curvature flow often forms singularities in finite-time.

In fact, Neves [25, 26] constructed examples of Lagrangian mean curvature flow forming a

finite-time singularity within any Hamiltonian isotopy class of Lagrangians, in the case of 2-

dimensional Lagrangians. A resolution of the Thomas–Yau conjecture will therefore require a

detailed understanding of singularity formation.

In this paper, we study the complementary phenomenon of infinite-time singularities, in

order to improve our understanding of the Thomas–Yau picture. Explicitly, we show that

there exist Lagrangian mean curvature flows that exist for time t P rΛ,8q for which the flow

converges to a singular special Lagrangian as t Ñ 8. Since the limit is not smooth, the second

fundamental form cannot remain uniformly bounded; this is therefore an example of an infinite-

time singularity of Lagrangian mean curvature flow. To the authors’ knowledge, this is the first

example of an infinite-time singularity of mean curvature flow in the compact setting.

We remark that Chen and He [6] proved that the mean curvature flow cannot have an infinite-

time singularity when the ambient manifold is non-compact satisfying some mild conditions.

In contrast, using a rotationally symmetric Ansatz, Chen and Sun [5] recently constructed a

non-compact example in R3 with an infinite-time singularity.

1.2. Desingularising Special Lagrangians with Isolated Conical Singularities. We now

give details of our construction. Consider an immersed special Lagrangian Xm in a Calabi-

Yau manifold M2m, whose singular points are modelled on the transverse intersection of two

half-dimensional planes. If the two half-dimensional planes at a singular point satisfy the

angle criterion (also known as a type 1 intersection, see Definition 2.17), then there exists an
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asymptotically conical special Lagrangian L Ă Cm (known as a Lawlor Neck [17]) with these

same planes as asymptotes. One may therefore ‘glue in’ this Lawlor neck at scale ε at the

singular point to produce an almost-minimal Lagrangian desingularisation N ε (see Figure 1).

A natural question is whether the desingularisation N ε can be perturbed to a smooth special

Lagrangian submanifold. This question was studied thoroughly by Joyce in a series of papers

[11, 12, 13, 14, 15], and also by Lee [19]. The upshot is that as long as the immersed special

Lagrangian satisfies a “balancing” condition, the desingularisation can be perturbed into a

special Lagrangian [15, Theorem 9.7]. These theorems can be applied to construct interesting

examples of special Lagrangians; see for instance [10].

An overview of Joyce’s construction is as follows. Firstly, nearby Lagrangians are repre-

sented as graphs of closed one forms in the Lagrangian neighbourhood of N ε, and the special

Lagrangian equation is expressed as a scalar equation on N ε in the potential functions. The

potential function of the mean curvature vector corresponds to the Lagrangian angle, and the

linearised operator of the special Lagrangian equation is the Laplace operator on N ε. In gen-

eral, the linearised operator may have eigenfunctions with small eigenvalues (relative to the

size of the neck), which means the inverse is not bounded independently of ε. However, the

balancing condition guarantees that the orthogonal projection of the mean curvature potential

to the small eigenspace is sufficiently small, and can be ignored. One can therefore construct an

iteration map using the inverse of the linearised operator, and by applying this map iteratively

converge to a solution.

In this work, we consider an immersed special Lagrangian X with only one singular point

x‹, such that the tangent cone at x‹ satisfies the angle criterion. For this configuration, Joyce’s

balancing condition means that the complement Xztx‹u is connected, and in this case one can

apply Joyce’s result to desingularise X and perturb to a special Lagrangian. In contrast, if

Xztx‹u is not connected (e.g. as in Figure 1), the linearised operator of the special Lagrangian

equation on the desingularisation N ε has a one-dimensional space of non-trivial eigenfunctions

with small eigenvalues, which acts as an ‘obstruction’ to finding a special Lagrangian nearby

to N ε. The mean curvature flow of N ε will therefore not flow to a nearby special Lagrangian,

and indeed a heuristic calculation (described in more detail below) suggests that under mean

curvature flow, the neck size of N ε will decrease, and form a singularity in infinite time.

Our main theorem verifies that this infinite-time singular behaviour occurs for a particular

example of the above configuration: two intersecting special Lagrangian tori in the complex

torus. We consider a one-parameter family of desingularisations N εptq for a suitable decreasing

function ε : rΛ,8q Ñ R`, and show that one may perturb the entire family to a Lagrangian

mean curvature flow. The main result may be summarised as follows; a more precise statement

is given as Theorem 9.1, Proposition 9.5, and Corollary 9.6.

Main Theorem. Let m ě 3, and endow T 2m “ Cm{Γ with the Calabi–Yau structure induced

from the standard one on Cm. Suppose that X1 and X2 are two special Lagrangian sub-tori in

T 2m intersecting transversely at a point x‹, and suppose the tangent planes at x‹ satisfy the

angle criterion.
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Then for ε0 small enough, there exists a desingularisation N ε0 of X :“ X1 Y X2 obtained

by gluing in a Lawlor neck L at scale ε0, and a Lagrangian mean curvature flow Nt starting

from N ε0 existing for all time. Moreover, the flow satisfies the following asymptotic behaviour

as t Ñ 8:

‚ (infinite-time singularity) Nt Ñ X1 YX2 smoothly away from x‹.

‚ (blow-up rate of curvature) The second fundamental form ANt satisfies |ANt | “ Opt
1

m´2 q.

‚ (singularity model) There exists a smooth ε : p0,8q Ñ R` satisfying

C´1t´
1

m´2 ď εptq ď Ct´
1

m´2 for some C ą 0 and t sufficiently large, such that

εptq´1Υ´1pNtq Ñ L

locally smoothly, for a suitable Darboux neighborhood Υ : BR Ñ T 2m centred at x‹.

Note the dimensional constraint m ě 3: such a dimensional constraint also appears in the

work of Joyce [15] and Lee [19]. One reason for this constraint is that the Green’s function in

dimension 2 is different from that in higher dimensions, which causes various analytic issues.

We remark that since X1 and X2 are special Lagrangian of the same phase, the initial data

N ε0 can be viewed as a Thomas–Yau semi-stable Lagrangian. Hence, our result indicates that

in the semi-stable case, even if one has long-time existence of the flow, the convergence to the

limiting special Lagrangian may not be smooth.

In [18], Lee proved that by allowing a perturbation of the ambient Calabi–Yau structure, N ε

can still be perturbed into a special Lagrangian. Our main result can be viewed as a parabolic

analogue of Lee’s result in the sense that, by allowing the neck size to change, N εptq can be

perturbed into a Lagrangian mean curvature flow. Our main theorem can also be viewed as a

dynamic stability result for the ‘singular’ special Lagrangian X “ X1 Y X2, as a critical point

of the volume functional.

1.3. Remarks on the Proof of the Main Theorem. Our construction is based on a par-

abolic gluing technique. Over the past five years, there have been several works based on this

method; in particular the work of Brendle and Kapouleas [3] on the Ricci flow provides a strong

intellectual input to this work (see also [1, 7, 8, 34] for other geometric flows). The idea is to

start with a one-parameter family of desingularisations N εptq obtained by gluing in a Lawlor

neck L at scale εptq to X at x‹, and perturb to a genuine Lagrangian mean curvature flow.

The desingularisations N εptq are formulated as a time-dependent embedding ιεptq from a static

manifold N to the Calabi–Yau manifold M , so that time derivatives on N ˆ rΛ,8q are mean-

ingful. Nearby Hamiltonian isotopic Lagrangians to N ε are graphs of exact one-forms in any

Lagrangian neighbourhood, so are parametrised by functions on N . Our aim is therefore to

find u : N ˆ rΛ,8q Ñ R representing a Lagrangian mean curvature flow nearby to N εptq.

Firstly, we express the Lagrangian mean curvature flow equation as a non-linear parabolic

scalar equation in u. A complication arises in our case, since the desingularisations N εptq, and

therefore the Lagrangian neighbourhoods themselves, are varying with time - this produces an

extra term in the equation which a priori may not be integrable to the level of potentials. These

issues are not present in the prior work of Joyce and Lee, and are unique to the parabolic case.
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To resolve them, it is required to carefully construct suitable ‘exact’ Lagrangian neighbourhoods

for conical and asymptotically conical Lagrangians, which are employed in the construction of

Lagrangian neighbourhoods for N ε.

Besides solving the parabolic equation for the perturbation, another important aspect of our

work is the choice of the neck parameter εptq. Since the Lawlor neck is a minimal submanifold,

to first order the neck is not shrinking along the flow. It is therefore necessary to look for a

suitable ‘external force’ for the definition of εptq. This force arises from the ‘balancing condition’

of Joyce. In Joyce’s elliptic setting, the orthogonal projection of the mean curvature potential to

the approximate kernel is not sufficiently small to allow one to perturb to a special Lagrangian,

as previously mentioned. However, in our parabolic problem the orthogonal projection includes

time derivatives of εptq, and so the equivalent balancing condition is an ODE in εptq,

d

dt
pεptqq2 “ ´c pεptqqm ` opεptqmq, (1.1)

which, up to higher order terms, is solved by ε0ptq “ pε2´m
0 ` c

2pm ´ 2q tq´ 1
m´2 . Therefore

the family tN ε0ptq : ε0ptq “ pε2´m
0 ` c

2pm ´ 2q tq´ 1
m´2 for 0 ď t ă 8u is ‘closest’ to a genuine

Lagrangian mean curvature flow.

Our goal now is to perturb from this approximate flow to a genuine flow. This requires solving

a coupled system of the nonlinear parabolic equation for the potential and the balancing ODE

(1.1). We employ an iteration scheme inspired by [3], in which Brendle and Kapouleas construct

an ancient solution to the Ricci flow using the obstruction of existence of Einstein metrics. Note

that the neck parameter εptq is decreasing in time, producing an infinite-time singularity; this

contrasts with the ancient Ricci flow in [3].

Finally, we remark that the restriction to the case of Calabi–Yau tori in our main theorem is

in order to make the error terms small enough that the approximate dynamics (1.1) dominate.

We aim to address the general case in our upcoming work.

1.4. Structure of the Paper. Section 2 is devoted to the construction of ‘exact’ Lagrangian

neighbourhoods of Lagrangian cones and asymptotically conical Lagrangians. In section 3, the

desingularisation N ε is introduced, as the image of an ε-dependent map from a static manifold

ιε : N Ñ M . The non-parametric form of the Lagrangian mean curvature flow equation is

derived in section 4. The condition under which the Lagrangian mean curvature flow equation

can be integrated to the level of potentials is also discussed in section 4. In section 5, we

compute the linearised operator, and introduce its approximate kernel. The spatial properties

of the approximate kernel are established by Joyce; the materials in sections 2 and 3 allow us

to study their parabolic properties. In section 6, we prove three Liouville theorems, and use

them to establish the weighted Schauder estimate for the solution to the inhomogeneous heat

equation. We note that the discussions in sections 2 to 6 are valid not only for the specific case

of our main theorem, but for general immersed Lagrangians in a general ambient Calabi–Yau

manifold, where the intersections satisfy the angle condition.

From section 7, we focus on the case of two intersecting Lagrangian tori in a complex torus.

The main purpose of section 7 is to establish an existence theorem for solutions to the heat
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Figure 1. An diagram of a special Lagrangian with a single immersed point

X such that Xztx‹u is disconnected, along with its desingularisation N ε. The

desingularisation is obtained by ‘gluing in’ an asymptotically conical special La-

grangian (a Lawlor neck) at scale ε. The Laplacian on N ε has a one-dimensional

space of non-trivial eigenfunctions with small eigenvalues.

equation on the L2-orthogonal complement of the approximate kernel. In section 8, we derive

the projection formula to the approximate kernel, and the estimates of the zeroth order and

quadratic terms of the Lagrangian mean curvature flow equation. Finally, these materials are

put together in section 9, and the main theorem is proven by a Schauder fixed point argument.

1.5. Conventions. Here are some conventions that will be used throughout this paper.

(1) The complex dimension of our Calabi–Yau is assumed to be 3 or greater, m ě 3.

(2) In a Calabi–Yau manifold pM2m, g, J, ω,Ωq, a half-dimensional submanifold Lm is called

a special Lagrangian submanifold if it is calibrated by ImΩ. Namely, ImΩ|L coincides

with the volume form of L. According to [9, p.89], this is equivalent to the vanishing of

ω|L (the Lagrangian condition) and the vanishing of ReΩ|L (the special condition).

(3) Unless otherwise specified, Cm – R2m is equipped with the standard Calabi–Yau struc-

ture pg0, J0, ω0,Ω0q, where ω0 “
řm

j“1 dxj ^ dyj and Ω0 “ dz1 ^ . . .^ dzm.

(4) Given a diffeomorphism φ : L Ñ L̃, it induces a diffeomorphism pφ˚q´1 : T ˚L Ñ T ˚L̃.

Such a map will be denoted by φ:. Given a smooth function u : L̃ Ñ R, du embeds L̃

into T ˚L̃. It is straightforward to verify the following relation

pduq ˝ φ “ φ: ˝ dpu ˝ φq . (1.2)

(5) The constant C in the estimates may change from line to line.

Acknowledgments. The authors would like to thank Dominic Joyce and Yng-Ing Lee for

helpful discussions and interests in this work. The authors are grateful to Simon Brendle for

answering our questions regarding [3].
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2. Neighbourhood Theorems and Local Models

2.1. Equivariant Neighbourhoods of Lagrangian Cones. In this section, we consider a

Lagrangian cone C Ă Cm – R2m, where Cm – R2m is equipped with the standard Liouville

form λ0 “ 1
2

řm
j“1pyjdxj ´ xjdyjq, so that dλ0 “ ´ω0. Note that the link Σ “ C X S2m´1 is

a Legendrian submanifold in the contact manifold pS2m´1, λ0|S2m´1q. On the other hand, one

can equip T ˚ΣˆR with the contact form λΣ ´ ds, where λΣ is the tautological 1-form on T ˚Σ

and s is the coordinate on R. It is clear that Σ, as the zero section of T ˚Σ, is a Legendrian

submanifold in pT ˚Σ ˆ R, λΣ ´ dsq. By Moser’s trick, one can show that the latter is the

standard local model of Legendrian neighbourhoods.

Lemma 2.1 ([23]). Denote by 0 the zero section in T ˚Σ Ă T ˚Σ ˆ R. There exist an open

neighbourhood WΣ of 0 in T ˚Σ ˆ R and an embedding ΨΣ :WΣ Ñ S2m´1 such that ΨΣ|0 “ ιΣ

and Ψ˚
Σpλ0|S2m´1q “ λΣ ´ ds, where ιΣ : Σ Ñ S2m´1 is the inclusion map.

Using Lemma 2.1, we construct an equivariant Lagrangian neighbourhood for C. Recall the

notion of a Lagrangian neighbourhood.

Definition 2.2. Let ι : Lm Ñ pM2m, ωq be a Lagrangian embedding. A Lagrangian neigh-

bourhood consists of an open neighbourhood U Ă T ˚L of the zero section 0, and an embedding

ΨL : U Ñ M such that ΨL|0 “ ι and Ψ˚
Lpωq “ ωL, where ωL is the canonical symplectic form

on T ˚L.

We consider the natural R`-action on Cmzt0u given by dilations, and the R`-action on

T ˚C “ T ˚pΣ ˆ p0,8qq defined as follows. Formally writing a point in T ˚pΣ ˆ p0,8qq as

pσ, r, ς, sq where σ P Σ, r P p0,8q, ς P T ˚
σΣ and s P R – T ˚

r p0,8q, and letting ϵ P R`, we define

ϵ ¨ pσ, r, ς, sq “ pσ, ϵr, ϵ2ς, ϵsq . (2.1)

The following proposition gives not only the neighbourhood, but also the expression of the

Liouville form on the neighbourhood. It is an extension of [11, Theorem 4.3].

Proposition 2.3. Let Σ be a Legendrian link in pS2m´1, λ0|S2m´1q, and let C “ Σ ˆ p0,8q be

the corresponding Lagrangian cone in pCmzt0u, ω0q. There exists a Lagrangian neighbourhood

ΦC : UC Ă T ˚C “ T ˚pΣ ˆ p0,8qq Ñ Cmzt0u such that

Φ˚
Cλ0 “ λC ´ d

´rs

2

¯

,

where λC is the tautological 1-form on T ˚C, r P p0,8q, and s P R – T ˚
r p0,8q. Moreover, UC

is invariant under the R`-action defined in (2.1), and ΦC is equivariant with respect to it.

Proof. The symplectization of pS2m´1, λ0|S2m´1q is pR2mzt0u, ω0 “ ´dλ0q. More precisely,

identify x P R2mzt0u with p x
|x|
, |x|q P S2m´1 ˆ p0,8q. Under this identification, λ0 is the pull-

back of r2 λ0|S2m´1 , where r is the coordinate on p0,8q. With this understood, it is equivalent

to construct the embedding ΦC to S2m´1 ˆ p0,8q so that Φ˚
Cpr2 λ0|S2m´1q “ λC ´d

`

rs
2

˘

. Note

that on S2m´1 ˆ p0,8q, the dilation acts only on the p0,8q-summand.
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Consider the diffeomorphism

ψ : T ˚pΣ ˆ p0,8qq Ñ T ˚Σ ˆ R ˆ p0,8q

pσ, r, ς, sq ÞÑ
`

pσ, r´2ςq, p2rq´1s, r
˘

.

For the open set WΣ given by Lemma 2.1, it is not hard to see that UC “ ψ´1pWΣ ˆ p0,8qq is

an open neighbourhood of the zero section in T ˚pΣ ˆ p0,8qq. Let

ΦC “ pΨΣ ˆ idp0,8qq ˝ ψ : UC Ă T ˚pΣ ˆ p0,8qq Ñ S2m´1 ˆ p0,8q

where ΦC is given by Lemma 2.1. The pull-back of the Liouville form under ΦC is

Φ˚
Cpr2 λ0|S2m´1q “ ψ˚pr2pλΣ ´ dsqq

“ λΣ ´ r2d
´ s

2r

¯

“ pλΣ ` sdrq ´ d
´rs

2

¯

.

Note that λΣ ` sdr is exactly the tautological 1-form on T ˚pΣ ˆ p0,8qq.

The invariance of UC under (2.1) follows from the construction. It remains to check the

R`-equivariance of ΦC . For any ϵ ą 0,

ΦCpϵ ¨ pσ, r, ς, sqq “ ΦCpσ, ϵr, ϵ2ς, ϵsq

“ pΨΣ ˆ idp0,8qq
`

pσ, r´2ςq, p2rq´1s, ϵr
˘

“ ϵ ¨ ΦCpσ, r, ς, sq .

This finishes the proof of the proposition. □

2.2. Asymptotically Conical Lagrangians. Proposition 2.3 can be used to construct good

neighbourhoods for asymptotically conical Lagrangians. We first recall their definition.

Definition 2.4. A Lagrangian L Ă Cm is called asymptotically conical with cone C and rate

γ if the following holds. Let Σ “ C X S2m´1 be the link of C. There exist a compact subset

K Ă L, a constant R1 ą 0, and a diffeomorphism φ : Σ ˆ pR1,8q Ñ LzK such that for any

non-negative integer k,

|∇kpφ´ ιCq|pσ, rq “ Oprγ´1´kq as r Ñ 8 , (2.2)

where ∇ and | ¨ | are computed using the cone metric gC “ dr2 ` r2gΣ.

Remark 2.5.

‚ Later on, we will consider the “potential” of L over Σ ˆ pR1,8q. The ´1 in the power

of r in (2.2) will imply that the potential is of order γ.

‚ In [13, Definition 4.1], (2.2) is only required for k “ 0, 1. Under suitable assumptions,

it can be upgraded to all k ě 0; see for instance Theorem 3.8 and Theorem 4.6 in

[13]. Since we will only work with specific asymptotically conical Lagrangians, a more

restrictive assumption is chosen here for convenience.

Suppose that the rate satisfies γ ă 0. According to Proposition 2.3, LzK can be written as

the graph of a smooth closed 1-form on Σ ˆ pR1,8q, after taking R1 larger if necessary. That
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is to say, LzK belongs to ΦCpUCq. Thus, there exists a closed 1-form, e, on Σ ˆ pR1,8q such

that

φpσ, rq “ ΦCpσ, r, e1pσ, rq, e2pσ, rqq (2.3)

for any pσ, rq P Σ ˆ pR1,8q, where e2 “ ep B
Br q and e1 “ e ´ e2dr. The condition (2.2) implies

that

|∇ke| “ Oprγ´1´kq as r Ñ 8 (2.4)

where ∇ and | ¨ | are computed using the cone metric gC “ dr2 ` r2gΣ.

Recall that a Lagrangian submanifold L Ă Cm is said to be exact if the restriction of the

Liouville form, ι˚Lλ0, is exact. Here is the neighbourhood theorem we will need.

Theorem 2.6. Let L Ă pCm, ω0q be an exact, connected, asymptotically conical Lagrangian

submanifold with cone C “ Σ ˆ p0,8q and rate γ ă 0. Then:

‚ There exist a Lagrangian neighbourhood ΦL : UL Ă T ˚L Ñ Cm and a function αL :

UL Ñ R such that

Φ˚
Lλ0 “ λL ´ dαL .

Moreover, ΦL can be chosen so that

pΦL ˝ φ:qpσ, r, ς, sq “ ΦCpσ, r, ς ` e1pσ, rq, s` e2pσ, rqq (2.5)

for any pσ, r, ς, sq P φ´1
:

pULq Ă T ˚pΣˆ pR1,8qq, where ΦC is the map given by Proposi-

tion 2.3, φ is the map in Definition 2.4, and e “ e1`e2dr P Ω1pΣˆpR1,8qq is explained

in (2.3).

‚ The 1-form e on Σ ˆ pR1,8q is exact, e “ dE, and thus φ “ ΦC ˝ dE. Moreover, the

potential function E can taken to obey that |∇ℓE| “ Oprγ´ℓq as r Ñ 8, for every ℓ ě 0.

‚ The function αL is unique up to adding a constant. Moreover, there are constants ca,

associated with the connected components La of LzK, and on each φ´1
:

pT ˚Laq:

pαL ˝ φ:qpσ, r, ς, sq ´

´rs

2
` ca

¯

“
r

2
pBrEqpσ, rq ´ Epσ, rq, (2.6)

ˇ

ˇ

ˇ
pαL ˝ φ:qpσ, r, ς, sq ´

´rs

2
` ca

¯
ˇ

ˇ

ˇ
“ Oprγq as r Ñ 8.

The restriction of αL : UL Ñ R to the zero section βL :“ αL|0 is a primitive of the

Liouville form up to a minus sign, ι˚Lλ0 “ ´dβL.

Proof. The argument is very similar to [22, Proposition 5.3]. The proof is separated into 4

steps. The bundle projection map is denoted by π.

Step 1: Lagrangian neighbourhood near infinity. We first construct the neighbourhood of LzK.

Define an open subset UC ´ e of T ˚pΣ ˆ pR1,8qq by

UC ´ e “ tpσ, r, ς, sq : pσ, r, ς ` e1pσ, rq, s` e2pσ, rqq P UCu .
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Its image under φ: is an open neighbourhood of the zero section in T ˚pLzKq. Denote its

image, φ:pUC ´ eq Ă T ˚pLzKq, by ULzK . One naturally defines an embedding ΦLzK : ULzK Ă

T ˚pLzKq Ñ Cm by

pΦLzK ˝ φ:qpσ, r, ς, sq “ ΦCpσ, r, ς ` e1pσ, rq, s` e2pσ, rqq . (2.7)

We prove the exactness of e. For the self-diffeomorphism fe on T
˚pΣ ˆ pR1,8qq defined by

fepσ, r, ς, sq “ pσ, r, ς ` e1pσ, rq, s` e2pσ, rqq , (2.8)

one has f˚
e pλCq “ λC ` e, where λC is the tautological 1-form on T ˚C Ą T ˚pΣ ˆ pR1,8qq, and

e is regarded as a 1-form on T ˚pΣ ˆ pR1,8qq under the pull-back of the projection.

Since de “ dpe1 ` e2drq “ 0,

dΣe2 “
Be1
Br

and dΣe1 “ 0 .

Since |e| “ Oprγ´1q as r Ñ 8, the function

Epσ, rq “ ´

ż 8

r
e2pσ, yqdy (2.9)

is well-defined, and |Epσ, rq| “ Oprγq as r Ñ 8. With de “ 0, one finds that dE “ e. The rate

on |∇E| follows directly from its construction.

According to Proposition 2.3, (2.7), dE “ e, and the fact that φ: preserves the tautological

1-form,

Φ˚
LzKλ0 “

´

pφ´1
:

q˚ ˝ f˚
e ˝ Φ˚

C

¯

pλ0q “ pφ´1
:

q˚f˚
e

´

λC ´ d
´rs

2

¯¯

“ pφ´1
:

q˚
”

λC ´ d
´

f˚
e p
rs

2
q ´ E

¯ı

“ λL ´ d
”´rs

2
`
re2
2

´ E
¯

˝ φ´1
:

ı

(2.10)

where λL is the tautological 1-form on T ˚L Ą T ˚pLzKq.

Step 2: constants. Since L is exact, there exists βL : L Ñ R such that ι˚Lλ0 “ ´dβL. Due to

the connectedness of L, βL is unique up to adding a constant. Fix a choice of βL.

On the other hand, the restriction of (2.10) on the zero section, LzK, implies that

p ι˚Lλ0q|LzK “ ´d
”´rs

2
`
re2
2

´ E
¯

˝ φ´1
:

ı
ˇ

ˇ

ˇ

LzK
.

Therefore, one each connected component, La, of LzK, there must exist a constant ca such that

βL|La
“

”´rs

2
`
re2
2

´ E
¯

˝ φ´1
:

ıˇ

ˇ

ˇ

La

` ca.

With these constants ca’s, define αLzK : ULzK Ñ R by

αLzK

ˇ

ˇ

π´1pLaq
“

”´rs

2
`
re2
2

´ E
¯

˝ φ´1
:

ıˇ

ˇ

ˇ

π´1pLaq
` ca . (2.11)

Step 3: Moser’s trick on T ˚K. Let rUL Ă T ˚L and rΦL : rUL Ñ Cm be smooth extensions of the

open neighbourhood ULzK and the embedding ΦLzK over the compact subset K. Namely, rUL is

an open neighbourhood of the zero section in T ˚L with rULXπ´1pLzKq “ ULzK , and rΦL

ˇ

ˇ

ULzK
“
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ΦLzK . Moreover, the embedding can be chosen so that rΦL

ˇ

ˇ

0
“ ιL. The neighbourhood of L

asserted in this theorem will be constructed by perturbing rUL and rΦL.

Let h P C8pLq be a cut-off function such that h ” 1 on LzK, h ” 0 on K 1 ĂĂ K. Define an

extension rαL of αLzK (2.11) to rUL by

rαL :“ ph ˝ πqαLzK ` p1 ´ h ˝ πqpβL ˝ πq .

From step 2, the restriction of rαL on the zero section is βL, rαL|0 “ βL. The goal is to construct

a one-parameter family of self-diffeomorphisms, tυtutPr0,1s, of rUL with the following properties.

‚ υ0 “ id
rUL

and υt|0 P DiffcpLq for all t P r0, 1s.

‚ Let λt “ p1 ´ tqpλL ´ drαLq ` trΦ˚
Lλ0. There exists a family of functions, tαtutPr0,1s, on

rUL with α0 “ 0 and

υ˚
t λ

t “ λL ´ dprαL ` αtq (2.12)

for every t P r0, 1s.

Suppose d
dtυt “ Yt ˝ υt. Differentiating (2.12) gives

´d

ˆ

dαt

dt

˙

“ υ˚
t

"

dλt

dt
` ιYtpdλ

tq ` dpιYtλ
tq

*

“ υ˚
t

!

´pλL ´ drαLq ` rΦ˚
Lλ0 ` ιYt

”

p1 ´ tqp´ωLq ´ trΦ˚
Lω0

ı

` dpιYtλ
tq

)

“ υ˚
t

!

ιYt

”

p1 ´ tqp´ωLq ´ trΦ˚
Lω0

ı

´

”

λL ´ drαL ´ rΦ˚
Lλ0

ı)

` d
`

υ˚
t ιYtλ

t
˘

,

where ωL “ ´dλL is the canonical symplectic form on T ˚L. By shrinking rUL in the fiber

direction if necessary, the 2-form p1 ´ tqp´ωLq ´ trΦ˚
Lω0 is non-degenerate for every t P r0, 1s.

Define the one-parameter family of vector field tYtutPr0,1s by

ιYt

”

p1 ´ tqp´ωLq ´ trΦ˚
Lω0

ı

“ λL ´ drαL ´ rΦ˚
Lλ0 .

Due to (2.10), the right hand side vanishes on π´1pLzKq. Thus, Yt only supports on π´1pKq.

Note that the zero section is Lagrangian with respect to p1´ tqp´ωLq ´ trΦ˚
Lω0, and for every

V tangent to the zero section,
”

p1 ´ tqp´ωLq ´ trΦ˚
Lω0

ı

pYt|0 , V q “ ´d
”

rα|0 ´ βL

ı

pV q “ 0.

It follows that Yt is tangent to the zero section. Therefore, for the diffeomorphism υt generated

by Yt, one has υt|0 P DiffcpLq and

d

dt
υ˚
t λ

t “ ´d

ˆ

dαt

dt

˙

“ d
`

υ˚
t ιYtλ

t
˘

.

Integrating it against with t gives

υ˚
t λ

t “ λL ´ drαL ` d

ˆ
ż t

0
υ˚
τ ιYτλ

τ dτ

˙

.

Hence, υt is the desired diffeomorphism, and αt “ ´
şt
0 υ

˚
τ ιYτλ

τ dτ .
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Finally, set ΦL to be rΦL ˝ υ1. It follows that

Φ˚
Lλ0 “ υ˚

1
rΦ˚
Lλ0 “ υ˚

1λ
t“1 “ λL ´ dαL

where αL “ rαL ` αt“1.

Step 4: asymptotic behavior. It remains to verify the decay rate of αL. Note that αt only

supports on π´1pKq. By construction, we have

αL|π´1pLaq “

´rs

2
`
re2
2

´ E
¯

˝ φ´1
:

` ca . (2.13)

Thus,
ˇ

ˇ

ˇ
pαL ˝ φ:qpσ, r, ς, sq ´

´rs

2
` ca

¯
ˇ

ˇ

ˇ
“ O pr|e2| ` |E|q “ Oprγq as r Ñ 8

on each φ´1
:

pT ˚Laq Ă T ˚pΣ ˆ pR1,8qq. This completes the proof of this theorem. □

Remark 2.7.

‚ In Theorem 2.6, the function βL is harmonic if L is a special Lagrangian (calibrated by

ReΩ0). See [25, Lemma 6.2].

‚ By [22, Lemma 5.4], one finds that αL can be expressed as follows

αL “ βL ˝ π `
1

2

ż 1

0
xx, ∇̄ūyΦL˝sdu ds . (2.14)

Here, x is the position vector in Cm, ∇̄ is taken with respect to the standard structure

of Cm, and ū is a function on ΦLpULq defined to be u ˝ π ˝ Φ´1
L .

We will also consider the dilation of an asymptotically conical Lagrangian submanifold L by a

scale ε ą 0, which will be denoted by ιεL “ ε ¨ ιL : L Ñ Cm. It is clear that εL is asymptotically

conical with the same cone and the same rate. The following corollary describes the effect of

dilation on Theorem 2.6.

Corollary 2.8. Let ΦL : UL Ă T ˚L Ñ Cm be the Lagrangian neighbourhood constructed by

Theorem 2.6. For any ε ą 0, let fε : T ˚L Ñ T ˚L be the diffeomorphism defined by fεpq, pq “

pq, ε´2pq. Then, the open neighbourhood UεL :“ f´1
ε pULq Ă T ˚L of the zero section and the

embedding

ΦεL “ ε ¨ ΦL ˝ fε : UεL Ñ Cm

constitute a Lagrangian neighbourhood of ιεL, and

Φ˚
εLλ0 “ λL ´ d

`

ε2 ¨ pαL ˝ fεq
˘

on UεL,

where αL is the function given by Theorem 2.6.

Proof. By f˚
ε λL “ ε´2λL, pε¨ q˚λ0 “ ε2λ0 and Theorem 2.6,

Φ˚
εLλ0 “ f˚

ε Φ
˚
Lpε2λ0q “ ε2f˚

ε pλL ´ dαLq “ λL ´ d
`

ε2f˚
ε αL

˘

.

This finishes the proof of the corollary. □
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The notations fε and fe defined by (2.8) both denote self-diffeomorphisms of the cotangent

bundle, whose restriction on the fibers are affine transformations. When the subscript is a real

number, it is a fiberwise dilation; when the subscript is a 1-form, it is a fiberwise translation.

Remark 2.9. We remark that there are two distinct metrics on a Lagrangian neighbourhood,

which we describe here. Choose local coordinates tqiu on L. This induces a system of local

coordinates on T ˚L; a point with coordinate pqi, piq means the covector pidq
i at q “ pq1, . . . , qnq.

Given an embedding of a neighbourhood of the zero section in T ˚L to Cm, we may consider the

pullback Riemannian metric on the total space T ˚L. We can also instead consider the induced

metric on L, which induces a bundle metric on T ˚L.

‚ Bundle metric. Denote by g
ij

pqq dqibdqj the induced metric on L by ΦL|0. For p P T ˚
q L,

||p||2 “ gijpqq pi pj . The induced metric on L by ΦεL|0 is ε2g
ij

pqq dqi b dqj . It follows

that for p P T ˚
q L, ||p||2ε “ ε´2gijpqq pi pj . Hence, ||p||ε “ ε ||ε´2p||. In other words,

imagining that UL is of “radius 1” with respect to the bundle metric induced by ΦL

around the zero section, then UεL is of “radius ε” with respect to the bundle metric

induced by ΦεL around the zero section.

‚ Riemannian metric. For the Riemannian metric on T ˚L, denote by pm ` jq for the

component in pj . Denote by gεL the metric Φ˚
εLpg0q. By using the chain rule,

pgεLqijpq, pq “ ε2pgLqij
`

fεpq, pq
˘

,

pgεLqipm`jqpq, pq “ pgLqipm`jq

`

fεpq, pq
˘

,

pgεLqpm`iqpm`jqpq, pq “ ε´2pgLqpm`iqpm`jq

`

fεpq, pq
˘

for any i, j P t1, . . . ,mu.

As expected, the dilation on the embedding leads to the same effect on the bundle metric and

the Riemannian metric.

Remark 2.10. Denoting rprq :“ εr, by (2.3) and (2.1) εLzεK is given by

ε ¨ ΦCpσ, r, e1pσ, rq, e2pσ, rqq “ ΦCpσ, εr, ε2e1 pσ, rq, ε e2pσ, rqq

“ ΦCpσ, r, ε2e1 pσ, ε´1rq, ε e2pσ, ε´1rqq

This means that εLzεK is the graph of a closed 1-form on Σˆ pεR1,8q. Its potential function

(for r ą εR1) is given by

´

ż 8

rε

ε κ2pσ, ε´1yq dy “ ´ε2
ż

ε´1r
κ2pσ, y1qdy1 “ ε2 Epσ, ε´1rq ,

so that

ε ¨ φ “ ΦC ˝ dpε2Epσ, ε´1rqq ˝ r (2.15)

The above identity may be extended to a similar identity on the cotangent bundle:

ε ¨ ΦL ˝ φ: “ ΦC ˝ fdpε2Epσ,ε´1rqq ˝ f´1
ε ˝ r:, (2.16)

where fε, fdA : T ˚L Ñ T ˚L are the diffeomorphisms defined by fεpq, pq “ pq, ε´2pq and

fdApq, pq :“ pq, p` dAq respectively.
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When an asymptotically conical Lagrangian L is also a special Lagrangian, Joyce in [13,

section 4.1] defines two cohomological invariants. We will require one of them.

Definition 2.11. Let L be an asymptotically conical, special Lagrangian submanifold with

cone C “ Σ ˆ p0,8q. It follows from ImΩ0|L “ 0 that pImΩ0, 0q defines an element in the

relative de Rham cohomology HmpCm, L; Rq. Since Σ is in effect the boundary of L, there is a

natural map Hm´1pL; Rq Ñ Hm´1pΣ; Rq. Together with the long exact sequence

0 “ Hm´1pCm; Rq Ñ Hm´1pL; Rq
–

ÝÑ HmpCm, L; Rq Ñ HmpCm; Rq “ 0 ,

the invariant ZpLq P Hm´1pΣ; Rq is defined to be the image of rpImΩ0, 0qs P HmpCm, L; Rq –

Hm´1pL; Rq under the map Hm´1pL; Rq Ñ Hm´1pΣ; Rq.

2.3. The Lawlor Neck. It is known that SUpmq acts transitively on the space of special

Lagrangian m-planes in Cm. In fact, the Grassmannian of oriented special Lagrangians is

SUpmq{SOpmq. It follows that up to an SUpmq transformation, one may assume that a special

Lagrangian m-plane is Rm Ă Cm. It turns out that given a pair of special Lagrangian m-planes,

one may still put them into a standard form by SUpmq.

Lemma 2.12 ([15, Proposition 9.1]). Let pΠ´,Π`q be a pair of transverse special Lagrangian

m-planes in Cm, namely, Π´ X Π` “ t0u. There exist U P SUpmq and 0 ă ϕ1 ď . . . ď ϕm ă π

such that UpΠ´q “ Π0 and UpΠ`q “ Πϕ, where

Π0 “ tpx1, . . . , xmq : xj P Rmu and Πϕ “ tpeiϕ1x1, . . . , e
iϕmxmq : xj P Rmu . (2.17)

Moreover, ϕ “ pϕ1, . . . , ϕmq is unique, and
řm

j“1 ϕj “ kπ for some k P t1, . . . ,m´ 1u.

Definition 2.13. For a pair of transverse special Lagrangian m-planes in Cm, pΠ´,Π`q, the

integer k given by Lemma 2.12 is called the type of pΠ´,Π`q. Note that pΠ`,Π´q is of type

m´ k.

Clearly, pΠ´ YΠ`qzt0u is a Lagrangian cone, whose link is the disjoint union of two Sm´1’s.

When pΠ´,Π`q is of type 1, there are special Lagrangians asymptotic to Π´ Y Π`. They are

constructed by Lawlor in [17], and are usually referred as Lawlor necks. The explanation below

is based on [15, Example 6.11] and [19, section 1].

For positive numbers a1, . . . , am, introduce the functions

Papyq “
´1 `

śm
j“1p1 ` ajy

2q

y2
and

zjpsq “ exp

˜

i aj

ż s

´8

dy

p1 ` ajy2q
a

Papyq

¸

b

a´1
j ` s2

for j P t1, . . . ,mu. Define the real numbers ϕ1, . . . , ϕm and A by

ϕj “ aj

ż 8

´8

dy

p1 ` ajy2q
a

Papyq
and A “ ωm

˜

m
ź

j“1

aj

¸´ 1
2

, (2.18)
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where ωm is the volume of the unit Sm´1 Ă Rm. With these functions and constants, the

construction and the properties of Lawlor necks are summarised in the following proposition.

The proof can be found in the aforementioned references.

Proposition 2.14. For positive numbers a1, . . . , am, the followings hold true.

(1) The numbers defined by (2.18) satisfy

ϕj P p0, πq for all j ,
m
ÿ

j“1

ϕj “ π , and A ą 0 . (2.19)

Moreover, (2.18) gives a bijection between

tpa1, . . . , amq : aj ą 0 for all ju and tpϕ1, . . . , ϕm, Aq obeying (2.19)u .

With this understood, denote pϕ1, . . . , ϕmq by ϕ. For pϕ, Aq obeying (2.19), let

Lϕ,A “

#

pz1psqx1, . . . , zmpsqxmq P Cm : s P R, xj P R,
m
ÿ

j“1

x2j “ 1

+

, (2.20)

They are called Lawlor necks.

(2) The Lawlor neck Lϕ,A defined by (2.20) is an embedded, special Lagrangian submani-

fold in Cm. It is diffeomorphic to Sm´1 ˆ R, and is thus an exact Lagrangian. It is

asymptotically conical to Π0 Y Πϕ with rate γ “ 2 ´m, where

Π0 “ tpx1, . . . , xmq : xj P Rmu and Πϕ “ tpeiϕ1x1, . . . , e
iϕmxmq : xj P Rmu .

(3) The number A is essentially the volume of the topological Bm bound by the Sm´1 defined

by s “ 0. The dilation of a Lawlor neck is still a Lawlor neck. Specifically, ε ¨ Lϕ,A “

Lϕ,εmA for any ε ą 0.

In item (3), one may also describe the dilation effect on the data pa1, . . . , amq; ε ¨ Lϕ,A

corresponds to ε ¨ pa1, . . . , amq “ pε´2a1, . . . , ε
´2amq.

Because of item (2), Theorem 2.6 applies to the Lawlor necks. We would like to determine the

constants ca’s described in that theorem. The Lawlor neck Lϕ,A has two ends. One is asymptotic

to Π0, whose constant is denoted by c´pLϕ,Aq. The other is asymptotic to Πϕ, whose constant

is denoted by c`pLϕ,Aq. According to step 2 of the proof of Theorem 2.6, these constants are

the limit of a primitive of ´λ0. A direct computation shows that ´λ0|Lϕ,A “ 1

2
?

Papyq
dy, and

hence

c`pLϕ,Aq ´ c´pLϕ,Aq “

ż 8

´8

1

2
a

Papyq
dy . (2.21)

By a change of variable, c`pε ¨Lϕ,Aq ´ c´pε ¨Lϕ,Aq “ ε2
“

c`pLϕ,Aq ´ c´pLϕ,Aq
‰

. This coincides

with Corollary 2.8.

Since αLϕ,A is unique up to the addition of a constant, we may choose the asymptotic constant

c´pLϕ,Aq “ 0, from which it follows that c`pLϕ,Aq “
ş8

´8
1

2
?

Papyq
dy. We maintain this choice

for the remainder of our work.
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The Z-invariant (see Definition 2.11) of the Lawlor necks is computed by Joyce in [15, section

9.1]:

Lemma 2.15. For a Lawlor neck Lϕ,A, let Σ´ be the link of Π0, and Σ` be the link of Πϕ.

The Z-invariant of the Lawlor neck satisfies

ZpLϕ,Aq ¨ rΣ´s “ A and ZpLϕ,Aq ¨ rΣ`s “ ´A ,

where the notation means the evaluation on the fundamental cycles.

It is not hard to see the effect of the dilations: Zpε ¨ Lϕ,Aq ¨ rΣ¯s “ ˘εmA.

Remark 2.16. The notation ˘ here plays the role of the index a in Theorem 2.6. The choice

here matches with the s-parameter in (2.20), but is opposite to that in [15, section 9.1]. Note

that this does not mean that we reverse the orientation of Lϕ,A; the orientation of a special

Lagrangian is always given by ReΩ.

2.4. Isolated Conical Singularities. In [13], Proposition 2.3 is also used to describe the

local behavior of isolated conical singularities of Lagrangian submanifolds. For the purpose of

this paper, we focus on the case that the singularity is modeled on a pair of transverse special

Lagrangian planes of type 1, whose desingularisation models are the Lawlor necks.

Definition 2.17 ([15, section 9.2]). Let pM2m, g, J, ω,Ωq be a Calabi–Yau manifold, and Xm

be a compact manifold. Suppose that ι : X Ñ M is a special Lagrangian immersion. A point

x P M is called a transverse self-intersection point of X of type k if it satisfies the following

properties:

‚ The pre-image of x consists of exactly two points in X, x´ and x`.

‚ The tangent planes ι˚pTx´Xq and ι˚pTx`Xq are transverse, ι˚pTx´XqXι˚pTx`Xq “ t0u.

‚ With the identification pTxM, g|x, J |x, ω|x,Ω|xq – pCm, g0, J0, ω0,Ω0q,

pι˚pTx´Xq, ι˚pTx`Xqq is of type k (as defined in Definition 2.13).

As noted in Definition 2.13, the type becomes m ´ k if one exchanges x˘. It follows from

the implicit function theorem and compactness of X that if transverse self-intersection points

are isolated, so are their pre-images.

To describe the structure of ιpXq near x, we utilise Darboux’s theorem.

Lemma 2.18. (1) For any x in a Calabi–Yau manifold pM2m, g, j, ω,Ωq, there exist R ą 0

and an embedding Υ from BR, the ball of radius R in Cm, to M , such that Υp0q “ x,

Υ˚ω “ ω0, Υ
˚g|0 “ g0 and Υ˚Ω|0 “ Ω0.

(2) Moreover, suppose that x is a transverse self-intersection point of type k of a special

Lagrangian immersion ι : X Ñ M . Then, there exists ϕ “ pϕ1, ¨ ¨ ¨ , ϕmq satisfying

ϕℓ P p0, πq for all ℓ and
řm

ℓ“1 ϕℓ “ kπ. Moreover, Υ can be taken to obey

Υ˚|0 pΠ0q “ ι˚pTx´Xq and Υ˚|0 pΠϕq “ ι˚pTx`Xq

where Π0 and Πϕ are given by (2.17).
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Proof. The first assertion follows from the results in [4, Ch. 8 and Ch. 13]. The second assertion

follows from Lemma 2.12. □

In light of Lemma 2.18, we consider transverse self-intersections of Lagrangians in Cm. Util-

ising Proposition 2.3, we describe the decay of the Lagrangian to the tangent cone at the

self-intersection point in terms of a potential function as follows.

Lemma 2.19. Let Π be a Lagrangian m-plane in Cm, and apply Proposition 2.3 to C “ Πzt0u

to produce an equivariant Lagrangian neighbourhood ΦC . Suppose that L is a Lagrangian in Cm

with 0 P L and T0L “ Π. Then, there exist R2 ą 0 and a smooth function A : Σ ˆ p0, R2q Ñ R
such that

LXBR2 “ tpΦC ˝ dAqpσ, rq “ ΦC pσ, r, pdΣAqpσ, rq, pBrAqpσ, rqq : σ P Σ, 0 ă r ă R2u ,

and for k P t0, 1, 2u, |∇kA| “ Opr3´kq as r Ñ 0. As before, ∇ and | ¨ | are computed using the

cone metric gC “ dr2 ` r2gΣ, which is simply the flat metric on Π.

Proof. Similar to (2.3), L near the origin can be expressed as ΦCpσ, r, a1pσ, rq, a2pσ, rqq, where

a1pσ, rq ` a2pσ, rqdr is a closed 1-form on Σ ˆ p0, R2q. Since 0 P L, |a| “ Oprq as r Ñ 0. Since

T0L “ Π, |∇a| “ Oprq, and thus |a| “ Opr2q. As in the proof for Theorem 2.6, let

Apσ, rq “

ż r

0
a2pσ, yqdy .

By a similar argument, dA “ a1 `a2dr. The decay rate on A follows directly from its construc-

tion. □

Remark 2.20. In this case, 0 is a smooth point of the Lagrangian submanifold L, i.e. a fake

conical singularity point. In terms of the terminology in [13, section 3.2], the rate of the conical

singularity is 3. We note that in the main theorem of [13, section 6.1], the rate of the conical

singularity must belong to p2, 3q.

3. Desingularisations of Special Lagrangians with Transverse

Self-Intersections

Given a special Lagrangian with isolated conical singularities in a Calabi-Yau manifold ι :

X Ñ M , such that there exist suitable local models for the desingularisations, Joyce in [13,

Definition 6.2] shows how to construct desingularisations of the special Lagrangian. The main

purpose of this section is to give an exposition of Joyce’s construction, in the particular case of

Lagrangians with transverse self-intersections of type I. We make this restriction so that there

exist suitable local models for the desingularisation process (the Lawlor necks of section 2.3).

We will modify the construction to allow for diffeomorphisms between the desingularisations

of different sizes of necks; this will allow us to set up and solve the Lagrangian mean curvature

flow equation. In particular, we construct a family of embeddings ιε from a fixed manifold N

to the Calabi–Yau manifold M , satisfying ιε Ñ ι as ε Ñ 0.



18 WEI-BO SU, CHUNG-JUN TSAI, AND ALBERT WOOD

3.1. The Static Manifold. We first construct the underlying topological manifold for the

desingularisations.

Definition 3.1. Let X be a compact manifold. Let ι : X Ñ M be a special Lagrangian

immersion with only transverse self-intersection points of type 1, tx1, . . . , xnu. Denote ι´1pxjq

by x´
j and x`

j for j P t1, . . . , nu. There are three positive numbers in the construction, ℏ, R1

and R2, with p1 ` 2ℏqR1 ď p1 ´ ℏqR2. The number ℏ is no greater than 1{100, and plays no

significant role. The radii R1 and R2 may have to be taken smaller in each step if necessary.

Step 1. For each self-intersection point xj , apply Lemma 2.18 to find a Darboux chart Υj :

BR2 Ñ M . Denote by ϕj the output of (2) of that lemma. We may assume ι´1p
Ťn

j“1ΥjpBR2qq

is the disjoint union of 2n topological m-dimensional balls.

Step 2. Let Cj be the special Lagrangian cone Π0 Y Πϕj , and let Σj “ Cj X S2m´1 be its

link. This link is the union of two Sm´1’s, which we label Σ´
j and Σ`

j respectively. Apply

Proposition 2.3 to find the Lagrangian neighbourhood ΦCj : UCj Ă T ˚pΣj ˆ p0,8qq Ñ Cm.

Step 3. Due to Lemma 2.19, there exists a function Aj : Σj ˆ p0, R2q Ñ R such that

Υ´1
j pιpXqztxjuq “ tpΦCj ˝ dAjqpσ, rq : σ P Σj , 0 ă r ă R2u ,

and |∇ℓAj | “ Opr3´ℓq as r Ñ 0 for ℓ P t0, 1, 2u. Note that ι´1 ˝ pΥj ˝ ΦCj ˝ dAjq induces a

diffeomorphism from Σj ˆ p0, R2q to ι´1pΥjpBR2qztxjuq.

Step 4. By Proposition 2.14, Theorem 2.6 and Remark 2.10, there exists an A ą 0 such that

for every j, the Lawlor neck Lj “ Lϕj ,A satisfies

Lj X pCmzBR1q “ tpΦCj ˝ dEjqpσ, rq : σ P Σj , r ą R1u

for some function Ej : Σj ˆ pR1,8q Ñ R with |∇ℓEj | “ Oprp2´mq´ℓq as r Ñ 8, for any ℓ ě 0.

Step 5. The static manifold N for the desingularisation of X will be constructed from the

following three types of pieces:

‚ Xo “ Xzι´1p
Ťn

j“1ΥjpBp1´ℏqR2
qq, the outer region,

‚ Qj “ Σj ˆ pR1, R2q, the intermediate region, consisting of the connected components

Q´
j “ Σ´

j ˆ pR1, R2q and Q`
j “ Σ`

j ˆ pR1, R1q,

‚ Pj “ Lj XBp1`ℏqR1
, the tip region.

For pσ, rq P Σj ˆ pp1 ´ ℏqR2, R2q Ă Qj , identify it with its image under ι´1 ˝ Υj ˝ ΦCj ˝ dAj in

Xo. For pσ, rq P Σj ˆ pR1, p1 ` ℏqR1q, identify it with its image under ΦCj ˝ dEj in Pj . The

resulting manifold is the static manifold N , which is clearly a compact, smooth manifold.

3.2. Desingularisations. In [13, section 6.1], Joyce constructs the desingularisations as a

submanifold in M . Here, we instead construct an embedding ιε : N Ñ M .

Definition 3.2. For a special Lagrangian immersion, ι : X Ñ M , with only transverse self-

intersection points of type 1, txju
n
j“1, let N be the static manifold constructed by Definition

3.1. Fix a τ P p0, 12q, whose precise value will be determined later. Given ε “ pε1, . . . , εnq with

0 ă εj ă min

#

1, pp1 ` ℏqR1q
´1
1´τ ,

ˆ

p1 ´ ℏqR2

2

˙
1
τ

+

(3.1)
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Figure 2. A diagram of the gluing procedure to construct the desingularisation

ιε : N Ñ M in the intermediate region, with the left side depicting the ball

BR2 Ă Cm and the right side depicting the cotangent bundle of Σj ˆ rεjR1, R2s

(for notational simplicity, j is suppressed). The interpolation region for the

function Qεj is shaded.

for all j, define a Lagrangian embedding ιε : N Ñ M on the pieces of N as follows. Its image,

ιεpNq, will be denoted by Nε.

Step 0. Choose a smooth, increasing function χ : p0,8q Ñ R such that χpyq P r0, 1s for all y,

and

χpyq “

$

&

%

0 when 0 ă y ď 1 ,

1 when 2 ď y ă 8 .

Step 1. For any q in the outer region Xo, ιε is set to be the original immersion, ιεpqq “ ιpqq.

Step 2. For any q in the tip region Pj , set ι
εpqq to be Υjpεjqq. Namely, in the Darboux chart,

it is simply the dilation by εj .

Step 3. The map on the intermediate region interpolates between the above two maps (refer

to Figure 2 for a diagram). The procedure is the same for all j P t1, . . . , nu. For notational

simplicity, suppress the subscript j in εj , Cj etc.

κεprq “

„

1 ´ χ

ˆ

r ´R1

ℏR1

˙ȷ

ε r ` χ

ˆ

r ´R1

ℏR1

˙

r (3.2)

for r P pR1, R2q. It is a diffeomorphism from pR1, R2q to pεR1, R2q, which will be verified

momentarily. Denote the diffeomorphism idΣ ˆκε : Σˆ pR1, R2q Ñ Σˆ pεR1, R2q by κ̄ε. Next,

for pσ, rq P Σ ˆ pεR1, R2q, let

Qεpσ, rq “ χpε´τ rqApσ, rq ` p1 ´ χpε´τ rqq ε2 Epσ, ε´1rq . (3.3)
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As noted in Remark 2.10, ε2 Epσ, ε´1rq is the potential function of εLϕ,A. It naturally gives a

Lagrangian embedding:

Υ ˝ ΦC ˝ dQε : Σ ˆ pεR1, R2q Ñ M .

Finally, ιε on Qj “ Σj ˆ pR1, R2q is set to be ιε :“ Υj ˝ ΦCj ˝ dQεj ˝ κ̄εj .

Remark 3.3.

‚ We leave it for the readers to check that Nε is the same as the desingularisation con-

structed in [13, section 6.1]. This allows us to invoke the estimates established in that

paper.

‚ For the intermediate region, Σj ˆ pεjR1, R2q is more geometric. To be precise, the

coordinate “r” is the (Euclidean) distance to the origin in the Darboux chart. However,

in order to take the “time” derivative of a potential function, we must work on the

time-independent region Σj ˆ pR1, R2q.

‚ Since ιpXq is an immersed special Lagrangian in M , and the Lawlor necks are special

Lagrangians in Cm, one can verify that Nε is of zero-Maslov1 class.

We now verify that κεj gives a diffeomorphism from pR1, R2q to pεjR1, R2q, and ιε is well-

defined. We continue to suppress the subscript j.

Lemma 3.4. Suppose that p1 ` 2ℏqR1 ď p1 ´ ℏqR2, then the function κεprq defined by (3.2) is

increasing for r P pR1, R2q. Indeed, d
drκεprq ě ε. There exists cℓ ą 0 for all ℓ P N, depending

on ℏ, R1, R2 and χ, such that
ˇ

ˇ

ˇ

dℓ

drℓ
κεprq

ˇ

ˇ

ˇ
ď cℓ for r P pR1, R2q. Moreover, κεprq “ εr when

R1 ă r ă p1 ` ℏqR1, and κεprq “ r when p1 ´ ℏqR2 ă r ă R2.

Proof. The derivative of κε is

d

dr
κεprq “ ε` p1 ´ εqχ

ˆ

r ´R1

ℏR1

˙

`
p1 ´ εqr

ℏR1
χ1

ˆ

r ´R1

ℏR1

˙

,

which is clearly no less than ε, and is bounded from above. It is not hard to see that the higher

order derivatives of κεprq are uniformly bounded on pR1, R2q.

When r ă p1`ℏqR1,
r´R
ℏR1

ă 1, and hence κεprq “ εr. It follows from p1` 2ℏqR1 ď p1´ℏqR2

that r´R1
ℏR1

ą 2 when r ą p1 ´ ℏqR2. Hence, κεprq “ r when r ą p1 ´ ℏqR2. □

Lemma 3.5. The map ιε introduced in Definition 3.2 is well-defined.

Proof. It follows from (3.1) that p1 ` ℏqR1ε ă ετ ă 2ετ ă p1 ´ ℏqR2.

Intermediate-Tip region. When R1 ă r ă p1` ℏqR1, it follows from Lemma 3.4 that κεprq “

εr, and r “ κεprq ă p1` ℏqR1ε. Thus, Qεpσ, rq “ ε2 Epσ, ε´1rq, and pQε ˝ κ̄εqpσ, rq “ ε2 Epσ, rq.

Denote dΣE by e1, and
B

BrE by e2. By (1.2) and using the coordinate system introduced around

(2.1),

ppdQεq ˝ κ̄εq pσ, rq “ ppκ̄εq: ˝ dpQε ˝ κ̄εqq pσ, rq

“ pκ̄εq:

`

σ, r, ε2e1pσ, rq, ε2e2pσ, rq
˘

“ pσ, εr, ε2e1pσ, rq, εe2pσ, rqq .

1The argument of the complex valued function Ω|Nε

dVNε
is a well-defined function on Nε.
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This coincides with the right hand side of the first equation in Remark (2.10). It follows that

ιε is well-defined in this region.

Intermediate-Outer region. When p1 ´ ℏqR2 ă r ă R2, it follows from Lemma 3.4 that

κεprq “ r, and r “ κεprq ą p1 ´ ℏqR2. In other words, κ̄ε is the identity map on this region.

One can also find that Qεpσ, rq “ Apσ, rq. Hence, ιε coincides with the original map ι. □

3.3. Weight Function. Later on, the equations on Nε will be analysed on some weighted

Hölder spaces. The weight captures the geometry of the self-intersection points and the Lawlor

necks. Here is the definition of the weight.

Definition 3.6. For a special Lagrangian immersion, ι : X Ñ M , with only transverse self-

intersection points of type 1, txju
n
j“1, let N be the static manifold constructed by Definition

3.1. Given ε “ pε1, . . . , εnq satisfying (3.1), let ιε be the Lagrangian embedding constructed by

Definition 3.2. Define a smooth function ρε : N Ñ R` as follows.

‚ Tip region. For each Lawlor neck Lj , choose a smooth function ρ̂j : Lj Ñ r1,8q

such that ρ̂jpxq depends only on |x|, and ρ̂jpxq “ |x| when |x| ą R1. For x P Pj “

Lj XBp1`ℏqR1
, ρεpxq is defined to be εj ¨ ρ̂jpxq.

‚ Intermediate region. On each Qj “ Σj ˆ pR1, R2q,

ρεpσ, rq “ κεj prq ` pR2 ´ rq

„

1 ´ χ

ˆ

R2 ´ r

ℏR2

˙ȷ

where κεj prq is given by (3.2). Note that ρεpσ, rq “ κεj prq when R1 ă r ď p1 ´ 2ℏqR2.

By the proof of Lemma 3.5, ρεpσ, rq “ R2 when r ě p1 ´ ℏqR2. Also, note that when

p1 ´ 2ℏqR2 ď r ă R2, ρεpσ, rq is independent of εj , and is increasing in r.

‚ Outer region. On the outer regionXo “ Xzι´1p
Ťn

j“1ΥjpBp1´ℏqR2
qq, extend the function

from the intermediate region by the constant R2.

3.4. Lagrangian Neighbourhoods. In [13, section 6.3]., Joyce constructs the Lagrangian

neighbourhood ΨNε : UNε Ă T ˚N Ñ M of ιεpNq as follows.

Definition 3.7. For a special Lagrangian immersion, ι : X Ñ M , with only transverse self-

intersection points of type 1, txju
n
j“1, let N be the static manifold constructed by Definition

3.1. Given ε “ pε1, . . . , εnq satisfying (3.1), let ιε be the Lagrangian embedding constructed by

Definition 3.2. Define a Lagrangian neighbourhood ΨNε : UNε Ă T ˚N Ñ M for ιε as follows.

Step 1: Tip region. Remember that the tip region Pj is a subset of the Lawlor neck Lj .

Denote by π the bundle projection of the cotangent bundle. Apply Corollary 2.8 to the Lawlor

neck Lj and ε to find an open set UεjLj Ă T ˚Lj and an embedding ΦεjLj : UεjLj Ñ Cm. Define

UNε X π´1pPjq “ UεjLj X π´1pPjq ,

ΨNε |UNεXπ´1pPjq “ Υj ˝ ΦεjLj .

Step 2: Intermediate region. As in step 2 of Definition 3.1, apply Proposition 2.3 to the cone

Cj “ Σj ˆ p0,8q to find an R`-invariant open set UCj Ă T ˚Cj and equivariant embedding



22 WEI-BO SU, CHUNG-JUN TSAI, AND ALBERT WOOD

ΦCj : UCj Ñ Cm. The map κ̄εj given by step 3 of Definition 3.2 induces a diffeomorphism

pκ̄εj q: : T
˚Qj “ T ˚pΣj ˆ pR1, R2qq Ñ T ˚pΣj ˆ pεjR1, R2qq .

Similar to (2.8), let fdQεj
pq, pq “

`

q, p` pdQεj qpqq
˘

be the self-diffeomorphism2 of T ˚pΣj ˆ

pεjR1, R2qq. Define UNε X π´1pQjq to be

`

pκ̄εj q:

˘´1
!

pσ, r, ς, sq P T ˚pΣj ˆ pεjR1, R2qq : fdQεj
ppσ, rq, ς ` sdrq P UC

)

,

and define the map to be

ΨNε |UNεXπ´1pQjq “ Υj ˝ ΦCj ˝ fdQεj
˝ pκ̄εj q: .

Step 3: Outer region. With the help of Lemma 3.4 and Lemma 3.5, UNε and ΨNε are

independent of ε on the overlap between the intermediate and outer region. One use the same

Moser’s trick argument as that in step 3 in the proof of Theorem 2.6 to extend UNε and ΨNε

over Xo. The extensions are also independent of ε.

We leave it for the readers to check the well-definedness of the open set and the embedding,

or one may consult [13, Definition 6.7].

4. The Lagrangian Mean Curvature Flow Equation

Given a special Lagrangian immersion ι : X Ñ M , with only transverse self-intersection

points of type 1, our goal for the remainder of this work is to construct u : N ˆ rΛ,8q Ñ R,
and εptq “ pε1ptq, . . . , εnptqq such that du P UNεptq for all t, and ΨNεptq ˝ du is the solution to

the mean curvature flow (where the notation du denotes the spatial exterior derivative at time

t). The equation reads
ˆ

B

Bt
ΨNεptq ˝ du

˙K

“ Hptq , (4.1)

where Hptq is the mean curvature vector of pΨNεptq ˝ duq pNq, and K denotes the orthogonal

projection onto its normal bundle. In this section, we take our first step towards this goal, by

rewriting (4.1) as a differential equation involving the potential function u. In particular, with

a suitable assumption on the topology of ι : X Ñ M (Proposition 4.5), we are able to rewrite

(4.1) as (4.11).

We will require the following basic facts about the geometry of Lagrangian submanifolds.

Suppose that F : L Ñ pM, g, J, ωq is a Lagrangian immersion, and denote by TKL the normal

bundle of F pLq. Then there is a bundle isomorphism

TKL Ñ T ˚L

η ÞÑ F ˚ pωpη, ¨ qq .

In particular, suppose that Y is a section of F ˚pTMq, then

F ˚
`

ωpY K, ¨ q
˘

“ F ˚
`

ωpY ´ Y J ¨ q
˘

“ F ˚ pωpY, ¨ qq , (4.2)

2Or equivalently, fdQε sends pσ, r, ς, sq to
`

σ, r, ς ` pdΣQεqpσ, rq, s `
BQε

Br
pσ, rq

˘

.
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using the fact that F ˚ω vanishes. Furthermore, suppose that M is a Calabi–Yau manifold, and

let Ω be its holomorphic volume form. One has the (multi-valued) function θL “ argp
F˚pΩq

dVL
q,

the Lagrangian angle, whose exterior derivative is a well-defined 1-form on L. According to

[9, section III.2.D], dθL is the image of the mean curvature vector of L under the above isomor-

phism,

F ˚ pωpHL, ¨ qq “ ´dθL . (4.3)

4.1. The Equation. The main purpose of this subsection is to rewrite (4.1) as a differential

equation in the exterior derivative of the potential u : N ˆ rΛ,8q Ñ R. Denote by Ft the

embedding ΨNεptq ˝ du, and by θpduq the Lagrangian angle of Ft : N Ñ M . Since Nεptq is of

zero-Maslov class, we may choose θpduq to be a single-valued function. By (4.3) and (4.2), (4.1)

reads

d rθpduqs “ ´F ˚
t

ˆ

ω
´

BFt

Bt
, ¨

¯

˙

. (4.4)

The right hand side will be computed on different pieces.

4.1.1. Outer Region. On the outer region Xo, ΨNεptq is independent of εptq. In this case, the

right hand side of (4.4) was computed by Behrndt in his thesis [2, Lemma 4.11]. The proof is

included for completeness.

Lemma 4.1. Let ιL : L Ñ pM, g, J, ωq be a Lagrangian embedding, and ΨL : UL Ă T ˚L Ñ M

be a Lagrangian neighbourhood. Then, given a one-parameter family of closed 1-forms ηt on L

whose image belongs to UL,

pΨL ˝ ηtq
˚

ˆ

ω
´´

BpΨL ˝ ηtq

Bt

¯K

, ¨

¯

˙

“ ´
Bηt
Bt

.

Proof. We work on UL equipped with the induced Kähler triple pΨ˚
Lpgq,Ψ˚

LpJq, ωLq. Denote by

F̃t : L Ñ UL the embedding given by ηt, i.e. F̃t :“ ΨL ˝ηt. Since ηt is closed, F̃t is a Lagrangian

embedding. By (4.2), computing the left hand side is equivalent to computing F̃ ˚
t pωLp BF̃t

Bt , ¨ qq.

Choose a local coordinate system tqiu on L. Let tpiu be the coordinate induced by tdqiu

for the fibers of T ˚L. The canonical symplectic form is
ř

i dqi ^ dpi. Write ηt as
ř

i η
i
t pqqdqi.

In terms of the pq, pq coordinate, F̃tpq1, . . . , qmq “ pq1, . . . , qm, η
1
t pqq, . . . , ηm

t pqqq, and BF̃t
Bt “

ř

i
Bη i

t
Bt

B
Bpi

. It follows that

F̃ ˚
t

´

ωL

´

BF̃t

Bt
, ¨

¯¯

“ ´F̃ ˚
t

´

ÿ

i

Bη i
t

Bt
dqi

¯

“ ´
Bηt
Bt

.

It finishes the proof of this lemma. □

It follows that on the outer region, (4.4) becomes

d

„

Bu

Bt

ȷ

“ d rθpduqs . (4.5)
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4.1.2. Tip Region. On the tip region Pj “ Lj X Bp1`ℏqR1
, the image of ιε belongs to ΥjpBR2q.

Computing the right-hand side of (4.4) is equivalent to computing F̃ ˚
t pω0p BF̃t

Bt , ¨ qq for

F̃t “ ΦεjptqLj
˝ du : Pj Ă Lj Ñ BR2 Ă Cm ,

where ΦεjptqLj
is defined in Corollary 2.8. We suppress the subscript j in the following calcula-

tions. By using the chain rule on F̃tpqq “ εptq ¨ ΦLj pq, εptq´2dupqqq,

BF̃t

Bt
“
ε1ptq

εptq
F̃t ` εptq

BpΦLj ˝ ηtq

Bt
(4.6)

where ηt “ εptq´2du.

For the first term on the right hand side of (4.6), note that F̃t is the position vector, and

thus F̃ ˚
t pω0pF̃t, ¨ qq “ F̃ ˚

t p´2λ0q. According to Corollary 2.8,

F̃ ˚
t

´

ω0

´ε1ptq

εptq
F̃t, ¨

¯¯

“ ´2
ε1ptq

εptq
pduq˚Φ˚

εptqLj
pλ0q

“ ´2
ε1ptq

εptq
¨ pduq˚

“

λLj ´ d
`

εptq2 ¨ pαLj ˝ fεptqq
˘‰

“ ´2
ε1ptq

εptq
du` 2εptqε1ptq d

“

αLj ˝ fεptq ˝ du
‰

.

The map fεptq ˝ du : Lj Ñ T ˚Lj is εptq´2du.

For the second term on the right hand side of (4.6), apply Lemma 4.1 to the map ΦLj and

the family of 1-forms ηt. One finds that

F̃ ˚
t

´

ω0

´

εptq
BpΦL ˝ ηtq

Bt
, ¨

¯¯

“ ´εptq2
Bpεptq´2duq

Bt

“ 2
ε1ptq

εptq
du´ d

„

Bu

Bt

ȷ

.

To sum up, on the tip region Pj , (4.4) becomes

d

„

Bu

Bt

ȷ

“ d
“

θpduq ` pεjptq
2q1 ¨ αLj ˝ pεjptq

´2duq
‰

. (4.7)

4.1.3. Intermediate Region. On the intermediate region Qj “ Σj ˆ pR1, R2q, the image belongs

to pΥj ˝ΦCj qpΣj ˆ p0, R2qq, where Cj “ Σj ˆ p0,8q “ Π0 YΠϕj , and ΦCj is as in Definition 3.1.

Computing the right hand side of (4.4) is therefore equivalent to computing F̃ ˚
t pωCj p BF̃t

Bt , ¨ qq for

F̃t “ fdQεjptq
˝ pκ̄εjptqq: ˝ du : Qj Ñ UCj Ă T ˚Cj .

The canonical symplectic form ωCj on T ˚Cj “ T ˚pΣj ˆ p0,8qq is ωΣj ` dr ^ ds.

In the following calculation, we suppress the subscript j, and use the equivariant coordinates

introduced around (2.1). By a direct computation,

pduqpσ, rq “ pσ, r, pdΣuqpσ, rq, pBruqpσ, rqq ,

pκ̄εptqq:pσ, r, ς, sq “

´

σ, κεptqprq, ς,
`

pBrκεptqqprq
˘´1

s
¯

,

fdQεptq
pσ, r, ς, sq “

`

σ, r, ς ` pdΣQεptqqpσ, rq, s ` pBrQεptqqpσ, rq
˘

.
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In this setting, we will also take the partial derivative of Qεpσ, rq (3.3) and κεprq (3.2) in ε. Let

F̂tpσ, rq “
`

σ, pdΣuqpσ, rq ` pdΣQεptqqpσ, κεptqprqq
˘

: Σ ˆ pR1, R2q Ñ T ˚Σ ,

F̌tpσ, rq “

ˆ

κεptqprq,
pBruqpσ, rq

pBrκεptqqprq
` pBrQεptqqpσ, κεptqprqq

˙

: Σ ˆ pR1, R2q Ñ T ˚p0,8q .

The above computation means that F̃t “ pF̂t, F̌tq, and

F̃ ˚
t

´

ωC

´

BF̃t

Bt
, ¨

¯¯

“ F̂ ˚
t

´

ωΣ

´

BF̂t

Bt
, ¨

¯¯

` F̌ ˚
t

´

pdr ^ dsq

´

BF̌t

Bt
, ¨

¯¯

. (4.8)

For the first term on the right hand side of (4.8), the same argument as that in the proof of

Lemma 4.1 shows that

F̂ ˚
t

´

ωΣ

´

BF̂t

Bt
, ¨

¯¯

“ ´
B

Bt

“

pdΣuqpσ, rq ` pdΣQεptqqpσ, κεptqprqq
‰

“ ´

ˆ

dΣ

„

Bu

Bt

ȷ˙

pσ, rq ´ ε1ptq ¨
`

dΣpBεQεptqq
˘

pσ, κεptqprqq

´ ε1ptq ¨ pBεκεptqqprq ¨
`

dΣpBrQεptqq
˘

pσ, κεptqprqq .

By a direct computation,

F̌ ˚
t

´

pdr ^ dsq

´

BF̌t

Bt
, ¨

¯¯

“ ε1ptq ¨ pBεκεptqqprq ¨ d

„

pBruqpσ, rq

pBrκεptqqprq
` pBrQεptqqpσ, κεptqprqq

ȷ

´
B

Bt

„

pBruqpσ, rq

pBrκεptqqprq
` pBrQεptqqpσ, κεptqprqq

ȷ

¨ pBrκεptqqprq dr

“ ´

ˆ

Br

„

Bu

Bt

ȷ˙

pσ, rq dr ` d

„

ε1ptq ¨ pBεκεptqqprq ¨
pBruqpσ, rq

pBrκεptqqprq

ȷ

` ε1ptq ¨ pBεκεptqqprq ¨
`

dΣpBrQεptqq
˘

pσ, κεptqprqq

´ ε1ptq ¨
`

BrpBεQεptqq
˘

pσ, κεptqprqq ¨ pBrκεptqqprq dr .

Putting these into (4.8) gives that

F̃ ˚
t pωCp

BF̃t

Bt
, ¨ qq “ d

„

´
Bu

Bt
` ε1ptq ¨

Bεκεptq

Brκεptq
¨ Bru´ ε1ptq ¨ pBεQεptqq ˝ κ̄εptq

ȷ

.

It follows that, on the intermediate region Qj , (4.4) becomes

d

„

Bu

Bt

ȷ

“ d

«

θpduq ` ε1
jptq ¨

Bεκεjptq

Brκεjptq
¨ Bru´ ε1

jptq ¨ pBεQεjptqq ˝ κ̄εjptq

ff

. (4.9)

4.1.4. Conclusion. Equations (4.5), (4.7) and (4.9) are summarised in the following proposition:

Proposition 4.2. Given a special Lagrangian immersion, ι : X Ñ M , with only transverse

self-intersection points of type 1, suppose that there is 1-parameter family of functions on N ,

u, Λ P R and εptq “ pε1ptq, . . . , εnptqq such that each εjptq satisfies (3.1) for t P rΛ,8q. Let

ΨNεptq : UNεptq Ñ M be the Lagrangian neighbourhood constructed by Definition 3.7. Let u :

N ˆ rΛ,8q Ñ R be a function such that du belongs to the open set UNεptq for t P rΛ,8q.
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Then the one-parameter family of immersions ΨNεptq ˝ du : N Ñ M is a solution to mean

curvature flow if and only if

d

„

Bu

Bt

ȷ

“

$

’

’

’

&

’

’

’

%

d
“

θpduq ` pεjptq
2q1 ¨ αLj ˝ dpεjptq

´2uq
‰

on Pj ,

d

„

θpduq ` ε1
jptq ¨

Bεκεjptq

Brκεjptq
¨ Bru´ ε1

jptq ¨ pBεQεjptqq ˝ κ̄εjptq

ȷ

on Qj ,

d rθpduqs on Xo .

(4.10)

Here, κεjptq and Qεjptq are defined in Definition 3.2; αLj is the output of Theorem 2.6 on the

Lawlor neck Lj.

4.2. On the Potential. The right hand side of (4.10) is locally exact. It is natural to ask

when the (4.10) can be integrated to the level of potentials. The Lagrangian angle θpdutq is

globally defined. We fix the branch by requiring that θNε |Xo “ θrd0s|Xo “ 0.

Each intermediate region Qj has two connected component, Q´
j and Q`

j , corresponding to

Π0 and Πϕj respectively. Let tXo
bu

n1

b“1 be the connected components of the outer region Xo. It

follows that if there exist time-dependent constants, CPj ptq, CQ´
j

ptq, CQ`
j ptq and CXo

b
ptq such

that

Bu

Bt
“

$

’

’

’

&

’

’

’

%

θpduq ` pεjptq
2q1 ¨ αLj ˝ dpεjptq

´2uq ` CPj ptq on Pj ,

θpduq ` ε1
jptq ¨

Bεκεjptq

Brκεjptq
¨ Bru´ ε1

jptq ¨ pBεQεjptqq ˝ κ̄εjptq ` CQ˘
j

ptq on Q˘
j ,

θpduq ` CXo
b
ptq on Xo

b ,

(4.11)

then 4.10 holds. We now investigate the necessary conditions for the existence of such constants.

4.2.1. Intermediate-Outer region. The overlap between the intermediate and outer region cor-

responds to Σj ˆ pp1 ´ ℏqR2, R2q Ă Qj . From Lemma 3.4, 3.5, κεjptqprq “ r, and Qεjptqpσ, rq “

Ajpσ, rq. Both functions are independent of εjptq. It follows that the matching condition of

(4.11) on the intermediate-outer region is

CXo
b
ptq “ CQ˘

j
ptq if Xo

b XQ˘
j ‰ ∅ . (4.12)

4.2.2. Intermediate-Tip region. The overlap between the intermediate and tip region corre-

sponds to Σj ˆ pR1, p1 ` ℏqR1q Ă Qj . The expression on the right hand side of (4.11) is

based on the coordinate of each piece. To compare the equation, we have to use the same

parametrization. Parametrize the overlap part of Pj by the transition map:

ΦCj ˝ dEj : Σj ˆ pR1, p1 ` ℏqR1q Ă Qj Ñ Pj .

Denote ΦCj ˝ dEj by φj . For u : Qj Ñ R, one has to plug u ˝ φ´1
j for u into (4.11) on Pj ,

and compose with φj . That is to say, (4.11) on Pj transforms into the following expression on

Σj ˆ pR1, p1 ` ℏqR1q Ă Qj :

θpduq ` pεjptq
2q1 ¨ αLj ˝ dpεjptq

´2u ˝ φ´1
j q ˝ φj ` CPj ptq

“ θpduq ` pεjptq
2q1 ¨ αLj ˝ pφjq: ˝ dpεjptq

´2uq ` CPj ptq by (1.2)

“ θpduq ` pεjptq
2q1

„

r

2

Bru

εjptq2
`
r

2
pBrEjqpσ, rq ´ Epjσ, rq ` c˘pLjq

ȷ

` CPj ptq by (2.6) .
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Since Lj has two ends, c˘pLjq are the corresponding constants produced by Theorem 2.6 for

the Lawlor neck Lj “ Lϕj ,A. Recall that we choose αLj such that c´pLjq “ 0, and so c`pLjq is

given by the right-hand side of (2.21). For convenience, we denote cj :“ c`pLjq.

For (4.11) on Qj Ą Σj ˆ pR1, p1 ` ℏqR1q, it follows from Lemma 3.4 that κεjptqprq “ εjptq r,

and Qεjptqpσ, rq “ εjptq
2 Ejpσ, εjptq

´1rq. A direct computation shows that (4.11) on Q˘
j becomes

θpduq ` ε1
jptq

r

εjptq
Bru´ ε1

jptq r2εjptqEjpσ, rq ´ εjptq r pBrEjqpσ, rqs ` CQ˘
j

ptq .

Therefore, the matching condition of (4.11) on the intermediate-tip region is pεjptq
2q1 cj `

CPj ptq “ CQ`
j

ptq and CPj ptq “ CQ´
j

ptq. The matching condition therefore reduces to

CQ`
j

ptq ´ CQ´
j

ptq “ cj ¨ pεjptq
2q1 . (4.13)

4.2.3. Conclusion. Putting (4.12) and (4.13) together gives the following proposition. In what

follows, we write b “ j
ÐÝ

if Q´
j connects to Xo

b, and similarly we write b1 “ j
ÝÑ

if Q`
j connects to

Xo
b1 .

Proposition 4.3. Assume that there exist time-dependent constants Cbptq associated with the

transverse intersection points tx1, . . . , xnu of ι : X Ñ M such that for each j P t1, . . . , nu,

C j
ÐÝ

ptq ` cj ¨ pεjptq
2q1 “ C j

ÝÑ
ptq, (4.14)

where by convention c´pLjq “ 0 and c`pLjq “: cj. Then the equation (4.10) given by Propo-

sition 4.2 can be integrated to the level of potentials (4.11), by choosing CXo
b
ptq :“ Cbptq,

CPj “ CQ´
j
:“ Cbptq when b “ j

ÐÝ
, and CQ`

j
:“ Cb1ptq where b1 “ j

ÝÑ
.

Since cj ą 0, condition (4.14) implies that every tip region must connect to two different

components of the outer region.

4.3. Some Graph Theory. The purpose of this subsection is to “visualise” the conditions

given by Proposition 4.3, and where possible convert the conditions (4.14) to conditions on the

neck parameters ε. It will be convenient to borrow some concepts from graph theory.

Firstly, we introduce a combinatorial representation of the topology of N , which will be a

directed graph, pV, Eq. The vertex set V consists of a vertex for each connected component of

the outer region Xo
b:

V “ tXo
1, . . . , X

o
n1u .

The edge set E consists of an edge for each tip region Pj , or equivalently, each xj “ ιpx˘
j q P M :

E “ tx1, . . . , xnu .

Note that for each j, the edge associated with xj goes from Xo
j

ÐÝ
to Xo

j
ÝÑ

by our notation

convention. See Figure 3 for an example.
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The incidence matrix for the directed graph pV, Eq is the n1 ˆ n “ |V| ˆ |E | matrix that

contains the relationship between the edges and vertices. It is defined to be

Bbj “

$

’

’

’

&

’

’

’

%

1 if j
ÝÑ

“ b ,

´1 if j
ÐÝ

“ b ,

0 otherwise .

For b P t1, . . . , n1 “ |V|u, let Xb be the connected component of X containing Xo
b. Denote

by V the n1 ˆ n1 diagonal matrix whose pb, bq-entry is the volume of ιpXbq in M , denoted Vb.

The proof of the following lemma is elementary linear algebra, which is left as an exercise

for the reader.

Lemma 4.4. Suppose that pV, Eq is a tree. Then, BTV´1B is a positive definite and symmetric

matrix.

In this graph-theoretic language, Proposition 4.3 can be thought of as a condition on a vertex

weighting, i.e. a function on V. In particular, we consider a time-dependent vertex weighting

mapping V Ñ C8prΛ,8qq, where Xo
b is mapped to Cbptq. The condition (4.14) may therefore

be written as

BT

»

—

—

–

Co
1 ptq
...

Co
n1ptq

fi

ffi

ffi

fl

“

»

—

—

–

c1 ¨ pε1ptq2q1

...

cn ¨ pεnptq2q1

fi

ffi

ffi

fl

. (4.15)

In the case where BTV´1B is invertible, (e.g. if pV, Eq is a tree), then (4.15) is implied by
»

—

—

–

Co
1 ptq
...

Co
n1ptq

fi

ffi

ffi

fl

“ V´1BpBTV´1Bq´1

»

—

—

–

c1 ¨ pε1ptq2q1

...

cn ¨ pεnptq2q1

fi

ffi

ffi

fl

. (4.16)

We may then define Co
b ptq by this equation, from which it follows that (4.11) holds, and so the

MCF equation may be integrated to the level of potentials. In particular, we have the following

theorem for the tree case:

Proposition 4.5. Suppose that pV, Eq is a tree. Then the equation (4.10) given by Proposition

4.2 can be integrated to the level of potentials (4.11).

Note that one can add the same (time-dependent) constant to the components of the left

hand side of (4.15), and they still obey (4.14).

5. The Linear Operator and its Approximate Kernel

In this section, we derive the linearisation of the LMCF equation (Proposition 5.2), and

construct an approximate kernel for this operator (5.12).

From now on, we will assume the conditions in Proposition 4.3 are satisfied, so that the

Lagrangian mean curvature flow can be integrated to the level of potentials. Given any smooth
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function u : N ˆ rΛ,8q Ñ R such that dupx, tq P UNεptq for all px, tq P N ˆ rΛ,8q, define a

function ξpduq : N Ñ R by

ξpduq “

$

’

’

’

&

’

’

’

%

pεjptq
2q1 ¨ αLj ˝ dpεjptq

´2uq ` CPj ptq on Pj ,

ε1
jptq ¨

Bεκεjptq

Brκεjptq
¨ Bru´ ε1

jptq ¨ pBεQεjptqq ˝ κ̄εjptq ` CQ˘
j

ptq on Q˘
j ,

CXo
b
ptq on Xo

b ,

(5.1)

(it follows from the assumption that there exist time-dependent constants CPj ptq, CQ˘
j

ptq, and

CXo
b
ptq such that ξpduq is well-defined). The LMCF on the level of the potential u near Nε is

now given by the following scalar nonlinear equation on N ˆ rΛ,8q:

Btu “ θpduq ` ξpduq. (5.2)

The function ξp0q has geometric significance. In fact, it is not hard to see that ξp0q is the

potential of the velocity of Nε, namely,

pιεq˚pωp
dιε

dt
, ¨qq “ drξp0qs. (5.3)

For the remainder of the paper, we will linearise the right hand side of (5.2) at the zero

section 0 and split it into zeroth order, linear and higher order parts, denoted as follows:

Btu “ θNε ` ξp0q ` Lε
0rus `Qεrus. (5.4)

5.1. Linearised LMCF. Denote the embedding of the zero section by ιε :“ ΦNε ˝ 0 : N ˆ

rΛ,8q Ñ M . Let u : N ˆ rΛ,8q Ñ R be a smooth function such that s dupx, tq P UNεptq for all

px, tq P N ˆ rΛ,8q and small s P R.

We first employ the following result by Behrndt [2].

Lemma 5.1. The deformation vector field of ιε in the direction of du is given by

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

ΦNε ˝ dpsuq “ Jpιεq˚∇u` pιεq˚
pV pduq (5.5)

for some pV pduq P ΓpTNq, where the gradient ∇u is computed using the induced metric gε :“

pιεq˚g on N . Moreover, the linearisation of the Lagrangian angle is given by

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

θpdpsuqq “ ∆gεu ´ x∇θ, pV pduqygε . (5.6)

Next, we linearise ξpduq. In the tip region, we have

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

ξpsduq “ pεjptq
2q1 ¨

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

αLj ˝ dpεjptq
´2suq

“ p2 log εjptqq1pdβLj qpduV q, (5.7)

where, in standard local coordinates txi, piu
m
i“1 of T ˚N , duV is the vertical vector field duV :“

Bu
Bxj

B
Bpj

on UNε . In the intermediate region, it is clear that

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

ξpsduq “ ε1
jptq ¨

Bεκεjptq

Brκεjptq
¨ Bru. (5.8)
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Finally, in the outer region, we have

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

ξpsduq “ 0. (5.9)

The above computations are summarised by the following proposition.

Proposition 5.2. The linearisation of (5.2) at the zero section is given by

Btu´ Lε
0rus :“ Btu´

d

ds |s“0

pθ ` ξqpsduq

“ Btu´ ∆gεu` x∇θ, pV pduqygε ´ Sεrus. (5.10)

where Sεrus is a first order linear differential operator defined by

Sεrus “

$

’

’

’

&

’

’

’

%

p2 log εjptqq1pdβLj qpduV q on Pj ,

ε1
jptq ¨

Bεκεjptq

Brκεjptq
¨ Bru on Q˘

j ,

0 on Xo
b .

(5.11)

5.2. Approximate Kernels. Define the function αj : Pj YQj Ñ R by

αjppq :“ αLj

ˇ

ˇ

0
ppq for p P Pj ,

αjpσ, rq :“ αLj

ˇ

ˇ

0

´

φjpσ, ε
´1
j κεj prqq

¯

for pσ, rq P Qj ,

where φj is as in Definition 2.4 for L “ Lj . By interpolating this function with constants on

the exterior region, we construct the ‘approximate kernel’ of our linearised operator.

Explicitly, given d :“ pd1, . . . , dn1q P Rn1

, we define the function wε
d to be:

wε
d :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

db on Xo
b

d j
ÐÝ

` 1
cj

pd j
ÝÑ

´ d j
ÐÝ

qαj on Pj

d j
ÐÝ
χ

`

2ε´τ
j κεj prq

˘

`

´

d j
ÐÝ

` 1
cj

pd j
ÝÑ

´ d j
ÐÝ

qαj

¯ ´

1 ´ χ
`

2ε´τ
j κεj prq

˘

¯

on Q´
j

d j
ÝÑ
χ

`

2ε´τ
j κεj prq

˘

`

´

d j
ÐÝ

` 1
cj

pd j
ÝÑ

´ d j
ÐÝ

qαj

¯ ´

1 ´ χ
`

2ε´τ
j κεj prq

˘

¯

on Q`
j

(5.12)

Remark 5.3. The functions wε
d form the ‘approximate kernel’ for the following reason. It is

shown in [13, p. 49] (see also [18, Lemma 11]) that wε
d approximate the small eigenfunctions of

the Laplacian ∆gε , with eigenvalues of the order Op|ε|m´2q. It follows that if |ε| is small, wε
d

approximate harmonic functions on Nε. Since our linearised operator Lε
0 will turn out to be a

small perturbation of the Laplacian (see Lemma 7.11), we have Lε
0w

ε
d « 0. These functions are

the obstructions to the uniform invertibility of the linearised operator.

6. A Priori Estimates for the Linear Operator

In this section, we prove a uniform injectivity estimate for solutions to the inhomogeneous

heat equation which are orthogonal to the approximate kernel (Theorem 6.7).

We will from now on assume that εptq satisfies the following estimates. Ultimately (after we

restrict attention to the particular case of special Lagrangian tori inside the complex torus), we
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will choose the neck parameter εptq so that N ε is close to a Lagrangian mean curvature flow.

In particular, ε will solve an ODE that appears as the dominant term in an integral error, and

such a solution will automatically satisfy these estimates (c.f. Remark 8.6).

Assumption 6.1. There exist Λ ą 0 and C,C 1 ą 1 such that:

C´1t´
1

m´2 ď |εptq| ď Ct´
1

m´2 , |ε1ptq| ď Ct
1´m
m´2 ď C 1εptqm´1,

and
|ε1pt1q ´ ε1pt2q|

|t1 ´ t2|α
ď Ct

1´m
m´2

` 2α
m´2 ď C 1εptqm´1´2α. (6.1)

for all t P rΛ,8q, t1, t2 P rt, 2ts, 0 ă |t1 ´ t2| ă t´
2

m´2 .

Note that Assumption 6.1 also provides the following bound on the weight function given in

Definition 3.6, for some constant C 1 ą 1:

pC 1q´1ρ
t

´ 1
m´2

ď ρεptq ď C 1ρ
t

´ 1
m´2

. (6.2)

6.1. Liouville Theorems. The proof of Theorem 6.7 is based on a blow-up argument which

ultimately reduces the question to Liouville-type theorems on various model spaces. We start

by establishing these theorems.

6.1.1. Lawlor Necks. The corresponding Liouville theorem on the Lawlor neck is obtained by

adapting the scheme of Lockhart and McOwen [20, 21]. The main machinery in the current

setting is established by Joyce in [11, section 7.3], which is summarised here for the reader’s

convenience. Note that ∆ in [11] is the Hodge Laplacian, which differs from the Laplacian in

this paper by a minus sign.

Let L Ă Cm be a Lawlor neck described by Proposition 2.14. Let ρ̂pxq : L Ñ r1,8q be the

smooth function defined in Definition 3.6. Given k P NYt0u and ν P R, define the spaces Ck
ν pLq

to be the set of locally Ck functions whose weighted norm

}u}Ck
ν

“

k
ÿ

j“0

sup
L

ˇ

ˇρ̂j`ν ∇ju
ˇ

ˇ

g

is finite. The covariant derivative and the norm are computed using the induced metric g “ ι˚Lg0,

where ιL : L Ñ Cm is the inclusion map. The C8
ν space is defined to be the intersection of all

Ck
ν spaces: C8

ν pLq “
Ş8

k“0C
k
ν pLq.

Similarly, the weighted Sobolev spaces W k,p
δ is defined by the norm

}u}
Wk,p

ν
“

˜

k
ÿ

j“0

ż

L

ˇ

ˇρ̂j`ν ∇ju
ˇ

ˇ

p
ρ̂´m dVg

¸1{p

.

As usual, denote W 0,p
ν pLq by Lp

νpLq. For any ν P R, p ą 1, and k ě 2, the Laplace operator

∆g : C8
cptpLq Ñ C8

cptpLq extends to a continuous operator

∆k,p
ν :W k,p

ν pLq ÝÑ W k´2,p
ν`2 pLq .
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The operator ∆k,p
ν is Fredholm for generic ν. Here is the complete characterization. The

Lawlor neck L is asymptotic to Π0 Y Πϕ near infinity. The link Σ of Π0 Y Πϕ is the disjoint

union of two round spheres. Let

DΣ “ tν P R | νp´ν `m´ 2q is an eigenvalue of ∆Σu .

It is not hard to verify that DΣ is a discrete subset of R satisfying m ´ 2 P DΣ, 0 P DΣ, and

DΣ X p2 ´m, 0q “ ∅. It turns out that ∆k,p
ν is Fredholm if and only if ν P RzDΣ.

Its Fredholm index, Ind
´

∆k,p
ν

¯

“ dimker
´

∆k,p
ν

¯

´ dim coker
´

∆k,p
ν

¯

, depends only on the

connected components of RzDΣ Q ν, and is given by

Ind
´

∆k,p
ν

¯

“ NΣpνq , (6.3)

where NΣ : R Ñ Z is defined by

NΣpνq “

$

&

%

´
ř

γPDΣXp0,νq mΣpγq when ν ą 0 ,
ř

γPDΣXrν,0s mΣpγq when ν ď 0 ,

and mΣpγq is the multiplicity of the eigenvalue γp´γ `m´ 2q of ∆Σ.

From now on, focus on the Fredholm case, ν R DΣ. According to the weighted elliptic

estimate and the weighted Sobolev embedding, any u P kerp∆k,p
ν q Ă W k,p

ν pLq must be smooth,

u P C8
ν pLq. By using the maximum principle, if u P kerp∆k,p

ν q Ă W k,p
ν pLq with ν ą 0, then

u ” 0. In other words, ∆k,p
ν is injective when ν ą 0.

Lemma 6.2. Let u P W k,p
ν pLq with ν ą 0. Suppose ∆gu “ 0 in the distributional sense, then

u ” 0.

Remark 6.3. By the duality property, the cokernel of ∆k,p
ν is isomorphic to the dual space of

the kernel of ∆k,q
´ν`m´2, where 1{p ` 1{q “ 1. Thus, ∆k,p

ν is a surjective when ν ă m ´ 2. It

follows that ∆k,p
ν is an isomorphism when ν P p0,m´ 2q.

We now prove a Liouville theorem for the heat equation on the Lawlor neck.

Proposition 6.4. Let u : L ˆ p´8, 0q Ñ R be a solution to the heat equation Btu “ ∆gu.

Suppose there exist c ą 0 and ν P p0,m ´ 2q such that |up ¨ , tq| ď Cρ̂´ν for all t P p´8, 0q.

Then, u ” 0.

Proof. By the the weighted Schauder estimate ([2] and [31, section 3.2]) and the bootstrapping

argument, up ¨ , tq P Ck
ν pLq for any k ě 2. It follows that |p∆gqℓu| ď Cℓρ̂

´ν´2ℓ for any ℓ P N.

Fix ℓ with 4ℓ ą m ´ 2ν, and let w “ p∆gqℓu. Clearly, Btw “ ∆gw. Consider Eptq “
1
2

ş

Lw
2p ¨ , tq dVg. The choice of ℓ guarantees that Eptq ă 8. Its derivative is

d

dt
Eptq “

ż

L
w∆gw dVg “ ´

ż

L
|∇w|2g dVg ď 0 ,

and hence Eptq is non-increasing in t. It follows that limtÑ´8 Eptq exists, and denote the limit

by E.

We claim that E “ 0, which implies that w ” 0. Pick a sequence tj Ñ ´8. Define wpjqpx, tq

to be wpx, tj ` tq. After passing to a subsequence, wpjq converges smoothly on every compact
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subset of LˆR to an eternal solution pw : LˆR Ñ R of the heat equation. Since | pw| ď Cρ̂´ν´2ℓ,

it follows from the dominated convergence theorem that
ż

L
pwp ¨ , tq2 dVg “ lim

tjÑ´8

ż

L
wp ¨ , tj ` tq2 dVg “ 2E for all t P R .

Taking derivative in t give

0 “
d

dt

1

2

ż

L
pwp ¨ , tq2 dVg “ ´

ż

L
|∇ pwp ¨ , tq|2g dVg .

It follows that pwp ¨ , tq is a time-dependent constant function. Since pwp ¨ , tq tends to zero at the

end of L, the constant must be 0. Hence, E “ 0 as claimed.

In other words, p∆gqℓu ” 0. According to Lemma 6.2, u ” 0. □

6.1.2. Punctured m-Planes. The model space for the intermediate region is the cone over the

link. In our setting, it is the union of two punctured Rm’s, endowed with the standard metric

on Rm.

Proposition 6.5. Let u : pRmzt0uqˆp´8,Λq Ñ R be a solution to the heat equation Btu “ ∆gu,

for some Λ P R. Suppose that there exist C ą 0 and 0 ă ν ă m ´ 2 such that |∇ℓupx, tq| ď

C|x|´ν´ℓ for all t P p´8,Λq and ℓ P t0, 1, 2u. Then, u ” 0.

Proof. This proof is a modification of the proof of [3, Proposition 5.3]. It follows from the rate

condition that u satisfies the heat equation on Rm in the sense of distribution.

Fix any t0 P p´8,Λq. For any t ą 0 and any x0 P Rmzt0u,

upx0, t0q “

ż

Rmzt0u

1

p4πtq
m
2

e´
|x´x0|2

4t upx, t0 ´ tq dx.

Now, fix x0, and suppose that t ą 9|x0|2. When |x ´ x0|2 ď t, it follows from the triangle

inequality that |x| ă 4
3

?
t, and thus

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x´x0|2ďt

1

p4πtq
m
2

e´
|x´x0|2

4t upx, t0 ´ tq dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď C1 t
´m

2

ż

|x|2ă 16
9
t
|x|´νdx ď C2 t

´ ν
2 .

When |x ´ x0|2 ě t, it follows from the triangle inequality that |x| ě 2
3

?
t and |x ´ x0| ď 1

2 |x|.

Since e´s ď C3 s
´m

2 for any s ą 0,
ˇ

ˇ

ˇ

ˇ

1

p4πtq
m
2

e´
|x´x0|2

4t

ˇ

ˇ

ˇ

ˇ

ď C4 |x´ x0|´m ď C5 |x|´m.

Therefore,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x´x0|2ět

1

p4πtq
m
2

e´
|x´x0|2

4t upx, t0 ´ tq dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď C6

ż

|x|2ě 4
9
t
|x|´ν´mdx ď C7 t

´ ν
2 .

Putting the estimates together gives

|upx0, t0q| ď pC2 ` C7q t´
ν
2 (6.4)

whenever t ą 9|x0|2. By taking t Ñ 8, it implies that u ” 0. □



34 WEI-BO SU, CHUNG-JUN TSAI, AND ALBERT WOOD

6.1.3. Immersed Special Lagrangians. We now return to our original special Lagrangian im-

mersion ι : X Ñ M , and recall that X splits into smooth compact connected components

X “
Ťn1

b“1Xb. Using the notation of Definition 3.1 and in analogy with Definition 3.6, there

exists a continuous function ρ : X Ñ r0,8q such that

‚ ρ ˝ ι´1 ˝ Υj on BR1 X Υ´1
j pιpXqq is the distance to the origin, with respect to g0;

‚ ρ ” R2 on X z
`

Ťn
j“1 ι

´1pΥjpBR2qq
˘

;

‚ the zero set of ρ is exactly tx1, . . . , xnu;

‚ ρ is smooth on Xztx1, . . . , xnu.

The manifold X is endowed with the smooth metric ι˚g.

Proposition 6.6. Let b P t1, . . . , n1u, and let u : Xbzι
´1ptx1 . . . , xnuq ˆ p´8, 0q Ñ R be a

solution to the heat equation Btu “ ∆u. Suppose that
ż

Xj

udVι˚g “ 0 and |∇ℓup¨, tq| ď Cρ´ν´ℓ

for some C ą 0, ν P p0,m´ 2q, and all t P p´8, 0q and ℓ P t0, 1, 2u. Then, u vanishes on Xb.

Proof. Note that Xb is a compact, smooth manifold, with the smooth metric ι˚g. It follows

from the growth rate condition that u obeys the linear heat equation on Xb in the sense of

distribution. Hence, u must be a constant on Xb. It follows from the zero integration condition

that u ” 0. □

6.2. A Priori Estimate for the Heat Operator. We now apply our Liouville theorems to

prove an a priori sup estimate via a blowup argument. In what follows, we recall the weight

function ρε of Definition 3.6, we denote the induced metric on N by gε :“ pιεq˚g, and define

the following weighted norm for tensors on N :

}T }µ,ν,Λ :“ sup
px,tqPNˆrΛ,8q

tµρν
t

´1
m´2

pxq|T |gε

Theorem 6.7. Let ε : rΛ,8q Ñ Rn
`, be a smooth function satisfying (3.1) and (6.1), and fix

pµ, νq P p ν`2
m´2 ,8qˆp0,m´2q. Then there exists a constant C ą 0 with the following significance.

Suppose u, ψ : N ˆ rΛ,8q Ñ R satisfy }ψ}µ,ν,Λ ă 8 and solve the Cauchy problem:
$

&

%

Btupx, tq “ ∆gεruspx, tq ` ψpx, tq, px, tq P N ˆ rΛ,8q,

upx,Λq “ 0, x P N
(6.5)

and u satisfies the orthogonality conditions
ż

N
upx, tqwε

bpxq dVgεpxq “ 0, t P rΛ,8q (6.6)

for all b P t1, . . . , n1u. Then

sup
NˆrΛ,8q

tµρν
t

´ 1
m´2

|u| ď C sup
NˆrΛ,8q

tµρν`2

t
´ 1

m´2
|ψ|. (6.7)

Proof. Assume that the estimate does not hold. Then there exist sequences upjq : N ˆrΛ,8q Ñ

R, ψpjq : N ˆ rΛ,8q Ñ R, and εpjq : rΛ,8q Ñ Rn
`, satisfying the following properties:
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‚ upjq, ψpjq solve the Cauchy problem (6.5) for each j P N.
‚ upjq satisfies the orthogonality conditions (6.6) for each j P N.
‚ supNˆrΛ,8q t

µρν
t

´ 1
m´2

|upjq| ą j ¨ supNˆrΛ,8q t
µρν`2

t
´ 1

m´2
|ψpjq| for all j P N.

Thus, for each j, we can pick px1
j , tjq P N ˆ rΛ,8q such that

sup
NˆrΛ,tjs

tµρν
t

´ 1
m´2

|upjq| “ tµj ρ
ν

tj
´ 1

m´2
px1

jq|upjqpx1
j , tjq| ě

j

2
¨ sup
NˆrΛ,tjs

tµρν`2

t
´ 1

m´2
|ψpjq|. (6.8)

By interior parabolic Schauder estimate, we must have tj Ñ 8. By passing to a subsequence

we assume that Λ ă 1
2 tj , so that in particular Λ ´ tj ă ´1

2 tj ă 0. Defining

∥u∥µ,ν,Λ,j :“ sup
NˆrΛ,tjs

tµρν
t

´ 1
m´2

|u|,

we rescale upjq, ψpjq by ∥upjq∥´1
µ,ν,Λ,j so that in addition to the three properties above,

tµj ρ
ν

tj
´ 1

m´2
px1

jq|upjqpx1
j , tjq| “ ∥upjq∥µ,ν,Λ,j “ 1, ∥ψpjq∥µ,ν`2,Λ,j Ñ 0. (6.9)

By passing to a subsequence, we assume that x1
j converges on N , to x8. According to where

the limit point is, we have the following 3 cases. For convenience, we denote the pullback metric

by gj :“ pιε
pjq

q˚g.

Case 1. limjÑ8 t
1

m´2

j ρ
t

´ 1
m´2

j

px1
jq ă 8

By the definition of ρε, on passing to a subsequence it follows that there exists k such that

for sufficiently large j, x1
j P Pk Y Q˘

k . We therefore will work in this region, suppressing the

index k (e.g. Lk will be written L, ε
pjq

k will be written εpjq). We define the scaling factors λj ,

the region P
pjq
s , the map S

pjq

t and the rescaled functions rupjq, rψpjq as follows:

λj :“ εpjqptjq Ñ 0, tpsq :“ tj ` λ2js,

P pjq
s :“ P Y Σ ˆ pR1, ε

pjqptpsqqτ´1q, P pjq :“ tpy, sq : s P r´1
2λ

´2
j tj , 0q, y P P pjq

s u

Spjq
s : Σ ˆ pR1, ε

pjqptpsqqτ´1q Ñ Σ ˆ pεpjqptpsqqR1, R2q, Spjq
s pp, rq :“ pp, εpjqptpsqqrq

rupjq : P pjq Ñ R, rupjqpy, sq :“

$

&

%

tµj λ
ν
ju

pjqpy, tpsqq for y P P,

tµj λ
ν
ju

pjq
´

pκεpjqptpsqqq
´1 ˝ S

pjq
s pyq, tpsq

¯

for y P P
pjq
s zP,

rψpjq : P pjq Ñ R, rψpjqpy, sq :“

$

&

%

tµj λ
ν`2
j ψpjqpy, tpsqq for y P P,

tµj λ
ν`2
j ψpjq

´

pκεpjqptpsqqq
´1 ˝ S

pjq
s pyq, tpsq

¯

for y P P
pjq
s zP.

Define x : P pjq Ñ N , xpy, sq :“ pκεpjqptpsqqq
´1 ˝ S

pjq
s pyq, and yj :“ pS

pjq

0 q´1 ˝ κεpjqptjqpx
1
jq, and

define the time-independent weight function ρ̂pjq : P pjq Ñ R` as in Definition 3.6 (without the

outer region interpolation) using the standard embedding of the Lawlor neck Lk into Cm. We

also endow P
pjq
s with the rescaled metric (writing εpjq for εpjqptpsqq for simplicity):

g1
jpy, sq :“

$

&

%

λ´2
j ι˚

εpjqL
g0 for y P P

λ´2
j φ˚ι˚

εpjqL
g0 for y P P

pjq
s zP.
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Up to pullback, this metric is simply g1
jp¨, sq “ λ´2

j gjp¨, tpsqq. Note that εpjqptjq
´2pˆεpjqq˚g0 Ñ

g0 locally uniformly in C8. We therefore see that the metric g1
j converges in C

8
loc to ι

˚
Lg0 “ gL:

lim
jÑ8

λ´2
j ι˚εpjqLg0 “ pιLq˚g0, lim

jÑ8
λ´2
j φ˚ι˚εpjqLg0 “ φ˚g0.

Now, the Case 1 assumption along with (6.2) imply that, after passing to a subsequence, there

exists a constant C such that for all j P N with x1
j P Q˘:

εpjqptjq
´1 ρεpjqptjqpx

1
jq ă C

ùñ κεpjqptjqprpx1
jqq ă Cεpjqptjq ă εpjqptjq

τ ,

implying that yj P P
pjq

0 lies in a compact region independent of j. Defining the time-independent

weight function ρ̂ : P
pjq
s Ñ R` as in Definition 3.6, we may use (6.9) and Assumption 6.1 to

derive bounds on rupjq, rψpjq as follows:

‚ tµρ
t

´ 1
m´2

pxqν |upjqpx, tq| ď 1 for x P N , t P rΛ, tjq

ùñ |rupjqpy, sq| ď

˜

tj
tj ` λ2js

¸µ
¨

˝

εpjqptjq

ρ
tpsq

´ 1
m´2

pxpyqq

˛

‚

ν

for s P rλ´2
j pΛ ´ tjq,8q, y P P

pjq
s ,

ùñ |rupjqpy, sq| ď Cρ̂pyq´ν for s P r´1
2λ

´2
j tj , 0q, y P P

pjq
s .

‚ ∥ ψpjq ∥µ,ν`2,j Ñ 0

ùñ | rψpjqpy, sq|

˜

tj ` λ2js

tj

¸µ
¨

˝

ρ
tpsq

´ 1
m´2

pxpy, sqq

εpjqptjq

˛

‚

ν

Ñ 0 uniformly on P pjq

ùñ | rψpjqpy, sq| Ñ 0 uniformly on P pjq.

Now we calculate the PDE that is satisfied by rupjq and rψpjq. We consider the tip and interme-

diate regions of P pjq seperately.

In the tip region, κ´1
εpjqptq

˝ S
pjq

t “ Id. Then, by (5.10) and (6.5):

Bsrupjqpy, sq “ tµj λ
ν`2
j Bsu

pjqpxpy, sq, tpsqq “ tµj λ
ν`2
j

´

∆gjptqu
pjq ` ψpjq

¯

“ ∆g1
jpsqqrupjq ` rψpjq.

In the intermediate region,

Bsrupjqpy, sq “ tµj λ
ν`2
j

«

Btu
pjqpx, tq `

ˆ

dκεpjq

dr
pxq

˙´1 dupjq

dr
px, tq

dεpjq

dt

ˆ

´
dκεpjq

dεpjq
pxq ` rpxq

˙

ff

“ tµj λ
ν`2
j

«

∆gjptqu
pjq ` ψpjq ´

ˆ

dκεpjq

dr
pxq

˙´1 dupjq

dr
px, tq

dεpjq

dt

ˆ

´
dκεpjq

dεpjq
pxq ` rpxq

˙

ff

“ ∆g1
jpsqrupjq ` rψpjq ´ λ2j

ˆ

dκεpjq

dr
pxq

˙´1 dεpjq

dt

ˆ

´
dκεpjq

dεpjq
pxq ` rpxq

˙

drupjq

dr
py, sq.

We note that

ˇ

ˇ

ˇ

ˇ

λ2j

´

dκ
εpjq

dr pxq

¯´1
dεpjq

dt

´

´
dκ

εpjq

dεpjq pxq ` rpxq

¯

ˇ

ˇ

ˇ

ˇ

ď C ¨ tpsq
1

m´2 ¨ t
´ 2

m´2

j , so that the

coefficient of drupjq

dr py, sq converges to 0 on compact spacetime regions as j Ñ 8. Therefore,

passing to a subsequence, we have the convergences yj Ñ y8, pP pjq, g1
jq Ñ pL ˆ p´8, 0q, gLq
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locally smoothly, rupjq Ñ u in C1,2
loc ,

rψpjq Ñ 0 in C0
loc, where u is an ancient solution to the heat

equation

Bsupy, sq “ ∆upy, sq, py, sq P Lˆ p´8, 0q,

satisfying |up¨, τq| ď cρ̂´ν . Finally, u is nontrivial since upy8, 0q “ 1 by (6.9). This contradicts

Proposition 6.4.

Case 2. limjÑ8 t
1

m´2

j ρ
t

´ 1
m´2

j

px1
jq “ 8 and limjÑ8 ρ

t
´ 1

m´2
j

px1
jq “ 0.

In this case,

ρ
t

´ 1
m´2

j

pxq “

$

&

%

t
´ 1

m´2

j rpxq near R1

R2 near R2,

and so the Case 2 assumption implies that there exists k such that x1
j P ΣkˆpR1, p1´ℏqR2q, after

passing to a subsequence. Suppresing the index k as before, we define the rescaled intermediate

region Q
pjq
s and rescalings of the functions upjq and ψpjq:

λj :“ κεpjqptjqprpx1
jqq “ ρεpjqptjqpx

1
jq Ñ 0.

Qpjq
s :“ Σ ˆ pλ´1

j εpjqptj ` λ2jsqR1, λ
´1
j p1 ´ ℏqR2q, Qpjq :“

!

py, sq : y P Qpjq
s , s P r´1

2λ
´2
j tj , 0q

)

Spjq : Qpjq Ñ Σ ˆ p0, R2q, Spjqpσ, rq :“ pσ, λjrq

rupjq : Qpjq Ñ R, rupjqpy, sq :“ tµj λ
ν
ju

pjq
´

κ´1
εpjq ˝ Spjqpyq, tj ` λ2js

¯

rψpjq : Qpjq Ñ R, rψpjqpy, sq :“ tµj λ
ν`2
j ψpjqpκ´1

εpjq ˝ Spjqpyq, tj ` λ2jsq.

Define tpsq, xpy, sq, yj and g1
j as in Case 1. Using (6.9) we may derive bounds for rupjq:

tµρ
t

´ 1
m´2

pxqν |upjqpx, tq| ď 1 for t P rΛ, tjs,

ùñ |rupjqpy, sq| ď

˜

tj
tj ` λ2js

¸µ

rpyq´ν for s P rλ´2
j pΛ ´ tjq, 0s,

ùñ |rupjqpy, sq| ď C rpyq´ν for s P r´1
2λ

´2
j tj , 0s.

The linear PDE satisfied by rupjq is given by (5.10) and (6.5) in the same way as for Case 1 in

the intermediate region:

Bsu
pjq “ ∆g1

jpsqrupjq ` rψpjq ` λ2j

ˆ

dκεpjq

dr
pxq

˙´1 dεpjq

dt

dκεpjq

dεpjq
pxq

drupjq

dr
py, sq.

As in Case 1, after passing to a subsequence we have the convergences rupjq Ñ u, rψpjq Ñ 0,

Qpjq Ñ pΣ ˆ p0,8qq ˆ p8, 0q, g1
j Ñ g, where g is the metric on Σ ˆ p0,8q corresponding to the

flat metric on two punctured copies of Rm, and u satisfies

|upy, sq| ď c rpyq´ν ,
Bu

Bs
“ ∆gu for s P p´8, 0q.
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Furthermore, by interior parabolic Schauder estimate, u satisfies |∇kupy, sq| ď C|y|´ν´k, for

k P t0, 1, 2u. Finally, to show that u is nontrivial, note that

rpyjq “ λ´1
j ρ

t
´ 1

m´2
j

px1
jq “

ρ
t

´ 1
m´2

j

px1
jq

ρεpjqptjqpx
1
jq

P I :“

ˆ

1

Cε
, Cε

˙

.

So passing to a subsequence if necessary, yj Ñ y P Σ ˆ I, and by (6.9), upy, 0q ě 1
2 . This

contradicts Proposition 6.5.

Case 3. limjÑ8 ρ
t

´ 1
m´2

j

px1
jq ą 0.

In this case, taking C as in Assumption 6.1, we make the definitions:

Q
pjq

k :“
!

py, sq : s P r´1
2 tj ,8q, y P Σk ˆ rCptj ` sq´ 1

m´2R1, R2s

)

Xpjq :“
n

ď

k“1

Q
pjq

k Y
`

Xo ˆ r´1
2 tj ,8q

˘

rupjq : Xpjq Ñ R, rupjqpy, sq :“

$

&

%

tµj u
pjqpκ´1

εpjqpyq , tj ` sq on Q
pjq

k

tµj u
pjqpy, tj ` sq on Xo ˆ rΛ ´ tj ,8q,

ψ̃pjq : Xpjq Ñ R, rψpjqpy, sq :“

$

&

%

tµj ψ
pjqpκ´1

εpjqpyq , tj ` sq on Q
pjq

k

tµj ψ
pjqpy, tj ` sq on Xo ˆ rΛ ´ tj ,8q,

We equip Xpjq with the metric g1
jp¨, sq :“ gjp¨, tj ` sq, so that we have the convergence

pXpjq, g1
jq Ñ pXzι´1ptx1, . . . , xnuq, ι˚gq in C8

loc. We may derive bounds on rupjq and rψpjq as

in Cases 1 and 2:

|rupjqpy, sq| ď C ρ
t

´ 1
m´2

j

pκ´1
εpjqpyqq´ν for s P r´1

2 tj , 0q,

| rψpjqpy, sq| Ñ 0 uniformly on compact subsets.

After passing to a subsequence, we have convergences rupjq Ñ u, rψpjq Ñ ψ, where u satisfies

upy, sq ď cρpyq for ρ : X Ñ r0,8q as in section 6.1.3. The Case 3 assumption implies that

ρ
t

´ 1
m´2

j

px1
jq Ñ P ą 0 so that x8 P Xzι´1ptx1, . . . , xnuq, and (6.9) implies that upx8, 0q ‰

0. It follows from (6.5) that Bsu “ ∆ι˚gu, and (6.6) implies that
ş

Xbzι´1ptx1,...,xnuq
u dVι˚g “

0 for all b P t1, . . . , n1u. Finally, by interior parabolic Schauder estimate (see for example,

[2, Proposition 7.3]), u satisfies |∇kupy, τq| ď Cρpyq´ν´k, for k P t0, 1, 2u. Proposition 6.6 now

gives a contradiction. □

7. Existence Theory for the Torus Case

For the remainder of this work, we will focus on a particular case of the preceding theory -

flat special Lagrangians in complex tori.

Assumption 7.1. The Calabi–Yau manifold M and immersed special Lagrangian ι : X Ñ M

take the following form:
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Figure 3. Three figures of two Lagrangian tori X1, X2 inside a complex torus

M with a type 1 transverse intersection. In order, the figures depict: the graph-

ical representation of section 4.3, a topological representation, a diagrammatic

representation of the containment X1 YX2 Ă M .

‚ M is a complex torus, i.e. M :“ Cm{Γ for a lattice Γ (where m ě 3), and the Calabi–

Yau structure is induced from the standard one on Cm.

‚ The underlying manifold X of the special Lagrangian immersion is the disjoint union

of two m-tori, X “ X1 Y X2, and ι : Xb Ñ M is a special Lagrangian embedding for

b “ 1, 2. The map ι : X Ñ M has only one transverse self-intersection point of type 1

(as defined in Definition 2.17), which is denoted by x‹ P M , and it may assumed that

ι´1px‹q “ tx´
‹ , x

`
‹ u, where x´

‹ P X1 and x`
‹ P X2.

Remark 7.2. It is fairly easy to construct examples. Consider the two planes Π0 and Πϕ as

(2.17) with k “ 1. Choose a basis for Π0 and a basis for Πϕ. Set the lattice to be generated by

them.

Working under Assumption 7.1, the preceding theory has the following simplifications:

‚ The map Υ : BR Ñ M of Lemma 2.18 may be taken to be the composition of an affine

isometry A P SUpmq ˙ Cm and the torus projection πΓ : Cm Ñ M ; Υ “ πΓ ˝ A. It

therefore satisfies the following strengthened properties: Υ˚g “ g0, Υ
˚Ω “ Ω0.

‚ For the desingularisation of ι : X Ñ M constructed in section 3, only one Lawlor neck

is needed. It is denoted by L. The constant in (2.21) is denoted by cL :“ c`pLq (and

c´pLq is set to be 0).

‚ The vector function εptq becomes a scalar function εptq.

‚ The desingularisation is denoted ιε : N Ñ N ε. N ε consists of one tip region, P , one

intermediate region with two connected components, Q˘, and two connected compo-

nents of the outer region, Xo “ Xo
1 YXo

2 . The graph representation of X as in section

4.3 consists of two vertices, V “ tXo
1 , X

o
2u with a single directed edge between them,

E “ tP u. Namely, n “ 1, n1 “ 2.

‚ The asymptotic cone C matches precisely with the outer region Xo, i.e. A “ 0.
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‚ The approximate kernel defined in section 5.2 is spanned by two functions t1, wε
p0,1q

u.

To simplify the computations, we work instead with the basis t1, wεu, where wε is

normalised to be orthogonal to 1:

wε :“ wε
p0,1q ´

1

VolpN εq

ż

N
wε

p0,1qdVgε . (7.1)

Since the underlying graph is a tree, Proposition 4.5 implies that the Lagrangian mean curvature

flow equation may be expressed on the level of potential functions by (5.2). In particular, we

define ξpduq by (5.1) using the following specific time-dependent constants:

CP ptq “ CQ´ptq “ CXo
1
ptq :“ ´

cLV2
V1 ` V2

dε2ptq

dt
,

CQ`ptq “ CXo
2
ptq :“

cLV1
V1 ` V2

dε2ptq

dt
, (7.2)

where as before, Vj denotes the volume of ιpXjq for j P t1, 2u.

Our goal is now to find Λ, ε and u solving (5.2) under Assumption 7.1.

7.1. Estimates in the Torus Case. We will require the following estimates for the induced

metric gε, its volume form dVgε , the nontrivial approximate kernel element wε, and the La-

grangian angle. Throughout we use Assumption 6.1 for estimating the time derivative and

Hölder derivative of εptq, and for convenience use the notation {B
α
t1,t2f :“ fpt1q´fpt2q

|t1´t2|α
for the

Hölder quotient.

Lemma 7.3. Let g0 be the Euclidean metric on Rm, and gC be the cone metric on Σ ˆ p0,8q.

Under Assumptions 6.1 and 7.1, the induced metric gε on N satisfies

gε “ g0 on Xo
b Y pΣ ˆ r2ετ , R2qq, b “ 1, 2, (7.3)

|∇kpgε ´ gCq|gC pσ, rq “

$

&

%

Opε2p1´τqm´τkq, pσ, rq P Σ ˆ pετ , 2ετ q,

Opr´2m´kε2mq, pσ, rq P Σ ˆ pεR1, ε
τ q,

, k “ 0, 1, 2, (7.4)

gε “ ε2gL on P . (7.5)

The volume form dVgε on the tip region P satisfies (for t1, t2 P rt, 2ts, 0 ă |t1 ´ t2| ă t´
1

m´2 ):

dVgε “ εm dVL, Bε dVgε “ Opεm´1q dVL, Bt dVgε “ Opεptq2m´2q dVL, (7.6)

|{B
α
t1,t2 dVgεptq| “ Opεptq2m´2αq dVL, (7.7)

|{B
α
t1,t2Bt dVgεptq| “ Opεptq2m´2´2αq dVL. (7.8)
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The volume form dVgε on Σ ˆ pεR1, 2ε
τ q satisfies (for t1, t2 P rt, 2ts, |t1 ´ t2| ă t´

2
m´2 ):

dVgε “

$

&

%

p1 `Opεmp1´τqqq dVC , pσ, rq P Σ ˆ pετ , 2ετ q,

p1 `Opr´mεmqq dVC , pσ, rq P Σ ˆ pεR1, ε
τ q,

(7.9)

BεdVgε “

$

&

%

Opεmp1´τq´1q dVC , pσ, rq P Σ ˆ pετ , 2ετ q,

Opr´mεm´1q dVC , pσ, rq P Σ ˆ pεR1, ε
τ q,

(7.10)

|{B
α
t1,t2 dVgεptq| “

$

&

%

Opεmp2´τq´2αq dVC , pσ, rq P Σ ˆ pετ , 2ετ q,

Opr´mε2m´2αq dVC , pσ, rq P Σ ˆ pεR1, ε
τ q,

(7.11)

|{B
α
t1,t2BtdVgεptq| “

$

&

%

Opεmp2´τq´2´2αq dVC , pσ, rq P Σ ˆ pετ , 2ετ q,

Opr´mε2m´2´2αq dVC , pσ, rq P Σ ˆ pεR1, ε
τ q.

(7.12)

Proof. We prove only the estimates for the tip region P Ă N ; the arguments for the other

regions are analogous. Choose local coordinates for P , so that the induced metric is pgεqij “

g
´

Bιε

Bxi
, Bιε

Bxj

¯

. It follows that

pgεqij “ Opε2q, Bεpgεqij “ g

ˆ

B2ιε

BxiBε
,

Bιε

Bxj

˙

` g

ˆ

Bιε

Bxi
,

B2ιε

BxjBε

˙

. (7.13)

We note that ιε “ ΥpεptqιLq, where ιL : L Ñ Cm is the inclusion map of the Lawlor neck, so
dιε

Bε “ Υ˚ pιLq “ Op1q. Therefore, we calculate using (7.13):

Bεpgεqij “ Opεq, B2
εpgεqij “ 2g

ˆ

B2ιε

BxiBε
,

B2ιε

BxjBε

˙

“ Op1q, Btpg
εqij “ ε1ptqBεpgεqij “ Opεmq

{B
α
t1t2pgεqij “ Bεpgεqij

ˇ

ˇ

t“b
¨ ε1paq ¨ |t1 ´ t2|1´α “ Opεm`2´2αq

{B
α
t1t2Btpg

εqij “ {B
α
t1t2pε1Bεpgεqijq “ {B

α
t1t2pε1qBεpgεqij

ˇ

ˇ

t“t1
` ε1pt2q{B

α
t1t2Bεpgεqij “ Opεm´2αq,

where a, b P rt1, t2s. Using these estimates, along with the fact that there exist c, C such that

c ε2m ď detpgεq ď C ε2m, we may bound the volume element and its derivatives as required. □
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Lemma 7.4. Under Assumptions 6.1 and 7.1, the function wε satisfies (for t1, t2 P rt, 2ts,

|t1 ´ t2| ă t´
2

m´2 ):

|wε| ď 1,

|Btw
ε| “

$

&

%

Opεm´2q on κ´1
ε pΣ ˆ pεR1, ε

τ qq,

0 otherwise,

|{B
α
t1,t2Btw

ε| “

$

&

%

Opεm´2´2αq on κ´1
ε pΣ ˆ pεR1, ε

τ qq

0 otherwise,

|∆gεw
ε| ď

$

&

%

κεprq´mεm´2 on κ´1
ε pΣ ˆ pεR1, ε

τ qq,

0 otherwise,

|{B
α
t1,t2∆gεw

ε| ď

$

&

%

κεprq´mε2m´2´2α on κ´1
ε pΣ ˆ pεR1, ε

τ qq,

0 otherwise.

Proof. The spatial estimates of wε follow from [13, Proposition 7.3]. For the time derivative,

note that Btw
ε
d “ 0 on Xo

b and P from the definition of wε
d. On Q, we compute

Btκε “

„

1 ´ χ

ˆ

r ´R1

ℏR1

˙ȷ

ε1r “ Opε1q,

Btα “ pαL

ˇ

ˇ

0
˝ φqpσ, ε´1κεprqqrε´2ε1κεprq ` ε´1Btκεs

“ Opεp1´τqpm´3qε´1ε1q for r P κ´1
ε pεR1, ε

τ q.

The result now follows from a calculation. The Hölder derivative estimates follow similarly,

using the fact that |t1 ´ t2| ă t´
2

m´2 ùñ |{B
α
t1,t2f | ď C ¨ |Btfpcq|ε2´2α for some c P rt1, t2s. □

Lemma 7.5. Under Assumption 7.1, for any τ P p0, 12q and k P t0, 1, 2u, we have

|∇kθNεpxq| “

$

&

%

Opεmp1´τq´kτ q x “ pσ, rq, r P pετ , 2ετ q,

0, otherwise,
(7.14)

where | ¨ | is computed using the pullback metric gε.

Proof. The proof follows as in [13, Proposition 6.4], with the improvements coming from the

fact that by Assumption 7.1, A “ 0 and Υ˚g “ g0. □

7.2. Weighted Parabolic Hölder Spaces. We define suitable Hölder spaces for our differ-

ential operators. Given Λ ą 0, pµ, νq P R2, α P p0, 12q, and a time-dependent tensor T on N ,
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and letting injpgεq denote the injectivity radius of the induced metric gε “ pιεq˚g, we define:

}T }µ,ν,Λ :“ sup
px,tqPNˆrΛ,8q

tµρν
t

´1
m´2

pxq|T |gε , (7.15)

rT sµ,ν,α,Λ :“ sup
tPrΛ,8q

sup
x1,x2PN

dgε px1,x2qămintinjpgεq,1u

tµmintρν`2α

t
´1

m´2
px1q, ρν`2α

t
´1

m´2
px2qu

|T px1, tq ´ T px2, tq|gε

dgεpx1, x2q2α
,

(7.16)

xT yµ,ν,α,Λ :“ sup
xPN

sup
tąΛ

sup
t1,t2Prt,2ts,

0ă|t1´t2|ăt
´2

m´2

tµρν`2α

t
´1

m´2
pxq

|T px, t1q ´ T px, t2q|gε

|t1 ´ t2|α
. (7.17)

Here, the norms are computed by the induced metric on the corresponding tensor bundles, and

the difference T px1, tq ´ T px2, tq is understood using the parallel transport along the unique

shortest geodesic between x1 and x2 to compare the values.

Definition 7.6. Define a weighted parabolic Hölder norm for tensors T on N by

}T }
P 0,0,α
µ,ν,Λ

:“ }T }µ,ν,Λ ` rT sµ,ν,α,Λ ` xT yµ,ν,α,Λ. (7.18)

The weighted parabolic Hölder spaces P l,k,α
µ,ν,Λ are then defined to be the space of functions

u : N ˆ rΛ,8q Ñ R such that the norm

}u}
P l,k,α
µ,ν,Λ

:“
l

ÿ

i“0

}Bi
tu}

P 0,0,α
µ,ν`2i,Λ

`

k
ÿ

j“0

}∇ju}
P 0,0,α
µ,ν`j,Λ

(7.19)

is finite. Analogously, we define the weighted parabolic Hölder norm }¨}
C0,α

ζ,Λ
(and corresponding

Banach space C0,α
ζ,Λ) for functions h : rΛ,8q Ñ R:

}h}
C0,α

ζ,Λ
:“ sup

tPrΛ,8q

tζ |hptq| ` sup
tPrΛ,8q

sup
t1,t2Prt,2ts,

0ă|t1´t2|ăt
´2

m´2

tζ
|hpt1q ´ hpt2q|

|t1 ´ t2|α
. (7.20)

In order to apply the Schauder fixed point theorem to solve our nonlinear PDE for functions

belonging to these spaces, we will require the following compact embedding theorem.

Lemma 7.7. For µ1 ă µ, α1 ă α, ζ 1 ă ζ, and Λ ą 1, the inclusions

C0,α
ζ,Λ ãÑ C0,α1

ζ1,Λ, P l,k,α
µ,ν,Λ ãÑ P l,k,α1

µ1,ν,Λ

are compact.

Proof. For the first inclusion, consider a bounded sequence thku8
k“1 in the unit ball of C0,α

ζ,Λ.

We aim to show that there is a subsequence which is Cauchy in C0,α1

ζ1,Λ. By Arzelà–Ascoli and a

diagonal argument, we may pass to a subsequence such that }hk ´h}C0prΛ,Λ1sq Ñ 0 for a unique

h P C0prΛ,8qq and for any Λ1 ą Λ.

We now show that this subsequence is Cauchy in C0,α1

ζ1,Λ. Fix ε ą 0 and choose Λ1 ą Λ such

that 2pΛ1qζ
1´ζ ă ε. We estimate separately on the intervals rΛ,Λ1s and rΛ1,8q as follows:



44 WEI-BO SU, CHUNG-JUN TSAI, AND ALBERT WOOD

}hk ´ hl}C0,α1

ζ1,Λ
prΛ,Λ1sq

“ sup
tPrΛ,Λ1s

ˆ

tζ
1

|hkptq ´ hlptq| ` sup
t1,t2...

tζ
1 |phk ´ hlqpt1q ´ phk ´ hlqpt2q|

|t1 ´ t2|α
1

˙

ď pΛ1qζ
1

"

}hk ´ hl}C0prΛ,Λ1sq ` sup
t1,t2...

„

|phk ´ hlqpt1q ´ phk ´ hlqpt2q|

|t1 ´ t2|α

ȷ
α1

α

p2}hk ´ hl}C0prΛ,Λ1sqq
α
α1

*

ď C

„

}hk ´ hl}C0prΛ,Λ1sq ` p}hk}C0,αprΛ,Λ1sq ` }hl}C0,αprΛ,Λ1sqq
α1

α p}hk ´ hl}C0prΛ,Λ1sqq
α
α1

ȷ

,

}hk ´ hl}C0,α1

ζ1,Λ
prΛ1,8qq

ď pΛ1qζ
1´ζ}hk ´ hl}C0,α

ζ,Λ
ď ε.

Since the first estimate tends to 0 as k, l Ñ 8, it follows that thku8
k“1 is Cauchy in C0,α1

ζ1,Λ as

required.

For the second inclusion, we consider the case pl, kq “ p0, 0q for simplicity (the general case is

proven similarly). Take a bounded sequence tuku8
k“1 in the unit ball of P 0,0,α

µ,ν,Λ. By Arzelà–Ascoli

and a diagonal argument we may pass to a subsequence such that }uk ´ u}C0pNˆrΛ,Λ1sq Ñ 0 for

a unique u : N ˆ rΛ,8q Ñ R and any Λ1 ą Λ. We now show that this subsequence is Cauchy

in P 0,0,α1

µ1,ν,Λ. Fix ε ą 0, and define Λ1 so that 2pΛ1qµ
1´µ ď ε. We split the domain into N ˆ rΛ,Λ1s

and N ˆ rΛ1,8q, and estimate the norm on each separately as follows.

On N ˆ rΛ,Λ1s: Both t and ρ are uniformly bounded above and below, and so }uk ´

ul}P 0,0,α1

µ1,ν,Λ
pNˆrΛ,Λ1sq

may be proven to converge to 0 as in the previous case, by considering each

constituent seminorm and estimating in terms of }uk ´ ul}C0prΛ,Λ1sq.

On N ˆ rΛ1,8q:

}uk ´ ul}P 0,0,α1

µ1,ν,Λ
pNˆrΛ1,8qs

ď pΛ1qµ
1´µ}uk ´ ul}P 0,0,α

µ,ν,Λ
ď ε.

We therefore have proven that tuku8
k“1 is Cauchy in P 0,0,α1

µ1,ν,Λ, as required.

□

7.3. A Priori Estimates and Existence Theory for the Linearised Operator. We now

proceed with the linear theory for our linearised operator, which will be viewed as a bounded

operator on the weighted Hölder spaces of Definition 7.6. The main result is Theorem 7.12.

Since the linearised operator has a non-trivial kernel, we prove our estimates and existence

theory on the orthogonal complement of the approximate kernel, which will be denoted by:

x1, wεyK :“

"

u P C0prΛ,8q, L2pN, gεqq :

ż

N
u ¨ wε dVgε “

ż

N
u ¨ 1 dVgε “ 0, @ t P rΛ,8q

*

.

(7.21)

We will first consider the simpler case of the heat operator. It is clear from the definition that

we have the following.

Lemma 7.8. Let µ ą 0, ν P p0,m ´ 2q, α P p0, 1{2q. The linear operator Bt ´ Lε
0 : C8

c pN ˆ

pΛ,8qq Ñ C8
c pN ˆ pΛ,8qq extends to a bounded operator

Bt ´ ∆gε : P
1,2,α
µ,ν,Λ ÝÑ P 0,0,α

µ,ν`2,Λ.
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We first note that our a priori estimate for the heat operator implies the following weighted

Schauder estimate.

Corollary 7.9. Let µ ą 0, ν P p0,m´ 2q, α P p0, 12q and Λ ą 0. There exists a constant C ą 0

such that if u P P 1,2,α
µ,ν,Λ X x1, wεyK and ψ P P 0,0,α

µ,ν`2,Λ solves the Cauchy problem

$

&

%

Btu´ ∆gεu “ ψ t P rΛ,8q,

upx,Λq “ 0, x P N,
(7.22)

then

}u}
P 1,2,α
µ,ν,Λ

ď C }ψ}
P 0,0,α
µ,ν`2,Λ

.

Proof. By the scaling property of the induced metric gε and the standard interior Schauder

estimate, we have

}u}
P 1,2,α
µ,ν,Λ

ď C
´

}ψ}
P 0,0,α
µ,ν`2,Λ

` }u}µ,ν,Λ

¯

.

Since u P x1, wεyK, we may apply Theorem 6.7 to bound }u}µ,ν,Λ in terms of }ψ}
P 0,0,α
µ,ν`2,Λ

. □

Supposing now that u P P 1,2,α
µ,ν,Λ X x1, wεyK satisfies

$

&

%

Btu´ ∆gεu “ ψ ` aptq ` bptqwε t P rΛ,8q,

upx,Λq “ 0, x P N,
(7.23)

then by the Schauder estimate above we have

}u}
P 1,2,α
µ,ν,Λ

ď C}ψ ` aptq ` bptqwε}
P 0,0,α
µ,ν`2,Λ

ď C}ψ}
P 0,0,α
µ,ν`2,Λ

` C}aptq}
P 0,0,α
µ,ν`2,Λ

` C}bptqwε}
P 0,0,α
µ,ν`2,Λ

. (7.24)

It is therefore important to estimate aptq and bptq in terms of u and ψ.

Lemma 7.10. Consider u P P 1,2,α
µ,ν,Λ X x1, wεyK and ψ P P 0,0,α

µ,ν`2,Λ satisfying (7.23). Then:

aptq “
1

VolpN εq

ż

N
pBtu´ ψq dVgε , bptq “

1

}wε}2
L2

ż

N

´

Btu´ ∆gε0
u´ ψ

¯

¨ wε dVgε ,

and aptq and bptq satisfy the estimates

}aptq}
P 0,0,α
µ,ν`2,Λ

ď C}ψ}
P 0,0,α
µ,ν`2,Λ

` CΛ´ 2m´2´2α´ντ
m´2 }u}

P 1,2,α
µ,ν,Λ

,

}bptqwε}
P 0,0,α
µ,ν`2,Λ

ď C}ψ}
P 0,0,α
µ,ν`2,Λ

` CΛ´m´2´2ατ´ντ
m´2 }u}

P 1,2,α
µ,ν,Λ

.

Proof. The formulae for aptq, bptq are obtained by integrating the differential equation against

the elements of the approximate kernel t1, wεu, and using the orthogonality conditions.

For the estimates, recall that by Assumption 6.1,

|t1 ´ t2| ă t´
2

m´2 ùñ |{B
α
t1,t2f | ď C ¨ |Btfpcq|ε2´2α
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for some c P rt1, t2s, where for convenience we use the notation {B
α
t1,t2f :“ fpt1q´fpt2q

|t1´t2|α
for the

Hölder quotient. Differentiating the orthogonality condition and using the estimates on the

volume form from Lemma 7.3 yields

tµρν`2

t
´ 1

m´2
pxq|aptq| ď C ¨ sup

tPrΛ,8q

ˆ

}u}
P 1,2,α
µ,ν,Λ

ż

N
ρ´ν |BtpdVgεq| ` }ψ}

P 0,0,α
µ,ν`2,Λ

ż

N
ρ´ν´2 dVgε

˙

ď C ¨ sup
tPrΛ,8q

"

}u}
P 1,2,α
µ,ν,Λ

ˆ
ż

P
ρ´νε2m´2 dVL `

ż 2ετ

εR1

r´ν´1ε2m´2 dr

˙

` }ψ}
P 0,0,α
µ,ν`2,Λ

ˆ
ż

P
ρ´ν´2εm dVL `

ż R2

εR1

r´ν`m´3 dr `

ż

Xo

dVgε

˙ *

ď C ¨ sup
tPrΛ,8q

´

}u}
P 1,2,α
µ,ν,Λ

¨ ε2m´2´τν ` }ψ}
P 0,0,α
µ,ν`2,Λ

¯

,

tµρν`2`2α

t
´ 1

m´2
pxq|{B

α
t1,t2aptq| ď C ¨ sup

tPrΛ,8q

ˆ

}u}
P 1,2,α
µ,ν,Λ

ż

N
ρ´ν´2α|BtpdVgεq| ` ρ´ν |{B

α
t1,t2BtpdVgεq|

` }ψ}
P 0,0,α
µ,ν`2,Λ

ż

N
ρ´ν´2´2α dVgε ` ρ´ν´2|{B

α
t1,t2pdVgεq|

˙

ď C ¨ sup
tPrΛ,8q

´

}u}
P 1,2,α
µ,ν,Λ

ε2m´2´2α´τν ` }ψ}
P 0,0,α
µ,ν`2,Λ

¯

,

which implies the estimate for aptq. The estimate for bptq follows analogously, using the estimates

from Lemma 7.4 and the fact that wε, ∥wε∥L2 are uniformly bounded. □

Finally, to extend the above estimates from the heat operator to our linearised operator Lε
0,

we require the following estimate on the difference between the Laplacian and the linearised

operator:

Lemma 7.11. Given τ ă 1
m`2 , we have the decomposition Lε

0 “ ∆gε ` Pε
0 , where Pε

0 is a first

order differential operator satisfying

|Pε
0rus| ď

$

&

%

C εptqm´1|du|gε on Pj YQ˘
j , t ě Λ,

0, otherwise.

In particular, there exists CpΛq ą 0 with limΛÑ8 CpΛq “ 0 such that

}Pε
0rus}

P 0,0,α
µ,ν`2,Λ

ď CpΛq}u}
P 1,2,α
µ,ν,Λ

.

As a result, Lε
0 extends to a bounded operator Lε

0 : P
1,2,α
µ,ν,Λ Ñ P 0,0,α

µ,ν`2,Λ.

Proof. By Proposition 5.2 we have

Lε
0rus “ ∆gεu´ x∇θNε , pV0pduqygε ` Sεrus,

where Sεrus is a first order linear differential operator defined by

Sεrus “

$

’

’

’

&

’

’

’

%

p2 log εjptqq1pdβLj qpduV q on Pj ,

ε1
jptq ¨

Bεκεjptq

Brκεjptq
¨ Bru on Q˘

j ,

0 on Xo
b .
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Hence,

Pε
0rus “ ´x∇θNε , pV0pduqygε ` Sεrus.

By Lemma 7.5,

|x∇θNε , pV0pduqygε | ď Cεptqmp1´τq´τ |du|gε , on Q˘
j ,

By Assumption 6.1, we have

|Sεrus| ď Cεptqm´1|du|gε , on Pj YQ˘
j .

Combining these together and using the assumption τ ă 1
m`2 yields

|Pε
0rus| ď C εptqm´1|du|gε .

From this, we further estimate:

tµρν`2
ε |Pε

0rus| ď Cεptqm´1ρε
`

tµρν`1
ε |du|gε

˘

ď CΛ
1´m
m´2 }u}

P 1,2,α
µ,ν,Λ

if τ P p0, 1
m`2q. The Hölder norm estimate follows similarly, by using |∇dθNε | “ Opεmp1´τq´2τ q

and |Bt∇θNε | “ Opεm´2`τ q from Lemma 7.5. □

We now combine these estimates to deduce the estimates and existence theory for Bt ´ Lε
o.

Theorem 7.12. Given µ ą 0, ν P p0,m ´ 2q, α P p0, 12q, τ P p0, 1
m`2q, there exists Λ " 1 with

the following significance. Given ψ P P 0,0,α
µ,ν`2,Λ, there exists a unique u P P 1,2,α

µ,ν,Λ X x1, wεyK and

a, b : rΛ,8q Ñ R such that
$

&

%

Btu´ Lε
0rus “ ψ ` aptq ` bptqwε, t P rΛ,8q,

upx,Λq “ 0, x P N,
(7.25)

and u satisfies the a priori estimate

}u}
P 1,2,α
µ,ν,Λ

ď C}ψ}
P 0,0,α
µ,ν`2,Λ

(7.26)

for some C ą 0 independent of t.

Proof. First, we claim that, given ψ P P 0,0,α
µ,ν`2,Λ, there exists Λ0 " 1 such that for each Λ ě Λ0,

there exists a unique u : N ˆ rΛ,8q Ñ R solving
$

&

%

Btu´ ∆gεu “ ψ ` aptq ` bptqwε t P rΛ,8q,

upx,Λq “ 0, x P N,
(7.27)

with estimate }u}
P 1,2,α
µ,ν,Λ

ď C}ψ}
P 0,0,α
µ,ν`2,Λ

, where C ą 0 is independent of Λ.

For this purpose, define a zeroth order operator

F εrus :“
1

}wε}2
L2

"
ż

N
u ¨ pBtw

ε ` ∆gεw
εq dVgε `

ż

N
u ¨ wε BtdVgε

*

`
1

VolpN εq

ż

N
u BtdVgε .

Note that F εrus encodes how the orthogonality condition is changed in time. Let

ψK :“ ψ ´
1

VolpN εq

ż

N
ψ dVgε ´

1

}wε}2
L2

ż

N
ψ ¨ wε dVgε ¨ wε.
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By standard parabolic theory, there exists u : N ˆ rΛ,Λ ` T s Ñ R solving
$

&

%

Btu´ ∆gεu` F εrus “ ψK, t P rΛ,Λ ` T s,

upx,Λq “ 0, x P N.
(7.28)

Letting

aptq “
1

VolpN εq

ż

N
pBtu´ ψq dVgε ,

bptq “
1

}wε}2
L2

ż

N
pBtu´ ∆gεu´ ψq ¨ wε dVgε ,

it follows that the triple pu, a, bq solves

Btu´ ∆gεu “ ψ ` aptq ` bptqwε,

and by Corollary 7.9 and Lemma 7.10, for Λ ą 0 large enough, the estimate }u}
P 1,2,α
µ,ν,Λ

ď

C}ψ}
P 0,0,α
µ,ν`2,Λ

holds, for any T ą 0. It follows that the operator

Aε
0 : pu, aptq, bptqq ÞÝÑ Btu´ ∆gεu´ aptq ´ bptqwε

as a bounded operator from P 1,2,α
µ,ν,Λ X x1, wεyK ˆC0,α

µ,Λ ˆC0,α
µ,Λ to P 0,0,α

µ,ν`2,Λ is a linear isomorphism

whose inverse is bounded by C, which is independent of Λ ě Λ0. This proves the claim.

Now, our goal is to show that Lε
0 “ Aε

0 ´ Pε
0 is invertible. Write

Aε
0 ´ Pε

0 “ Aε
0

`

I ´ pAε
0q´1Pε

0

˘

,

where I is the identity operator in P 1,2,α
µ,ν,Λ X x1, wεy ˆ C0,α

µ,Λ ˆ C0,α
µ,Λ. Since by Lemma 7.11

}pAε
0q´1Pε

0} Ñ 0 as Λ Ñ 8, it follows that I ´ pAε
0q´1Pε

0 is invertible for large Λ ą 0. Hence,

Aε
0 ´ Pε

0 is invertible for large Λ ą 0. □

8. Estimates for the Error Terms in the Torus Case

In this section, we provide pointwise estimates for the zeroth order term, θNε ` ξp0q and

the quadratic term Qεrdus, which will be utilised in the iteration scheme of section 9. We also

estimate the projection of the zeroth order term onto the approximate kernel, whose dominant

term provides the approximate ODE that εptq should satisfy.

8.1. The Zeroth Order Error. The main zeroth order error estimate is the following.

Proposition 8.1. Assume that the constants µ ą 0, ν P p0,m ´ 2q, α P p0, 12q and τ P p0, 12q

satisfy the relation

τ ą
2α

m` 1 ` 2α
,

ν ` 2

m´ 2
ă µ ă

1

m´ 2
pτpν ` 2q ` p1 ´ τqmq. (8.1)

Then, we have

lim
ΛÑ8

}θNε ` ξp0q}
P 0,0,α
µ,ν`2,Λ

“ 0. (8.2)

Precisely, we have the following bounds in terms of Λ:

}θNε}
P 0,0,α
µ,ν`2,Λ

ď CΛµ´ 1
m´2

pτpν`2q`p1´τqmq, }ξp0q}
P 0,0,α
µ,ν`2,Λ

ď CΛµ´ 1
m´2

pm´2αq, (8.3)
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for some C ą 0 independent of Λ.

Remark 8.2. Notice that

τpν ` 2q ` p1 ´ τqm´ pν ` 2q “ p1 ´ τqpm´ 2 ´ νq ą 0.

Hence, the ranges for the constants in (8.1) are non-empty.

Proof. We first estimate the Hölder norms of θNε . By construction, it suffices to consider the

transition region κε
´1pΣ ˆ pετ , 2ετ qq.

By Lemma 7.5, we have for x, x1 P κ´1
ε pΣ ˆ pετ , 2ετ qq,

tµρν`2
ε px, tq|θNε |px, tq ď C tµεptqτpν`2qεptqp1´τqm ď C tµ´ 1

m´2
pτpν`2q`p1´τqmq,

and similarly, using |dθNε | ď Cεptqp1´τqm´τ ,

tµρν`2`2α
ε px, tq

|θNεpx, tq ´ θNεpx1, tq|

dgεpx, x1q2α
ď C tµεptqτpν`2`2αq ¨ εptqp1´τqm´τ ¨ εptqτp1´2αq

ď C tµ´ 1
m´2

pτpν`2q`p1´τqmq.

On the other hand, for t2 ą t1, t1, t2 P rt, 2ts, 0 ă |t1 ´ t2| ă t´
2

m´1 , and x “ pσ, rq P
Ť

t1ătăt2
κ´1
ε pΣ ˆ pετ ptq, 2ετ ptqqq,

θNεpx, t1q ´ θNεpx, t2q

“ pθ ˝ ΦCqppσ, κεpt1qprqq, dQεpt1qpσ, κεpt1qprqqq ´ pθ ˝ ΦCqppσ, κεpt2qprqq, dQεpt2qpσ, κεpt2qprqqq

“

ż s“1

s“0

d

ds
pθ ˝ ΦCqppσ, κεpsqprqq, dQεpsqpσ, κεpsqprqqq ds, (8.4)

where εpsq :“ εpst2 ` p1 ´ sqt1q. Using ε1psq ď Cεptqm´1|t1 ´ t2| and Bεκεprq ď
κεprq

ε ď ετ´1,

we deduce that

BsdQεpsqpσ, κεpsqprqq “ Opεptqm`p1´τqpm´2qq ¨ |t1 ´ t2|,

measuring by the induced metric gε0. Inserting this into (8.4) gives

|θNεpx, t1q ´ θNεpx, t2q| ď C εptqm´2`τ |t1 ´ t2|.

Thus,

tµρν`2`2α
εptq pxq

|θNεpx, t1q ´ θNεpx, t2q|

|t1 ´ t2|α
ď C tµ´ 1

m´2
pτpν`2q`m`τ´2αp1´τqq.

Putting these together, we obtain

}θNε}
P 0,0,α
µ,ν`2,Λ

ď C Λµ´
τpν`2q`p1´τqm

m´2 “ op1q, as Λ Ñ 8.

if τ ą 2α
m`1`2α and µ ă

τpν`2q`p1´τqm
m´2 .
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We now estimate ξp0q. Recalling our choice of time-dependent constants from (7.2), ξp0q is

given by

ξp0q “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pεptq2q1
´

αL

ˇ

ˇ

0
´

cLV2
V1`V2

¯

on Pj ,

ε1ptq
´

2εptq cLV1
V1`V2

´ pBεQεptqq ˝ κ̄εptq

¯

on Q` ,

ε1ptq
´

´2εptq cLV2
V1`V2

´ pBεQεptqq ˝ κ̄εptq

¯

on Q´ ,

´pεptq2q1 cLV2
V1`V2

on Xo
1 ,

pεptq2q1 cLV1
V1`V2

on Xo
2 .

In the transition region we have

εptq1BεQε “ Opεptqm`pm´2qp1´τqq,

which is smaller than pεptq2q1. From this observation it is now easy to deduce that

}ξp0q}
P 0,0,α
µ,ν`2,Λ

ď C Λµ´m´2α
m´2 .

□

8.2. The Quadratic Error. Let Qεrdus :“ ´θNε ´ ξp0q ` Btu´ Lε
0rus be the quadratic error

term. We now estimtate Qεrdus in terms of weighted norms of u.

Proposition 8.3. There is C ą 0 and Λ " 1 such that if u P P 1,2,α
µ,ν,Λ, t, t1, t2 ě Λ with

0 ă |t1 ´ t2| ă t
´2

m´2 , and x, x1, x2 P N with 0 ă dgεpx1, x2q ă ρεptqpx1q, then

|Qεrdus|px, tq ď C}u}
P 1,2,α
µ,ν,Λ

¨ t´2µρ´2ν´4
εptq pxq, (8.5)

|Qεrduspx1, tq ´Qεrduspx2, tq|

dgεpx1, x2q2α
ď C}u}

P 1,2,α
µ,ν,Λ

¨ t´2µρ´2ν´4´2α
εptq px1q, (8.6)

|Qεrduspx, t1q ´Qεrduspx, t2q|

|t1 ´ t2|α
ď C}u}

P 1,2,α
µ,ν,Λ

¨ t´2µρ´2ν´4´2α
εptq pxq ` Ct´

m`2´2α
m´1 . (8.7)

Proof. Write Qεrdus “ Qε
θrdus `Qε

ξrdus, where

Qε
θrdus “ θNεrdus ´ θNε ´ ∆Nεu` x∇θNε , V̂0pduqy,

Qε
ξrdus “ ξrdus ´ ξp0q ´ Sεrus.

We first estimate Qε
θ. In the tip region, the induced metric is uniformly equivalent to the metric

ε2jgLj . Using the scale-invariant property of Lagrangian angle we have

|Qε
θpx, t,dupx, tq,∇dupx, tqq| ď C

´

ε´2
j |du|2gε ` |∇du|2gε

¯

, x P Pj ,

for some C ą 0 independent of ε. Similarly, in the intermediate region, the metric is uniformly

equivalent to the cone metric, and the scale-invariant property of Lagrangian angle implies

|Qε
θppr, σq, t,duppr, σq, tq,∇duppr, σq, tqq| ď C

`

r´2|du|2gε ` |∇du|2gε
˘

, pr, σqq P κεQ
˘
j ,
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for some C ą 0 independent of ε. Combining these estimates yields

|Qε
θpx, t,dupx, tq,∇dupx, tqq| ď C

`

ρ´2
ε px, tq|dupx, tq|2gε ` |∇dupx, tq|2gε

˘

, px, tq P N ˆ rΛ,8q.

Multiply both sides by tµρν`2
ε gives

tµρν`2
ε |Qε

θrdus| ď Ctµ
`

ρνε |du|2gε ` ρν`2
ε |∇du|2gε

˘

“ C
”

t´µρ´ν´2
ε

`

tµρν`1
ε |du|gε

˘2
` t´µρ´ν´2

ε

`

tµρν`2
ε |∇du|gε

˘2
ı

ď 2Ct´µρ´ν´2
ε }u}2

P 1,2,α
µ,ν,Λ

.

The estimate for Qε
ξrdus follows similarly. From the explicit expression (5.1), we only need

to consider the tip region. By Taylor theorem,

ξNεrdus “ pε2j q1
”

αLpx, 0q ` ByαLpx, 0q ¨ ε´2
j du`Opε´4

j |du|2gLj
q

ı

.

It follows that, using |pε2j q1| ! 1,

|Qε
ξrduspx, tq| ď Cε´2

j |dupx, tq|2gε ď Cρ´2
ε px, tq|dupx, tq|2gε .

Multiply both sides by tµρν`2
ε and estimate as above gives

tµρν`2
ε |Qε

ξrdus| ď Ct´µρ´ν´2
ε }u}2

P 1,2,α
µ,ν,Λ

.

Combining everything together yields

|Qεrdus| ď |Qε
θrdus| ` |Qε

ξrdus| ď Ct´2µρ´2ν´4
ε .

This proves (8.5).

To prove (8.6), we fix t P rΛ,8q, and view θNεrdusp¨, tq and ξrdusp¨, tq as coming from

restricting smooth functions

Θpx, y, zq, Ξpx, yq, x P N, y P T ˚
xN, z P

Â2 T ˚
xN,

to the graph tpx, dupx, tq,∇dupx, tqq : x P Nu, namely, we have

θNεrduspx, tq “ Θpx, dupx, tq,∇dupx, tqq, ξrduspx, tq “ Ξpx, dupx, tqq.

Note that by scale-invariant property we have

|Ba
xBb

yBc
zΘ| ď Cρ´a´b

ε , |Ba
xBb

yΞ| ď Cρ´a´b
ε , a, b, c P N Y t0u.

Then a long but straightforward computation using mean value theorem shows that, for x1 ‰

x2 P N with dgεpx1, x2q ă ρεpx1, tq,

tµρν`2`2α
ε px1q

|Qε
θrduspx1, tq ´Qε

θrduspx2, tq|

dgεpx1, x2q2α
ď Ct´µρ´ν´2

ε px1q}u}2
P 1,2,α
µ,ν,Λ

.

Similarly,

tµρν`2`2α
ε px1q

|Qε
ξrduspx1, tq ´Qε

ξrduspx2, tq|

dgεpx1, x2q2α
ď Ct´µρ´ν´2

ε px1q}u}2
P 1,2,α
µ,ν,Λ

.

Combining these estimates yields (8.6)
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Finally, we prove (8.7). Similar computation as Joyce [13, Proposition 5.8] and Pacini [28,

Proposition 5.6] shows that if α, β are small closed 1-forms on N , then for each fixed t,

|Qεrαs ´Qεrβs| ď C
`

ρ´1
ε |α ´ β| ` |∇pα ´ βq|

˘ `

ρ´1
ε |α| ` ρ´1

ε |β| ` |∇α| ` |∇β|
˘

.

Letting α “ dup¨, t1q, β “ dup¨, t2q yields

tµρν`2`2α
ε px, tq

|Qεptqrdupx, t1qs ´Qεptqrdupx, t2qs|

|t1 ´ t2|α
ď Ct´µρ´ν´2

ε px, tq}u}2
P 1,2,α
µ,ν,Λ

.

On the other hand, by the assumption on ε we have

|Qεpt1qrdupx, t2qs ´Qεpt2qrdupx, t2qs|

|t1 ´ t2|
ď C sup

j
|ε1

jptqεjptq| ď Ct´
m

m´1 .

Combining these estimates, we conclude that for t1, t2 ě Λ with 0 ă |t1 ´ t2| ă t´
2

m´2 ,

|Qεrduspx, t1q ´Qεrduspx, t2q|

|t1 ´ t2|α
ď Ct´2µρ´2ν´4´2α

ε }u}2
P 1,2,α
µ,ν,Λ

` Ct´
m`2´2α

m´1 .

This proves (8.7). □

8.3. Projection onto the Approximate Kernel. Finally, we will require the following inte-

gral estimates, which are the projection of the zeroth order terms onto the approximate kernel.

Lemma 8.4. We have
ż

Σ˘ˆpετ ,2ετ q

θNε dVNε “ ˘εmA`Opεp1`τqmq. (8.8)

Proof. This follows from the proof of [13, Proposition 7.5] by estimating θNε by sinpθNεq`Opθ3q,

and using Lemma 2.15 and Lemma 7.5. □

Applying this Lemma, we have the following projection formula for the zeroth order term.

Proposition 8.5. The L2 projection of the zeroth order error θNε ` ξp0q onto the approximate

kernel spanRt1, wε
p0,1q

u is given by

ż

N
rθNε ` ξp0qs ¨ wε

p0,1q dVgε “ cL
V1V2
V1 ` V2

"

dε2ptq

dt
`
A

cL

V1 ` V2
V1V2

εmptq

*

`Opεp1`τqmq, (8.9)

and
ż

N
rθNε ` ξp0qs ¨ 1 dVgε “ Opεp1`τqmq. (8.10)

Proof. It follows from these choices that
ż

N
ξp0q ¨ wε

p0,1q dVgε “

ż

P

dε2ptq

dt
βL `

ż

Q˘

ξp0q ¨ wε
p0,1q `

ż

Xo
2

cL
dε2ptq

dt

“ V2 ¨ cL ¨
dε2ptq

dt
`Opεp1`τqmptqq,

where in the second line we used the assumption that dεptq
dt “ Opεm´1ptqq.
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Combining with Lemma 8.4 and using the fact that the volume of the interpolating region

is Opετmq yield
ż

N
rθNε ` ξp0qs ¨ wε

p0,1q dVgε

“ εmptqA` V2 ¨ cL
dε2ptq

dt
´

cLV2
V1 ` V2

dε2ptq

dt
pV2 ´Opετmqq `Opεpτ`1qm ` εp2´τqmq

“ cL
V1V2
V1 ` V2

"

dε2ptq

dt
`
A

cL

V1 ` V2
V1V2

εmptq

*

`Opεpτ`1qmq.

This proves (8.9). Equation (8.10) follows from a similar computation. □

By (8.9), (8.10), the projection onto the normalised approximate kernel element wε (as

defined in (7.1) ) takes the same form:
ż

N
rθNε ` ξp0qs ¨ wε dVgε

“ cL
V1V2
V1 ` V2

"

dε2ptq

dt
`
A

cL

V1 ` V2
V1V2

εmptq

*

`Opεpτ`1qmq. (8.11)

Remark 8.6. In the iteration scheme of Section 9, the above integrals will appear as error

terms that we wish to minimise. We will therefore define εptq to be a small perturbation of a

solution of the following ODE:

dε2ptq

dt
`
A

cL

ˆ

1

V1
`

1

V2

˙

εmptq “ 0. (8.12)

We note that any solution εptq to this ODE satisfies Assumption 6.1.

9. Solving the Nonlinear Equation in the Torus Case

We are now ready to state and prove our main theorem precisely. For the remainder of

the paper, we make the following assumptions on ν, α, τ, µ, ζ, which imply all previously made

assumptions on these constants:

ν P

´

max
!m

2
´ 2, 0

)

,m´ 2
¯

, α P

ˆ

0,
1

2

˙

, τ P

ˆ

2α

m` 1 ` 2α
,

1

m` 2

˙

, (9.1)

µ P

ˆ

ν ` 2 ` 2α

m´ 2
,

1

m´ 2
pτpν ` 2q ` p1 ´ τqmq

˙

, ζ P

ˆ

0,min

"

τm

m´ 2
, µ´

ν ` 2 ` 2α

m´ 2

*˙

.

(For example, pν, α, τ, µq “ p3m´8
4 , 1

100 ,
1

2pm`2q
, 7p1´τqm

8pm´2q
q and ζ sufficiently small).

Theorem 9.1. Let m ě 3, let ι : X Ñ M be a special Lagrangian immersion in a flat

complex torus pM2m, g, J, ω,Ωq satisfying Assumption 7.1, and let ν, α, τ, µ, ζ be real constants

satisfying (9.1). Let N be the corresponding abstract manifold as defined in Definition 3.1,

and let P 1,2,α
µ,ν,Λ, C

0,α
ζ,Λ be the Banach spaces on N ˆ rΛ,8q and rΛ,8q respectively as defined in

Definition 7.6.
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Then there exist u P P 1,2,α
µ,ν,Λ, ε : rΛ,8q Ñ p0,8q satisfying Assumption 6.1, and a : rΛ,8q Ñ

R such that
$

&

%

Btu “ θpduq ` ξpduq ` aptq for t ą Λ

upx,Λq “ 0 on N ˆ t0u,
(9.2)

where θpduq is the Lagrangian angle of the Lagrangian embedding ΨNεptq ˝ du : N Ñ M as in

section 4.1, and ξpduq is defined in (5.1) with constants CP , CQ˘, CXo
b
defined by (7.2).

The family ΨNεptq ˝ du : N Ñ M of Lagrangian submanifolds satisfies mean curvature flow,

and forms an infinite-time singularity. As t Ñ 8 we have smooth convergence N ε Ñ ιpXq

away from the transverse self-intersection point.

As shown in section 4, given a pair pu, εq satisfying 9.2, the family of Lagrangian embeddings

ΨNε ˝ du : N ˆ rΛ,8q Ñ M is an eternal Lagrangian mean curvature flow Ft : N Ñ M that

forms an infinite-time singularity, converging away from the singular point to the immersion

ι : X Ñ M .

To prove Theorem 9.1, we first carefully define an iteration map I on the Banach space

P 1,2,α
µ,ν,Λ ˆ C0,α

ζ,Λ for which a fixed point pu, hq corresponds to a solution pu, εq of (9.2). We then

show that I maps a compact subset of P 1,2,α
µ,ν,Λ ˆ C0,α

ζ,Λ continuously into itself, and apply the

Schauder fixed point theorem to conclude that a fixed point exists.

9.1. Definition of the Iteration Map. Denote the unit balls of P 1,2,α
µ,ν,Λ, C

0,α
ζ,Λ by

Bα
µ,ν,Λ :“

!

u P P 1,2,α
µ,ν,Λ : }u}

P 1,2,α
µ,ν,Λ

ď 1
)

, Ik,α
ζ,Λ :“

!

h P Ck,α
ζ,Λ : }h}

Pk,α
ζ,Λ

ď 1
)

.

We now define the iteration map I : Bα
µ,ν,Λ ˆ I0,α

ζ,Λ Ñ Bα
µ,ν,Λ ˆ I0,α

ζ,Λ. Given a pair pu, hq P

Bα
µ,ν,Λ ˆ I0,α

ζ,Λ, the pair pv, kq “ I pu, hq P P 1,2,α
µ,ν,Λ ˆ C0,α

ζ,Λ is defined as follows:

Step 1. (Ansatz for εptq): First, we define

εptq :“

„

m´ 2

2

A

cL

V1 ` V2
V1V2

¨ t `

ż t

Λ
hpsq ds

ȷ´ 1
m´2

, (9.3)

and use εptq to construct the Lagrangian embedding ιεptq and related quantities and functions

that depend on εptq as in section 3. By definition, εptq satisfies the ODE:

dε2

dt
`
A

cL

V1 ` V2
V1V2

εm “ ´
2

m´ 2
εmhptq.

It is easy to check that εptq satisfies Assumption 6.1. We then construct the desingularisation

N εptq using εptq.

Step 2. (u ; v): Next, we define v P P 1,2,α
µ,ν,Λ. Define ψ :“ θNε ` ξp0q ` Qεrdus. By Proposi-

tion 8.1 and Proposition 8.3, we see that ψ P P 0,0,α
µ,ν`2,Λ. We may therefore apply Theorem 7.12,
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to show that there exist v P P 1,2,α
µ,ν,Λ X x1, wεyK, a : rΛ,8q Ñ R and b : rΛ,8q Ñ R satisfying:

$

&

%

Btv ´ Lε
0rvs “ θNε ` ξp0q `Qεrdus ` aptq ` bptqwε, t P rΛ,8q,

vpx,Λq “ 0, x P N,
(9.4)

and

}v}
P 1,2,α
µ,ν,Λ

ď C ¨ }ψ}
P 0,0,α
µ,ν`2,Λ

. (9.5)

Step 3. (h ; k): Finally, we define k P C0,α
ζ,Λ. Integrating (9.4) against the functions 1 and

wε respectively, and using the projection formulae (8.10) and (8.11), we obtain the following

expressions for aptq and bptq:

aptq “
1

VolpN εq

ż

N

`

Btv ´ Lε
0rvs ´ ψ

˘

dVgε

“
1

VolpN εq

ˆ
ż

N
pBtv ´ Lε

0rvs ´Qεrdusq dVgε `Opεp1`τqmq

˙

, (9.6)

bptq “
1

}wε}2
L2

ż

N

`

Btv ´ Lε
0rvs ´ ψ

˘

wε dVgε

“
1

}wε}2
L2

ˆ
ż

N
pBtv ´ Lε

0rvs ´Qεrdusqwε dVgε

´cL
V1V2
V1 ` V2

„

dε2

dt
`
εmA

cL

V1 ` V2
V1V2

ȷ

`Opεp1`τqmq

˙

“
1

}wε}2
L2

ˆ
ż

N
pBtv ´ Lε

0rvs ´Qεrdusqwε dVgε `
cLV1V2
V1 ` V2

2εmhptq

m´ 2
`Opεp1`τqmq

˙

. (9.7)

It is therefore natural to define kptq as follows, in order to cancel out the dominant term from

this expansion of bptq:

kptq :“ hptq ´
m´ 2

2cL

V1 ` V2
V1V2

ε´m}wε}2L2 ¨ bptq. (9.8)

9.2. Estimates for the Iteration Map. In order to apply the Schauder fixed point theorem,

we now aim to prove the following proposition regarding the iteration map I :

Proposition 9.2. For any µ1 ă µ, α1 ă α, ζ 1 ă ζ, the iteration map I : Bα
µ,ν,Λ ˆ I0,α

ζ,Λ Ñ

P 1,2,α
µ,ν,Λ ˆ C0,α

ζ,Λ defined in section 9.1 is continuous with respect to the norm on P 1,2,α1

µ1,ν,Λ ˆ C0,α1

ζ1,Λ,

and has image lying in Bα
µ,ν,Λ ˆ I0,α

ζ,Λ.

We first estimate the projection of the inhomogeneous term ψ onto the approximate kernel.

Lemma 9.3. Let

Gptq :“ cL
V1V2
V1 ` V2

"

dε2ptq

dt
`
εmptqA

cL

V1 ` V2
V1V2

*

´

ż

N
ψ ¨ wε dVgε . (9.9)

Then, if }u}
P 1,2,α
µ,ν,Λ

ď 1, ν P pmaxtm
2 ´ 2, 0u,m´ 2q and µ ą ν`2

m´2 , then for any ζ ą 0 satisfying

ζ ă mint τm
m´2 , 2pµ´ ν`2

m´2qu
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and 0 ă |t1 ´ t2| ă t´
2

m´2 , it follows that

|Gptq| `
|Gpt1q ´Gpt2q|

|t1 ´ t2|α
ď Cεptqm ¨ t´ζ . (9.10)

Proof. By projection formula (8.11) we have

|Gptq| ď Cεptqpτ`1qm `

ż

νN

|Qεrdus| ¨ wε dVgε .

Since }u}
P 1,2,α
µ,ν,Λ

ď 1, by (8.5) we have

ż

νN

|Qεrdus| ¨ wε dVgε ď C t´2µ

ż

N
ρ´2ν´4
ε dVgε .

Note that for any small a ą 0, by assumption we have ´2ν ´ 4 `m´ a ă 0. Hence,
ż

N
ρ´2ν´4
ε dVgε “

ż

N
ρ´2ν´4`m´a
ε ρ´m`a

ε dVgε ď Cεptq´2ν´4`m´a

ż

N
ρ´m`a
ε dVgε .

As ρε Ñ r̂ and ρ´m`a
ε ď Cr̂´m`a on N , where r̂ is the intrinsic distance to the intersection

point on X1 YX2, dominated convergence theorem implies
ż

N
ρ´m`a
ε dVgε ď

ż

X1YX2

r̂´m`a dVX 1 ď Cpaq ă 8

for all t ě Λ. It follows that, by choosing a sufficiently small such that µ ą ν`2
m´2 ` a

2 ,
ż

N
|Qεpduq| ¨ wε dVgε ď Cpaqεptqmt´2µ` 2

m´2
pν`2`a

2
q

ď Cpaqεptqmt´2pµ´ ν`2
m´2

´a
2

q,

which shows

|Gptq| ď Cεptqm ¨ t´ζ .

A similar argument using (8.6) gives

|Gpt1q ´Gpt2q|

|t1 ´ t2|α
ď Cεptqm ¨ t´ζ

providing 0 ă |t1 ´ t2| ă t´
2

m´2 . □

Lemma 9.4. Given ψ P P 0,0,α
µ,ν`2,Λ with }ψ}

P 0,0,α
µ,ν`2,Λ

ď 1, let the triple pu, aptq, bptqq be the solution

to the Cauchy problem
$

&

%

Btu´ Lε
0rus “ ψ ` aptq ` bptqwε, on N ˆ pΛ,8q,

up¨,Λq “ 0, on N,

with orthogonality condition u P x1, wεyK. Define

Eptq :“

ż

N
pψ ` bptqwεq ¨ wε dVgε . (9.11)

Then if µ ą ν`2`2α
m´2 , then for 0 ă |t1 ´ t2| ă t´

2
m´2 and ζ ą 0 satisfying ζ ă µ´ ν`2`2α

m´2 ,

|Eptq| `
|Ept1q ´ Ept2q|

|t1 ´ t2|α
ď C εptqmt´ζ . (9.12)
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Proof. Write Eptq “ E0ptq ´ E1ptq, where

E0ptq “

ż

N
Btu ¨ wε dVgε , E1ptq “

ż

N
Lε
0rus ¨ wε dVgε .

We first estimate E0ptq. By differentiating orthogonality condition in time, we have

E0ptq “ ´

ż

N
u ¨ Btw

ε dVgε ´

ż

N
u ¨ wε BtdVgε .

It follows from Lemma 7.3 and Lemma 7.4, and the assumption on εptq that

|E0ptq| `
|E0pt1q ´ E0pt2q|

|t1 ´ t2|α
ď C εptqm t´µ` 1

m´2
pν`2`2αq

}u}
P 0,0,α
µ,ν,Λ

for 0 ă |t1 ´ t2| ă t´
2

m´2 .

To estimate E1ptq, write

E1ptq “

ż

N
∆gεu ¨ wε dVgε `

ż

N
Pε
0rus ¨ wε dVgε ,

where Pε
0 :“ Lε

0 ´ ∆gε . Then by Lemma 7.4 and Lemma 7.11 we obtain

|E1ptq| ď

ż

N
|u| ¨ |∆wε| dVgε `

ż

N
|Pε

0rus| ¨ |wε| dVgε

ď C }u}
P 1,2,α
µ,ν,Λ

t´µ` ν`2
m´2 εptqm.

Similar estimate using the Hölder estimates in Lemma 7.4, Lemma 7.3 and Lemma 7.11 yields

|E1pt1q ´ E1pt2q|

|t1 ´ t2|α
ď C }u}

P 1,2,α
µ,ν,Λ

t´µ` ν`2`2α
m´2 εptqm

for 0 ă |t1 ´ t2| ă t´
2

m´2 . Hence,

|E1ptq| `
|E1pt1q ´ E1pt2q|

|t1 ´ t2|α
ď C εptqm t´µ` ν`2`2α

m´2 }u}
P 1,2,α
µ,ν,Λ

for 0 ă |t1 ´ t2| ă t´
2

m´2 . Combining these estimates, along with Theorem 7.12, we obtain

|Eptq| `
|Ept1q ´ Ept2q|

|t1 ´ t2|α
ď C εptqm t´µ` ν`2`2α

m´2

for 0 ă |t1 ´ t2| ă t´
2

m´2 . □

Proof of Proposition 9.2. To show that I is continuous with respect to the norm of P 1,2,α1

µ1,ν,Λ ˆ

C0,α1

ζ1,Λ, one may use a contradiction argument as in the proof of [3, Proposition 5.3].

For the estimate on kptq, note that by definition we have

kptq “ hptq ´
m´ 2

2cL

V1 ` V2
V1V2

ε´m}wε}2L2 ¨ bptq

“ ´εptq´mm´ 2

2

"

dε2ptq

dt
`
εmptqA

cL

V1 ` V2
V1V2

`
1

cL

V1 ` V2
V1V2

}wε}2L2bptq

*

“ ´εptq´m pm´ 2qpV1 ` V2q

2cLV1V2
pGptq ` Eptqq.
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It follows from Lemma 9.4 and Lemma 9.3 that we may choose ζ ą ζ such that

|kptq| `
|kpt1q ´ kpt2q|

|t1 ´ t2|α
ď Ct´ζ , 0 ă |t1 ´ t2| ă t´

2
m´2 . (9.13)

ùñ }k}
P 0,α
ζ,Λ

ď CΛ´pζ´ζq. (9.14)

Finally, we may estimate v using (9.5), Proposition 8.1, and Proposition 8.3:

}v}
P 1,2,α
µ,ν,Λ

ď C
´

}θεN}
P 0,0,α
µ,ν`2,Λ

` }ξp0q}
P 0,0,α
µ,ν`2,Λ

` }Qεrdus}
P 0,0,α
µ,ν`2,Λ

¯

ď C
´

Λµ´ 1
m´2

pτpν`2q`p1´τqmq
` Λµ´ 1

m´2
pm´2αq

` Λ´µ` ν`2
m´2

¯

.

Taking Λ sufficiently large therefore ensures that I maps Bα
µ,ν,ΛˆI0,α

ζ,Λ to itself, as required. □

9.3. Proof of Theorem 9.1. Consider the iteration map I defined in section 9.1. By Propo-

sition 9.2, it may be viewed as a function on the product of unit balls, I : Bα
µ,ν,Λ ˆ I0,α

ζ,Λ Ñ

Bα
µ,ν,Λ ˆ I0,α

ζ,Λ.

By Lemma 7.7, Bα
µ,ν,Λ ˆ I0,α

ζ,Λ is a compact subset of P 1,2,α1

µ1,ν,Λ ˆ C0,α1

ζ1,Λ for any µ1 ă µ, α1 ă α,

ζ 1 ă ζ. Since I is a continuous map by Proposition 9.2, we may therefore apply the Schauder

fixed point theorem to conclude that there exist pu, hq P Bα
µ,ν,Λ ˆ I0,α

ζ,Λ such that pv, kq :“

I pu, hq “ pu, hq. Define εptq and the Lagrangian embedding ιε using the function h as in (9.3).

Since h P I0,α
ζ,Λ, εptq satisfies Assumption 6.1. By (9.4) and (9.8), the fixed point pu, hq satisfies

hptq “ kptq ùñ bptq “ 0 ,

uptq “ vptq ùñ Btu´ Lε
0rus “ θNε ` ξp0q `Qεrdus ` aptq

ùñ Btu “ θpduq ` ξpduq ` aptq,

as required.

Finally, since u P Bα
µ,ν,Λ, we have

|dupx, tq|gε ď }u}
P 1,2,α
µ,ν,Λ

t´µρ´ν´1

t
´ 1

m´2
pxq ď C t´µ` ν`2

m´2 εptq, for all px, tq P N ˆ rΛ,8q. (9.15)

Since µ ą ν`2
m´2 , this shows that the time-dependent 1-form dup¨, tq is contained in the La-

grangian neighbourhood UNεptq for all t ě Λ for Λ sufficiently large. We may then apply

Proposition 4.2 to obtain a solution to the mean curvature flow given by ΨNεptq ˝ dup¨, tq. The

estimate (9.15) implies that ΨNεptq ˝ du converges to the immersion ι : X Ñ M .

□

We end this section by studying the convergence of the mean curvature flow solution Nt :“

ΨNεptq ˝ dupN, tq as t Ñ 8.

Proposition 9.5. We have the following locally smooth convergence of submanifolds in Cm:

εptq´1
“

Υ´1pNtq XBεptqτ
‰

Ñ L as t Ñ 8. (9.16)

Proof. By construction we know that εptq´1Υ´1pNtq XBεptqτ´1 can be written as a graph ΦL ˝

pεptq´2duq over L. Then u P Bα
µ,ν,Λ implies that |du|gL ` |∇du|gL “ opεptq2q as t Ñ 8. Hence,

the graph ΦL ˝ pεptq´2duq converges to L as t Ñ 8 on Bεptqτ´1 , locally in the C1-sense. Since



INFINITE-TIME SINGULARITIES OF LMCF 59

u is a solution to the parabolic equation (4.7) on L, by parabolic regularity the convergence is

locally smooth. □

Corollary 9.6. The second fundamental form |ANt | blows up at a rate O
´

t
1

m´2

¯

as t Ñ 8.

Proof. By construction and the fact that u P Bα
µ,ν,Λ, |ANt | remains bounded away from the

region Nt X ΥpBεptqτ q. The blow-up rate now follows from Proposition 9.5. □
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