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ABSTRACT. In this paper, we construct solutions of Lagrangian mean curvature flow which
exist and are embedded for all time, but form an infinite-time singularity and converge to an
immersed special Lagrangian as ¢t — 00. In particular, the flow decomposes the initial data into
a union of special Lagrangians intersecting at one point. This result shows that infinite-time
singularities can form in the Thomas—Yau ‘semi-stable’ situation. A precise polynomial
blow-up rate of the second fundamental form is also shown.

The infinite-time singularity formation is obtained by a perturbation of an approximate
family N =) constructed by gluing in special Lagrangian ‘Lawlor necks’ of size £(t), where the
dynamics of the neck size €(t) are driven by the obstruction for the existence of nearby special
Lagrangians to N°®). This is inspired by the work of Brendle and Kapouleas H regarding
ancient solutions of the Ricci flow.
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1. INTRODUCTION

1.1. Singularities of Lagrangian Mean Curvature Flow. The celebrated theorem of Yau
[35] states that if the canonical bundle of a K&hler manifold is holomorphically trivial, then it
admits a Ricci flat Kéhler metric, referred to as the Calabi—Yau metric. Over the past four
decades, understanding the Lagrangian submanifolds minimal with respect to such a metric
(known as special Lagrangians |9]) has been a major direction in differential geometry. Calabi—
Yau manifolds and their special Lagrangians also appear in various proposals of theoretical
physics. In particular, Strominger, Yau and Zaslow |30] have proposed to use special Lagrangian
fibrations to understand the mirror symmetry of Calabi—Yau manifolds.

The basic question about the existence of a special Lagrangian representative for a given
homology class in a Calabi—Yau manifold is still open. In contrast, the Lagrangian condition
is symplectic-topological, and so it is easier to find Lagrangian submanifolds. Moreover, the
Lagrangian condition is preserved along the mean curvature flow if the ambient metric is Calabi-
Yau [27,29], a process known as Lagrangian mean curvature flow. One can therefore naturally
deform a Lagrangian submanifold by its mean curvature vector to decrease its volume, and hope
that the flow will exist forever and converge to a special Lagrangian submanifold. Motivated by
mirror symmetry, Thomas and Yau [32,33] proposed a conjectural picture for Lagrangian mean
curvature flow, relating the behavior of the flow to a “stability” property of the Lagrangian
cycle; these conjectures have since been refined and reformulated by Joyce [16].

In practice, the Lagrangian mean curvature flow often forms singularities in finite-time.
In fact, Neves [25]26] constructed examples of Lagrangian mean curvature flow forming a
finite-time singularity within any Hamiltonian isotopy class of Lagrangians, in the case of 2-
dimensional Lagrangians. A resolution of the Thomas—Yau conjecture will therefore require a

detailed understanding of singularity formation.

In this paper, we study the complementary phenomenon of infinite-time singularities, in
order to improve our understanding of the Thomas—Yau picture. Explicitly, we show that
there exist Lagrangian mean curvature flows that exist for time ¢ € [A, o) for which the flow
converges to a singular special Lagrangian as t — 00. Since the limit is not smooth, the second
fundamental form cannot remain uniformly bounded; this is therefore an example of an infinite-
time singularity of Lagrangian mean curvature flow. To the authors’ knowledge, this is the first
example of an infinite-time singularity of mean curvature flow in the compact setting.

We remark that Chen and He [6] proved that the mean curvature flow cannot have an infinite-
time singularity when the ambient manifold is non-compact satisfying some mild conditions.
In contrast, using a rotationally symmetric Ansatz, Chen and Sun [5] recently constructed a

non-compact example in R? with an infinite-time singularity.

1.2. Desingularising Special Lagrangians with Isolated Conical Singularities. We now
give details of our construction. Consider an immersed special Lagrangian X™ in a Calabi-
Yau manifold M?™, whose singular points are modelled on the transverse intersection of two
half-dimensional planes. If the two half-dimensional planes at a singular point satisfy the
angle criterion (also known as a type 1 intersection, see Definition , then there exists an
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asymptotically conical special Lagrangian L < C™ (known as a Lawlor Neck [17]) with these
same planes as asymptotes. One may therefore ‘glue in’ this Lawlor neck at scale € at the
singular point to produce an almost-minimal Lagrangian desingularisation N¢ (see Figure [1]).

A natural question is whether the desingularisation V¢ can be perturbed to a smooth special
Lagrangian submanifold. This question was studied thoroughly by Joyce in a series of papers
[11,/12,/13/14)/15], and also by Lee [19]. The upshot is that as long as the immersed special
Lagrangian satisfies a “balancing” condition, the desingularisation can be perturbed into a
special Lagrangian [15, Theorem 9.7]. These theorems can be applied to construct interesting
examples of special Lagrangians; see for instance [10].

An overview of Joyce’s construction is as follows. Firstly, nearby Lagrangians are repre-
sented as graphs of closed one forms in the Lagrangian neighbourhood of N¢, and the special
Lagrangian equation is expressed as a scalar equation on IN¢ in the potential functions. The
potential function of the mean curvature vector corresponds to the Lagrangian angle, and the
linearised operator of the special Lagrangian equation is the Laplace operator on N¢. In gen-
eral, the linearised operator may have eigenfunctions with small eigenvalues (relative to the
size of the neck), which means the inverse is not bounded independently of . However, the
balancing condition guarantees that the orthogonal projection of the mean curvature potential
to the small eigenspace is sufficiently small, and can be ignored. One can therefore construct an
iteration map using the inverse of the linearised operator, and by applying this map iteratively
converge to a solution.

In this work, we consider an immersed special Lagrangian X with only one singular point
T4, such that the tangent cone at x, satisfies the angle criterion. For this configuration, Joyce’s
balancing condition means that the complement X\{z,} is connected, and in this case one can
apply Joyce’s result to desingularise X and perturb to a special Lagrangian. In contrast, if
X\{z.} is not connected (e.g. as in Figure[L), the linearised operator of the special Lagrangian
equation on the desingularisation N¢ has a one-dimensional space of non-trivial eigenfunctions
with small eigenvalues, which acts as an ‘obstruction’ to finding a special Lagrangian nearby
to N¢. The mean curvature flow of N¢ will therefore not flow to a nearby special Lagrangian,
and indeed a heuristic calculation (described in more detail below) suggests that under mean
curvature flow, the neck size of N¢ will decrease, and form a singularity in infinite time.

Our main theorem verifies that this infinite-time singular behaviour occurs for a particular
example of the above configuration: two intersecting special Lagrangian tori in the complex
torus. We consider a one-parameter family of desingularisations N¢(*) for a suitable decreasing
function ¢ : [A,0) — R, and show that one may perturb the entire family to a Lagrangian
mean curvature flow. The main result may be summarised as follows; a more precise statement
is given as Theorem [9.1] Proposition and Corollary

Main Theorem. Let m > 3, and endow T?™ = C™/T" with the Calabi-Yau structure induced
from the standard one on C™. Suppose that X1 and X5 are two special Lagrangian sub-tori in
T?™ intersecting transversely at a point x., and suppose the tangent planes at x. satisfy the
angle criterion.
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Then for g9 small enough, there exists a desingularisation N of X := X1 u X obtained
by gluing in a Lawlor neck L at scale ¢, and a Lagrangian mean curvature flow Ny starting
from N€O existing for all time. Moreover, the flow satisfies the following asymptotic behaviour
as t — 00:

e (infinite-time singularity) Ny — X1 U Xo smoothly away from x,.
e (blow-up rate of curvature) The second fundamental form Ay, satisfies |An,| = O(tﬁ).
e (singularity model) There exists a smooth ¢ : (0,00) — R satisfying

C_lt_ﬁ <e(t) < Ct_ﬁ for some C' > 0 and t sufficiently large, such that

e®) v Y (V) - L

locally smoothly, for a suitable Darboux neighborhood Y : Br — T?™ centred at x,.

Note the dimensional constraint m > 3: such a dimensional constraint also appears in the
work of Joyce [15] and Lee [19]. One reason for this constraint is that the Green’s function in

dimension 2 is different from that in higher dimensions, which causes various analytic issues.

We remark that since X; and Xs are special Lagrangian of the same phase, the initial data
N®0 can be viewed as a Thomas—Yau semi-stable Lagrangian. Hence, our result indicates that
in the semi-stable case, even if one has long-time existence of the flow, the convergence to the
limiting special Lagrangian may not be smooth.

In [18], Lee proved that by allowing a perturbation of the ambient Calabi—Yau structure, N¢
can still be perturbed into a special Lagrangian. Our main result can be viewed as a parabolic
analogue of Lee’s result in the sense that, by allowing the neck size to change, N¢®) can be
perturbed into a Lagrangian mean curvature flow. Our main theorem can also be viewed as a
dynamic stability result for the ‘singular’ special Lagrangian X = X; u Xy, as a critical point
of the volume functional.

1.3. Remarks on the Proof of the Main Theorem. Our construction is based on a par-
abolic gluing technique. Over the past five years, there have been several works based on this
method; in particular the work of Brendle and Kapouleas [3] on the Ricci flow provides a strong
intellectual input to this work (see also [1,7,[8,/34] for other geometric flows). The idea is to
start with a one-parameter family of desingularisations N¢() obtained by gluing in a Lawlor
neck L at scale £(t) to X at x,., and perturb to a genuine Lagrangian mean curvature flow.
The desingularisations N¢®) are formulated as a time-dependent embedding :5®) from a static
manifold N to the Calabi-Yau manifold M, so that time derivatives on N x [A, ) are mean-
ingful. Nearby Hamiltonian isotopic Lagrangians to N¢ are graphs of exact one-forms in any
Lagrangian neighbourhood, so are parametrised by functions on N. Our aim is therefore to
find w : N x [A, ) — R representing a Lagrangian mean curvature flow nearby to N°(®).

Firstly, we express the Lagrangian mean curvature flow equation as a non-linear parabolic
scalar equation in u. A complication arises in our case, since the desingularisations N¢(), and
therefore the Lagrangian neighbourhoods themselves, are varying with time - this produces an
extra term in the equation which a priori may not be integrable to the level of potentials. These
issues are not present in the prior work of Joyce and Lee, and are unique to the parabolic case.
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To resolve them, it is required to carefully construct suitable ‘exact’ Lagrangian neighbourhoods
for conical and asymptotically conical Lagrangians, which are employed in the construction of
Lagrangian neighbourhoods for N€.

Besides solving the parabolic equation for the perturbation, another important aspect of our
work is the choice of the neck parameter £(¢). Since the Lawlor neck is a minimal submanifold,
to first order the neck is not shrinking along the flow. It is therefore necessary to look for a
suitable ‘external force’ for the definition of £(¢). This force arises from the ‘balancing condition’
of Joyce. In Joyce’s elliptic setting, the orthogonal projection of the mean curvature potential to
the approximate kernel is not sufficiently small to allow one to perturb to a special Lagrangian,
as previously mentioned. However, in our parabolic problem the orthogonal projection includes
time derivatives of £(¢), and so the equivalent balancing condition is an ODE in &(t),

d 2 m m
3 E@)7 = —c ()™ +ole(t)™), (1.1)

which, up to higher order terms, is solved by eo(t) = (™™ + $(m — 2) t)_ﬁ. Therefore
the family {N°® : g(t) = (g7 + $(m — 2) t)_ﬁ for 0 < t < 0} is ‘closest’ to a genuine
Lagrangian mean curvature flow.

Our goal now is to perturb from this approximate flow to a genuine flow. This requires solving
a coupled system of the nonlinear parabolic equation for the potential and the balancing ODE
. We employ an iteration scheme inspired by [3], in which Brendle and Kapouleas construct
an ancient solution to the Ricci flow using the obstruction of existence of Einstein metrics. Note
that the neck parameter £(¢) is decreasing in time, producing an infinite-time singularity; this
contrasts with the ancient Ricci flow in [3].

Finally, we remark that the restriction to the case of Calabi—Yau tori in our main theorem is
in order to make the error terms small enough that the approximate dynamics (1.1)) dominate.

We aim to address the general case in our upcoming work.

1.4. Structure of the Paper. Section [2|is devoted to the construction of ‘exact’ Lagrangian
neighbourhoods of Lagrangian cones and asymptotically conical Lagrangians. In section [3] the
desingularisation N¢ is introduced, as the image of an e-dependent map from a static manifold
1 : N —» M. The non-parametric form of the Lagrangian mean curvature flow equation is
derived in section [l The condition under which the Lagrangian mean curvature flow equation
can be integrated to the level of potentials is also discussed in section [dl In section [5] we
compute the linearised operator, and introduce its approximate kernel. The spatial properties
of the approximate kernel are established by Joyce; the materials in sections [2] and [3] allow us
to study their parabolic properties. In section [6 we prove three Liouville theorems, and use
them to establish the weighted Schauder estimate for the solution to the inhomogeneous heat
equation. We note that the discussions in sections [2] to [6] are valid not only for the specific case
of our main theorem, but for general immersed Lagrangians in a general ambient Calabi—Yau
manifold, where the intersections satisfy the angle condition.

From section [7], we focus on the case of two intersecting Lagrangian tori in a complex torus.
The main purpose of section [7] is to establish an existence theorem for solutions to the heat
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FIGURE 1. An diagram of a special Lagrangian with a single immersed point
X such that X\{z,} is disconnected, along with its desingularisation N¢. The
desingularisation is obtained by ‘gluing in” an asymptotically conical special La-
grangian (a Lawlor neck) at scale e. The Laplacian on N¢ has a one-dimensional

space of non-trivial eigenfunctions with small eigenvalues.

equation on the L%-orthogonal complement of the approximate kernel. In section |8 we derive
the projection formula to the approximate kernel, and the estimates of the zeroth order and
quadratic terms of the Lagrangian mean curvature flow equation. Finally, these materials are
put together in section [ and the main theorem is proven by a Schauder fixed point argument.

1.5. Conventions. Here are some conventions that will be used throughout this paper.

(1) The complex dimension of our Calabi-Yau is assumed to be 3 or greater, m > 3.

(2) In a Calabi-Yau manifold (M?™, g, J,w, ), a half-dimensional submanifold L™ is called
a special Lagrangian submanifold if it is calibrated by Im Q. Namely, Im Q|7 coincides
with the volume form of L. According to [9, p.89], this is equivalent to the vanishing of
w|r, (the Lagrangian condition) and the vanishing of Re |z, (the special condition).

(3) Unless otherwise specified, C™ =~ R?™ is equipped with the standard Calabi-Yau struc-
ture (go, Jo,wo, Qo), where wy = 27;1 dzj A dy; and Qo =dz; A ... A dzp,.

(4) Given a diffeomorphism ¢ : L — L, it induces a diffeomorphism (¢*)~! : T*L — T*L.
Such a map will be denoted by ¢4. Given a smooth function u : L — R, du embeds L
into T*L. It is straightforward to verify the following relation

(du)op =@iod(ucy) . (1.2)
(5) The constant C' in the estimates may change from line to line.

Acknowledgments. The authors would like to thank Dominic Joyce and Yng-Ing Lee for
helpful discussions and interests in this work. The authors are grateful to Simon Brendle for
answering our questions regarding [3].
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2. NEIGHBOURHOOD THEOREMS AND LocAL MODELS

2.1. Equivariant Neighbourhoods of Lagrangian Cones. In this section, we consider a
Lagrangian cone C' ¢ C™ =~ R?", where C™ =~ R?™ is equipped with the standard Liouville
form Ny = %Z;”:I(yjdxj — z;dy;), so that d\g = —wp. Note that the link ¥ = C n §?" ! is
a Legendrian submanifold in the contact manifold (S?™!, Ao|g2m-1). On the other hand, one
can equip T*¥ x R with the contact form Ay — ds, where Ay, is the tautological 1-form on T*X
and s is the coordinate on R. It is clear that X, as the zero section of T*Y, is a Legendrian
submanifold in (7*% x R, Ay, — ds). By Moser’s trick, one can show that the latter is the
standard local model of Legendrian neighbourhoods.

Lemma 2.1 ([23]). Denote by 0 the zero section in T*X < T*¥ x R. There exist an open
neighbourhood Wx, of 0 in T*Y x R and an embedding Vs, : Ws, — S?™~1 such that \Ilg|g =15
and U (Xo|gzm-1) = Az — ds, where vs, 1 ¥ — S*™~1 s the inclusion map.

Using Lemma [2.1] we construct an equivariant Lagrangian neighbourhood for C. Recall the

notion of a Lagrangian neighbourhood.

Definition 2.2. Let ¢ : L™ — (M?™,w) be a Lagrangian embedding. A Lagrangian neigh-
bourhood consists of an open neighbourhood U < T*L of the zero section 0, and an embedding
U : U — M such that \I/L|Q = ¢ and ¥} (w) = wr, where wy, is the canonical symplectic form
on T*L.

We consider the natural R -action on C™\{0} given by dilations, and the R,-action on
T*C = T*(X x (0,00)) defined as follows. Formally writing a point in 7%(X x (0,00)) as
(o,7,6,8) where 0 € ¥, r € (0,0), ¢ € T5¥ and s € R = T*(0,0), and letting € € R, we define

€-(0,1,6,8) = (0,€r, €%, €s) . (2.1)

The following proposition gives not only the neighbourhood, but also the expression of the
Liouville form on the neighbourhood. It is an extension of [11, Theorem 4.3].

Proposition 2.3. Let ¥ be a Legendrian link in (S*™~1, Xo|g2m-1), and let C =¥ x (0,90) be
the corresponding Lagrangian cone in (C™\{0},wqo). There exists a Lagrangian neighbourhood
Sc:Uc cT*C =T*(X x (0,00)) = C™\{0} such that

BN = )\C—d(r—;) ,

where A¢ is the tautological 1-form on T*C, r € (0,00), and s € R = T*(0,00). Moreover, Uc
is tnvariant under the R -action defined in (2.1), and ®¢ is equivariant with respect to it.

Proof. The symplectization of (S*™~1, Xo|gzm—1) is (R*™\{0},wy = —dXg). More precisely,
identify x € R?™\{0} with (ﬁ, Ix|) € $?™~1 x (0,00). Under this identification, Ay is the pull-
back of 72 X\g| g2m-1, where r is the coordinate on (0,00). With this understood, it is equivalent
to construct the embedding ®¢ to S*™~! x (0,00) so that ®%(r? Ag|gzm—1) = Ac —d (%). Note
that on S?™~! x (0,0), the dilation acts only on the (0, o0)-summand.
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Consider the diffeomorphism
Y T*(X x(0,00)) — T*X xR x(0,00)
(O-a TG, S) — ((U’ 7"_2§), (2T)_157 T) .
For the open set Wy, given by Lemma it is not hard to see that Uc = =1 (Wy x (0,00)) is
an open neighbourhood of the zero section in 7% (3 x (0,00)). Let
o = (Vg x id(gum)) 0¥ : Uo = T*(S x (0,00)) — S x (0,0)
where & is given by Lemma The pull-back of the Liouville form under ®¢ is
OE(r? Nolgam—1) = ¢*(r* (s — ds))

— Ay — 2 (%) — (s + sdr) —d (%) .

Note that Ay, + sdr is exactly the tautological 1-form on 7*(X x (0, 00)).

The invariance of Uc under (2.1) follows from the construction. It remains to check the
R -equivariance of ®¢. For any ¢ > 0,

So(e- (o,1,6,8)) = Pe(o,er, 62968)
= (Us x id(,)) ((0,77%), (2r)'s,er) = €~ Bo(o, 1,6, 5) -

This finishes the proof of the proposition. O

2.2. Asymptotically Conical Lagrangians. Proposition [2.3] can be used to construct good
neighbourhoods for asymptotically conical Lagrangians. We first recall their definition.

Definition 2.4. A Lagrangian L < C™ is called asymptotically conical with cone C' and rate
7 if the following holds. Let ¥ = C' n S?™~! be the link of C. There exist a compact subset
K c L, a constant R; > 0, and a diffeomorphism ¢ : ¥ x (R;,00) — L\K such that for any
non-negative integer k,

IVE(p —o)l(o,r) = O 7F) asr — w0, (2.2)
where V and | - | are computed using the cone metric go = dr? + r?gs.

Remark 2.5.

e Later on, we will consider the “potential” of L over ¥ x (Ry,0). The —1 in the power
of r in will imply that the potential is of order ~.

e In [13, Definition 4.1], is only required for k¥ = 0,1. Under suitable assumptions,
it can be upgraded to all k > 0; see for instance Theorem 3.8 and Theorem 4.6 in
[13]. Since we will only work with specific asymptotically conical Lagrangians, a more

restrictive assumption is chosen here for convenience.

Suppose that the rate satisfies v < 0. According to Proposition L\K can be written as
the graph of a smooth closed 1-form on ¥ x (Ry,0), after taking R; larger if necessary. That
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is to say, L\K belongs to ®¢(Uc). Thus, there exists a closed 1-form, ¢, on ¥ x (Rp,0) such
that

o(o,r) = Pc(o,r,e1(o,r),e2(o,r)) (2.3)

for any (o,r) € ¥ x (Ry,0), where ¢g = e(%) and e; = ¢ — eadr. The condition (2.2)) implies
that

(VFe| = O(r"17%) asr — w (2.4)

where V and | - | are computed using the cone metric go = dr? + r?gs.

Recall that a Lagrangian submanifold L < C™ is said to be ezxact if the restriction of the
Liouville form, ¢7 Ao, is exact. Here is the neighbourhood theorem we will need.

Theorem 2.6. Let L < (C™,wg) be an exact, connected, asymptotically conical Lagrangian
submanifold with cone C' =X x (0,00) and rate v < 0. Then:

e There exist a Lagrangian neighbourhood ®y : Uy, < T*L — C™ and a function ay, :
Ur, — R such that

q);z)\o = )\L — daL .
Moreover, ®1, can be chosen so that
(q)L © SOT)(O-’ e, S) = (I>C(O-a ¢+ el (U’ 7"), s+ 22(0-7 7’)) (25)

for any (o,r,¢,8) € 4,0;1(UL) c T*(X x (Ry,,0)), where ®¢ is the map given by Proposi-
tz’on @ is the map in Deﬁm’tion and ¢ = e1 +eodr € QY (X x (Ry, 0)) is explained
m .
e The 1-form ¢ on X x (R1,0) is exact, ¢ = d€, and thus ¢ = ®¢c o d€. Moreover, the
potential function € can taken to obey that |V¢€| = O(r"*) as r — oo, for every £ = 0.
e The function ay, is unique up to adding a constant. Moreover, there are constants cg,
associated with the connected components Lq of L\K, and on each ¢} YT*L,):

TS r
(arogn(orss) = (5 +ea) = 5@ ) (0r) - €(or), (2.6)
(OKLOSOT)(UJ",QS)— (%“‘Ca) = O(r7) as r — 0.
The restriction of ag, : U, — R to the zero section Br, := arlo is a primitive of the
Liowville form up to a minus sign, tj Ao = —dfL.

Proof. The argument is very similar to [22, Proposition 5.3]. The proof is separated into 4
steps. The bundle projection map is denoted by .

Step 1: Lagrangian neighbourhood near infinity. We first construct the neighbourhood of L\ K.
Define an open subset Ug — ¢ of T*(X x (R, 0)) by

Uo—re={(o,r5,s): (o,r,¢ +e1(o,7),s +ea(o,r)) e Uc} .



10 WEI-BO SU, CHUNG-JUN TSAI, AND ALBERT WOOD

Its image under ¢4 is an open neighbourhood of the zero section in 7%(L\K). Denote its

image, p1(Uc —¢) < T*(L\K), by Up\ i One naturally defines an embedding @\ : Up\x <
T*(L\K) — C™ by

((I)L\K opi)(o,1,5,5) = Pc(o,r,¢ +ei1(o,7),s + ea(o,7)) . (2.7)

We prove the exactness of ¢. For the self-diffeomorphism f, on T#(X x (Ry, o)) defined by

felo,r,6,8) = (0,7,¢ + e1(o,7),5 + e2(0, 7)) , (2.8)

one has f¥(Ac) = Ac + ¢, where ¢ is the tautological 1-form on 7%C > T*(X x (R;,)), and
¢ is regarded as a 1-form on T*(X x (Ry,0)) under the pull-back of the projection.

Since de = d(ej + eadr) = 0,

0
dses = 21 and dyer = 0.
or
Since [¢| = O(r?~1) as 7 — o0, the function
Q0
e(.r) =~ | ey (29)

is well-defined, and |€(o,r)| = O(r7) as r — 0. With de = 0, one finds that d€ = e. The rate
on |VE| follows directly from its construction.

According to Proposition (2.7), d€ = ¢, and the fact that ¢t preserves the tautological
1-form,

23 scho = ((07)7 0 £ 0 2F) (o) = <so;1>*fe* (e-1(3))

= (e [re - ( (3)-¢
—AL—d[(E e) o pF ] (2.10)
where Af, is the tautological 1-form on T%L o T*(L\K).
Step 2: constants. Since L is exact, there exists 37, : L — R such that ;Ao = —dfr. Due to
the connectedness of L, By, is unique up to adding a constant. Fix a choice of S5r.

On the other hand, the restriction of (2.10|) on the zero section, L\ K, implies that

(tLA0)| e = —d [(% + % B QE) il ”L\K'

Therefore, one each connected component, L,, of L\ K, there must exist a constant ¢, such that

(s | e 1
= |5+ 5 el

With these constants c,’s, define ar\ g : Up\ g — R by

skl = (572 €)ost]

+ cq.

teq . (2.11)

Step 3: Moser’s trick on T*K. Let (7L c T*L and &)L : (7,; — C™ be smooth extensions of the
open neighbourhood Uy, i and the embedding @, ¢ over the compact subset K. Namely, (7L is
an open neighbourhood of the zero section in 7% L with Uy, Nt YI\K) = Ur\k, and (T)L|UL\K =
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@1\ k- Moreover, the embedding can be chosen so that d L‘o = t7,. The neighbourhood of L
asserted in this theorem will be constructed by perturbing U 1, and ® L-

Let h € C*(L) be a cut-off function such that h=1on L\K, h =0 on K’ cc K. Define an
extension ay, of ap g (2.11) to UL by
ar = (hom)apg +(1—hom)(Brom) .
From step 2, the restriction of &, on the zero section is By, & L|Q = (1. The goal is to construct

a one-parameter family of self-diffeomorphisms, {vi}e[o,1], of Uy, with the following properties.

* v = idy, and vy € Diffe(L) for all ¢ € [0,1].
e Let Nl = (1 —t)(\p —dayg) + t&ﬁ:)\o. There exists a family of functions, {at}e(p,1], on
ﬁL with ap = 0 and

v = \p —d(ap + o) (2.12)
for every t € [0, 1].
Suppose %Ut = Y; o v;. Differentiating gives
d (%‘;t) . {‘iﬁt Ty (AN + d(mx)}
— vf { = — ) + B5h0 + ov; [ (1= £)(—wr) — tBfwo | + Al \) }
= o {u [(1= 0)(—wn) — 80| — [ — dap — Fpxo |} +d (w7 )
where wy = —dAr is the canonical symplectic form on T*L. By shrinking Uy, in the fiber

direction if necessary, the 2-form (1 — t)(—wrg) — t(fzwo is non-degenerate for every ¢ € [0, 1].
Define the one-parameter family of vector field {Y;},c0,1] by

Ly, [(1 — t)(—wL) — t%iwo] = )\L — d&L — ‘iz)\o .

Due to (2.10)), the right hand side vanishes on 7#~!(L\K). Thus, Y; only supports on 7~ !(K).

Note that the zero section is Lagrangian with respect to (1 —¢)(—wr) — t%iwo, and for every
V tangent to the zero section,

(1= ) () — 15| (il V) = —d | &l — 8] (V) = 0.

It follows that Y; is tangent to the zero section. Therefore, for the diffeomorphism v; generated
by Y;, one has vy, € Diff.(L) and

d

SN = —d (do‘t> — d (vFiy\1) .

At
Integrating it against with ¢ gives

¢
viAb = A\ —dag +d (J vy AT d7'> .
0

. . . . ¢
Hence, v, is the desired diffeomorphism, and oy = — So viy, AT dr.
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Finally, set ®;, to be ) 1, ovy. It follows that
%Ny = vFBE N = 0N = A — dayg,
where af, = oy, + op—1.

Step 4: asymptotic behavior. It remains to verify the decay rate of ay. Note that oy only
supports on 7~ }(K). By construction, we have

Ll -1,y = (%—l—%—@) ogp,r_l—i—ca . (2.13)
Thus,
‘(aL opi)(o,1,5,8) — (% + ca) = O (rlez| +]€)) =0O(") asr —
on each (p,r_l(T*La) c T*(X x (Ry,)). This completes the proof of this theorem. O
Remark 2.7.

e In Theorem the function Sz, is harmonic if L is a special Lagrangian (calibrated by
Re ). See |25, Lemma 6.2].
e By [22, Lemma 5.4], one finds that ay, can be expressed as follows

R
oy, = 6L om + 2J <X7 Vﬂ>q>Losdu ds . (2.14)
0

Here, x is the position vector in C™, V is taken with respect to the standard structure
of C™, and @ is a function on ®,(Uy) defined to be uomo ®; .

We will also consider the dilation of an asymptotically conical Lagrangian submanifold L by a
scale € > 0, which will be denoted by t.;, = -t : L — C™. It is clear that €L is asymptotically
conical with the same cone and the same rate. The following corollary describes the effect of
dilation on Theorem [2.6l

Corollary 2.8. Let 5 : Uy, < T*L — C™ be the Lagrangian neighbourhood constructed by
Theorem . For any e > 0, let f. : T*L — T*L be the diffeomorphism defined by f-(q,p) =
(g,72p). Then, the open neighbourhood U.p, := f=1(Uy) = T*L of the zero section and the
embedding

Q.p=c-Prof.:Uyp—C"
constitute a Lagrangian neighbourhood of t.1,, and
¥ X =AL —d(e? (arof.)) onU.p,
where ay, is the function given by Theorem[2.6.
Proof. By f*\r = e 2\, (2)* Ao = €29 and Theorem [2.6
¥ No = fFPF (2 N) = 2fF (A\p —day) = A\ —d (2 fFar) .

This finishes the proof of the corollary. n
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The notations f. and f, defined by ([2.8]) both denote self-diffeomorphisms of the cotangent
bundle, whose restriction on the fibers are affine transformations. When the subscript is a real
number, it is a fiberwise dilation; when the subscript is a 1-form, it is a fiberwise translation.

Remark 2.9. We remark that there are two distinct metrics on a Lagrangian neighbourhood,
which we describe here. Choose local coordinates {¢'} on L. This induces a system of local
coordinates on T* L; a point with coordinate (¢’, p;) means the covector p;d¢’ at ¢ = (¢*, ..., q").
Given an embedding of a neighbourhood of the zero section in T*L to C™, we may consider the
pullback Riemannian metric on the total space T*L. We can also instead consider the induced
metric on L, which induces a bundle metric on T* L.

e Bundle metric. Denote by 9y (¢) d¢'®dg’ the induced metric on L by ®r|o. For pe T L,
lpl|* = 9(q) pi pj- The induced metric on L by ®.p | is €2gij(q) dg' ® d¢’. Tt follows
that for p € TFL, ||pl|2 = e7?¢"(q) pip;. Hence, ||p|lc = €|le"?p||. In other words,
imagining that Up is of “radius 1” with respect to the bundle metric induced by &,
around the zero section, then U,y is of “radius €” with respect to the bundle metric
induced by ®.; around the zero section.

e Riemannian metric. For the Riemannian metric on T*L, denote by (m + j) for the
component in p;. Denote by g.r, the metric ®*; (go). By using the chain rule,

(9:L)ii (¢, p) = €*(g1)i; (f=(a.p)) ,
(.gsL)i(m+j)(Q7p) = (gL)i(m+j) (fe(Qap)) )
(9=L) (met)(ma) (@ P) = € 2(9L) (mriy (m+) (F= (a5 )
for any 7,5 € {1,...,m}.

As expected, the dilation on the embedding leads to the same effect on the bundle metric and
the Riemannian metric.
Remark 2.10. Denoting t(r) := er, by (2.3) and (2.1) eL\eK is given by

€ @C<O—7 r, 21(0, T)v 62<0—7 T)) = q)C(Uv er, 6261 (Uv T’), € QQ(U, 7'))

= ®c(o, 1,2 (0,67 ), e en(0, e M)

This means that e L\e K is the graph of a closed 1-form on ¥ x (¢Rj,00). Its potential function
(for v > eRy) is given by

0
—J € koo, e ty)dy = —62J ro(o,y)dy = e? €(o,e 1) |
el

so that
e-p = dood(e®E(o,e ) ot (2.15)

The above identity may be extended to a similar identity on the cotangent bundle:
e-®pop; = Boo fyeremetiry) O fo Ot (2.16)

where f., fga : T*L — T*L are the diffeomorphisms defined by f-(q,p) = (¢, 2p) and
faa(g,p) := (¢,p + dA) respectively.
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When an asymptotically conical Lagrangian L is also a special Lagrangian, Joyce in [13|
section 4.1] defines two cohomological invariants. We will require one of them.

Definition 2.11. Let L be an asymptotically conical, special Lagrangian submanifold with
cone C' = ¥ x (0,00). It follows from Im Qp|z, = 0 that (Imp,0) defines an element in the
relative de Rham cohomology H™(C™, L; R). Since X is in effect the boundary of L, there is a
natural map H™ 1(L; R) — H™1(X; R). Together with the long exact sequence

0=H"YC™ R) - H" (L; R) = H™(C™,L; R) - H*(C™; R) = 0 ,

the invariant Z(L) € H™~}(X; R) is defined to be the image of [(ImQg,0)] € H™(C™, L; R) =
H™ 1(L; R) under the map H™!(L; R) — H™ (Z; R).

2.3. The Lawlor Neck. It is known that SU(m) acts transitively on the space of special
Lagrangian m-planes in C™. In fact, the Grassmannian of oriented special Lagrangians is
SU(m)/SO(m). It follows that up to an SU(m) transformation, one may assume that a special
Lagrangian m-plane is R™ < C™. It turns out that given a pair of special Lagrangian m-planes,
one may still put them into a standard form by SU(m).

Lemma 2.12 (|15, Proposition 9.1]). Let (II",117) be a pair of transverse special Lagrangian
m-planes in C™, namely, II- n1I" = {0}. There exist Ue SU(m) and 0 < ¢1 < ... < ¢y <
such that U(TI7) = II° and U(IIT) = I?®, where

0 = {(1,...,2m) : x;€R™} and T? = {(eay,..., e x,): z; € R™} . (2.17)
Moreover, ¢ = (¢1,...,dm) is unique, and ZT:I ¢j = km for some ke {1,...,m—1}.
Definition 2.13. For a pair of transverse special Lagrangian m-planes in C™, (II",II"), the

integer k given by Lemma is called the type of (II",II"). Note that (II*,I17) is of type
m — k.

Clearly, (I~ U IT7)\{0} is a Lagrangian cone, whose link is the disjoint union of two S™ 1’s.
When (IT7,117) is of type 1, there are special Lagrangians asymptotic to II~ u IItT. They are
constructed by Lawlor in [17], and are usually referred as Lawlor necks. The explanation below
is based on [15, Example 6.11] and [19, section 1].

For positive numbers a1, ..., anm,, introduce the functions
—1+ 17 (L + ay9?)
Pa(y) = z )2 and

. s dy _
zj(s) = exp (2 aj J_OO 0t a?) Pa(y)) a; Ly g2

for j € {1,...,m}. Define the real numbers ¢y, ..., ¢, and A by

—a dy o (TTa
qu—ajf_oo 1+ a9?)/Paly) and A= wy, (HGJ> , (2.18)

N
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where wy, is the volume of the unit S™ ! < R™. With these functions and constants, the
construction and the properties of Lawlor necks are summarised in the following proposition.
The proof can be found in the aforementioned references.

Proposition 2.14. For positive numbers ai, ..., anm, the followings hold true.

(1) The numbers defined by (2.18)) satisfy

¢j€(0,m) forallyj, Egbj:ﬂ, and A >0 . (2.19)
j=1

Moreover, (2.18|) gives a bijection between
{(a1,...,am): aj >0 for all j} and {(¢1,...,0m,A) obeying (2.19)} .
With this understood, denote (¢1,...,¢0m) by ¢. For (¢, A) obeying (2.19), let

LA = {(zl(s)xl, oo Zm(8)xm,) € CM seR, z; eR, Z 93? = 1} , (2.20)
j=1

They are called Lawlor necks.

(2) The Lawlor neck L®* defined by (2.20)) is an embedded, special Lagrangian submani-
fold in C™. It is diffeomorphic to S™ ' x R, and is thus an exact Lagrangian. It is
asymptotically conical to TI° U II? with rate v = 2 — m, where

0 = {(x1,...,2m) : x;€R™} and 1% = {(ay,..., e x,,): zj € R} .

(3) The number A is essentially the volume of the topological B™ bound by the S™ 1 defined
by s = 0. The dilation of a Lawlor neck is still a Lawlor neck. Specifically, € - L4 =
L&A for any e > 0.

In item , one may also describe the dilation effect on the data (a1,...,an); € - LoA
corresponds to € - (a1, ...,am) = (€ 2a1,..., 2an).

Because of item , Theorem applies to the Lawlor necks. We would like to determine the
constants ¢,’s described in that theorem. The Lawlor neck L?4 has two ends. One is asymptotic
to I, whose constant is denoted by c_(L¢’A). The other is asymptotic to II?, whose constant
is denoted by c, (L#4). According to step 2 of the proof of Theorem these constants are
the limit of a primitive of —Xg. A direct computation shows that —Ag|; .4 T mdy, and

hence

ey (DO — e (L9 = fo ! (2.21)

——dy .
—0 2\/ Pa(y)
By a change of variable, ¢, (¢ - L?4) —c_(e- L#4) = ¢2 [cr (L) — c_(L‘b’A)]. This coincides
with Corollary

Since aip 4,4 is unique up to the addition of a constant, we may choose the asymptotic constant
c_(L#4) = 0, from which it follows that c, (L#4) = {* L__dy. We maintain this choice

~% 24/Pa(y)

for the remainder of our work.
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The Z-invariant (see Definition [2.11]) of the Lawlor necks is computed by Joyce in [15, section
9.1]:

Lemma 2.15. For a Lawlor neck L®4, let ¥~ be the link of 1I°, and =% be the link of TI®.

The Z-invariant of the Lawlor neck satisfies
Z(LPN - [27]=A4 and Z(L*N)-[ZT]=-A,

where the notation means the evaluation on the fundamental cycles.

It is not hard to see the effect of the dilations: Z(e - L#4) . [BF] = +c™A.

Remark 2.16. The notation + here plays the role of the index a in Theorem [2.6f The choice
here matches with the s-parameter in (2.20]), but is opposite to that in [15, section 9.1]. Note
that this does not mean that we reverse the orientation of L?4; the orientation of a special

Lagrangian is always given by Re (2.

2.4. Isolated Conical Singularities. In [13]|, Proposition is also used to describe the
local behavior of isolated conical singularities of Lagrangian submanifolds. For the purpose of
this paper, we focus on the case that the singularity is modeled on a pair of transverse special
Lagrangian planes of type 1, whose desingularisation models are the Lawlor necks.

Definition 2.17 ([15, section 9.2]). Let (M?™, g, J,w,Q) be a Calabi-Yau manifold, and X™
be a compact manifold. Suppose that ¢ : X — M is a special Lagrangian immersion. A point
x € M is called a transverse self-intersection point of X of type k if it satisfies the following

properties:

e The pre-image of x consists of exactly two points in X, 2~ and z™.
e The tangent planes ¢, (T, X) and ¢4(T,+ X) are transverse, tx(T,- X) nix(Tp+ X) = {0}.
e With the identification (T, M, g|s, J |z, w|z, Q|z) = (C™, go, Jo, wo, o),

(tx(Tp-X), 14 (T+ X)) is of type k (as defined in Definition [2.13)).

As noted in Definition the type becomes m — k if one exchanges z*. It follows from
the implicit function theorem and compactness of X that if transverse self-intersection points

are isolated, so are their pre-images.

To describe the structure of +(X) near x, we utilise Darboux’s theorem.

Lemma 2.18. (1) For any x in a Calabi-Yau manifold (M>™, g, j,w,Y), there exist R > 0
and an embedding Y from Bp, the ball of radius R in C™, to M, such that T(0) = z,
T*w = wo, T*glo = go and Y*Q|y = Q.
(2) Moreover, suppose that x is a transverse self-intersection point of type k of a special
Lagrangian immersion v+ : X — M. Then, there exists ¢ = (¢1,--- ,dm) satisfying
¢¢ € (0,m) for all £ and Y%, ¢¢ = kw. Moreover, T can be taken to obey

Tilp (M°) = (T, X)  and Y|y (T?) = 10 (Tpr X)

where TIY and TI? are given by (2.17)).
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Proof. The first assertion follows from the results in [4, Ch. 8 and Ch. 13]. The second assertion
follows from Lemma 2121 O

In light of Lemma [2.18] we consider transverse self-intersections of Lagrangians in C™. Util-
ising Proposition [2.3] we describe the decay of the Lagrangian to the tangent cone at the

self-intersection point in terms of a potential function as follows.

Lemma 2.19. Let IT be a Lagrangian m-plane in C™, and apply Proposition to C = II\{0}
to produce an equivariant Lagrangian neighbourhood ®c. Suppose that L is a Lagrangian in C™
with 0 € L and ToL = I1. Then, there exist Ry > 0 and a smooth function A : ¥ x (0, Ry) — R
such that

Ln BR2 = {((I)C onl)(O',T) = ®¢ (U’ Ty (de{)(O‘, T)’ (aTQl)(U,T)) poed, 0<r< RQ} )

and for k€ {0,1,2}, |[V*¥A| = O(r3=*) as r — 0. As before, V and | - | are computed using the
cone metric go = dr? + r?gs, which is simply the flat metric on II.

Proof. Similar to (2.3), L near the origin can be expressed as ®c(o,r, a1(o,7), az(o, 7)), where
ai(o,r) + ag(o,r)dr is a closed 1-form on ¥ x (0, Rg). Since 0 € L, |a] = O(r) as r — 0. Since
ToL =11, [Va| = O(r), and thus |a| = O(r?). As in the proof for Theorem let

Ao, 1) — L " a0, y)dy .

By a similar argument, d2l = a; + asdr. The decay rate on 2 follows directly from its construc-
tion. ]

Remark 2.20. In this case, 0 is a smooth point of the Lagrangian submanifold L, i.e. a fake
conical singularity point. In terms of the terminology in [13| section 3.2], the rate of the conical
singularity is 3. We note that in the main theorem of [13, section 6.1], the rate of the conical

singularity must belong to (2, 3).

3. DESINGULARISATIONS OF SPECIAL LAGRANGIANS WITH TRANSVERSE
SELF-INTERSECTIONS

Given a special Lagrangian with isolated conical singularities in a Calabi-Yau manifold ¢ :
X — M, such that there exist suitable local models for the desingularisations, Joyce in [13|
Definition 6.2] shows how to construct desingularisations of the special Lagrangian. The main
purpose of this section is to give an exposition of Joyce’s construction, in the particular case of
Lagrangians with transverse self-intersections of type I. We make this restriction so that there
exist suitable local models for the desingularisation process (the Lawlor necks of section [2.3)).

We will modify the construction to allow for diffeomorphisms between the desingularisations
of different sizes of necks; this will allow us to set up and solve the Lagrangian mean curvature
flow equation. In particular, we construct a family of embeddings (¢ from a fixed manifold N
to the Calabi—Yau manifold M, satisfying (* — ¢ as ¢ — 0.
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3.1. The Static Manifold. We first construct the underlying topological manifold for the

desingularisations.

Definition 3.1. Let X be a compact manifold. Let + : X — M be a special Lagrangian
immersion with only transverse self-intersection points of type 1, {z1,...,zy}. Denote :™*(z;)
by x; and :13]+ for j € {1,...,n}. There are three positive numbers in the construction, A, R;
and Ry, with (1 + 2h)R; < (1 — h)Ry. The number & is no greater than 1/100, and plays no
significant role. The radii R; and Rs may have to be taken smaller in each step if necessary.

Step 1. For each self-intersection point x;, apply Lemma to find a Darboux chart T :
Bpg, — M. Denote by ¢; the output of (2) of that lemma. We may assume Fl(U?:l Y;(Br,))
is the disjoint union of 2n topological m-dimensional balls.

Step 2. Let C; be the special Lagrangian cone I1° U 1%, and let ¥; = C; n S be its
link. This link is the union of two S™~!’s, which we label ¥, and Z;’ respectively. Apply
Proposition [2.3[ to find the Lagrangian neighbourhood ®¢; : Uc, = T*(%; x (0,00)) — C™.

Step 3. Due to Lemma there exists a function 2; : ¥; x (0, R2) — R such that

T]_l(L(X)\{(L']}) = {(@Cj onlj)(a, 7“) . 0€ Ej, 0<r< RQ} ’
and |V, = O(r3%) as r — 0 for £ € {0,1,2}. Note that .= o (Y; o d¢,; o d2;) induces a
diffeomorphism from ¥; x (0, Ra) to t=1(Y;(Br,)\{z;}).

Step 4. By Proposition Theorem and Remark there exists an A > 0 such that
for every j, the Lawlor neck L; = L% 4 satisfies

Lj N ((Cm\BRl) = {((I)C'j Od@j)(O’, 7’) . o€ Ej, r> R1}
for some function €; : %; x (Ry, ) — R with [V/¢;| = O(r®=™~¢) as r — oo, for any £ > 0.
Step 5. The static manifold N for the desingularisation of X will be constructed from the
following three types of pieces:
o X° = X\L_l(U;;l Y;(B(1-r)r,)), the outer region,
e Q; = X, x (Ry, Ry), the intermediate region, consisting of the connected components
Q; =%; x (Ri,Ry) and QF =% x (R, Ry),
e Pj = L;jn Bipg,, the tip region.
For (0,7) € £ x ((1 = h)R2, R2) < Qj, identify it with its image under :™' 0 T 0 ®¢; 0 d2; in
X°. For (o,r) € Bj x (Ry, (1 + h)R1), identify it with its image under ®¢; o d€; in P;. The

resulting manifold is the static manifold NV, which is clearly a compact, smooth manifold.

3.2. Desingularisations. In [13| section 6.1], Joyce constructs the desingularisations as a
submanifold in M. Here, we instead construct an embedding ¢* : N — M.

Definition 3.2. For a special Lagrangian immersion, ¢ : X — M, with only transverse self-
intersection points of type 1, {z;}7_;, let N be the static manifold constructed by Definition
ﬂ Fix a 7 € (0, %), whose precise value will be determined later. Given € = (e1,...,¢&,) with

0<eg;j <min{1,((1+h)R1)1_—lf, (“_;)RZ>T} (3.1)
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T*(E X [ERl, RQ])

>< d(e€(0,e 7))
—_— | dQ.(o,7) —
¥ x [eR1, R
26TR1 2 [ ! 2]
T %
¥ x [Rl,Rz]
R,

FIGURE 2. A diagram of the gluing procedure to construct the desingularisation
t* : N — M in the intermediate region, with the left side depicting the ball
Bpr, < C™ and the right side depicting the cotangent bundle of ¥; x [e;R1, Ra]
(for notational simplicity, j is suppressed). The interpolation region for the

function Q; is shaded.

for all j, define a Lagrangian embedding ¢* : N — M on the pieces of N as follows. Its image,
t8(N), will be denoted by N€.
Step 0. Choose a smooth, increasing function x : (0,00) — R such that x(y) € [0, 1] for all y,

and

0 whenO0<y<1,

x(y) =
1 when2<y<oo.

Step 1. For any ¢ in the outer region X°, (% is set to be the original immersion, (*(q) = ¢(q).

Step 2. For any ¢ in the tip region P}, set 1*(q) to be T(e;¢). Namely, in the Darboux chart,
it is simply the dilation by ¢;.

Step 3. The map on the intermediate region interpolates between the above two maps (refer
to Figure [2 for a diagram). The procedure is the same for all j € {1,...,n}. For notational

simplicity, suppress the subscript j in €5, C; etc.

r—R r—R
ﬁa(r):[1—x( hR11>}er+X< hR11>7‘ (3.2)
for r € (R1,R2). It is a diffeomorphism from (R;, R2) to (¢Ri, R2), which will be verified

momentarily. Denote the diffeomorphism idy x k. : ¥ x (R1, R2) — X x (eR1, R2) by k.. Next,
for (o,t) € ¥ x (¢R1, R2), let

Q.(0,t) = x(e7Tt) Ao, ) + (1 — x(e7v)) e2 &(o, e M) . (3.3)
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As noted in Remark £2 &(o,e ') is the potential function of & L#4. It naturally gives a
Lagrangian embedding:

TOQ)COdQE 1Y X (SRl,RQ) - M .
Finally, 1* on Q; = ¥; x (R1, R2) is set to be 1 := T 0 ®¢; 0 dQe; o Re;,.
Remark 3.3.

e We leave it for the readers to check that N€ is the same as the desingularisation con-
structed in |13} section 6.1]. This allows us to invoke the estimates established in that
paper.

e For the intermediate region, X; x (g;Rq, R2) is more geometric. To be precise, the
coordinate “t” is the (Euclidean) distance to the origin in the Darboux chart. However,
in order to take the “time” derivative of a potential function, we must work on the
time-independent region ¥; x (R1, Ra).

e Since ¢(X) is an immersed special Lagrangian in M, and the Lawlor necks are special
Lagrangians in C™, one can verify that N€ is of zero—MaslovH class.

We now verify that ., gives a diffeomorphism from (Ri, R2) to (g1, Ra), and ® is well-
defined. We continue to suppress the subscript j.

Lemma 3.4. Suppose that (1 + 2h)Ry < (1 — h)Ra, then the function ke(r) defined by (3.2)) is
increasing for r € (Ry, R2). Indeed, %RE(T) > e. There exists ¢; > 0 for all £ € N, depending
on h, Ry, Ry and x, such that ’dd—;ns(r)} < ¢ for r € (Ry,R2). Moreover, ke(r) = er when

Ry <r < (1+h)R1, and ke(r) =1 when (1 —h)Re <1 < Rs.

Proof. The derivative of k. is
d r—Ry (I—eyr ,(r—R;
o he(r) = 1- ;
grrer) = et 8)X< hRy ) T ThR, Y\ TR

which is clearly no less than ¢, and is bounded from above. It is not hard to see that the higher

order derivatives of k.(r) are uniformly bounded on (R, Rs).

When r < (1+h)Ry, %}f < 1, and hence k.(r) = er. It follows from (1+2h)R; < (1 —h)R2

that % > 2 when r > (1 — A)Ry. Hence, k.(r) = r when r > (1 — h)Rs. O

Lemma 3.5. The map (¢ introduced in Definition[3.9 is well-defined.

Proof. 1t follows from (3.1)) that (1 + A)Rie < e” < 2™ < (1 — h)Ra.

Intermediate-Tip region. When Ry < r < (1+ h)Ry, it follows from Lemma [3.4] that r.(r) =
er, and v = k. (r) < (1 + h)Rye. Thus, Q.(0,t) = €2 &(0,e1v), and (Q. 0 k:) (o, 1) = €2 €(a, 7).
Denote dy € by ¢1, and a%(’f by es. By (1.2) and using the coordinate system introduced around

7
((dQ:) 0 fe) (0,7) = ((Re)t 0 d(Qe 0 Ke)) (o, 7)

= (Re)t (o7, 6221(0',7“),8262(0',7“)) = (o,er,€%1(0,7),ce3(0, 7)) .

1The argument of the complex valued function ;2“,’:] * is a well-defined function on N°®.
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This coincides with the right hand side of the first equation in Remark (2.10). It follows that
(¢ is well-defined in this region.

Intermediate-Outer region. When (1 — h)Ry < r < Ra, it follows from Lemma that
ke(r) = r, and t = ke(r) > (1 — h)Ry. In other words, <. is the identity map on this region.
One can also find that Q.(c,t) = A(o,t). Hence, (¢ coincides with the original map ¢. O

3.3. Weight Function. Later on, the equations on N¢ will be analysed on some weighted
Hoélder spaces. The weight captures the geometry of the self-intersection points and the Lawlor

necks. Here is the definition of the weight.

Definition 3.6. For a special Lagrangian immersion, ¢ : X — M, with only transverse self-
intersection points of type 1, {xj};?:l, let N be the static manifold constructed by Definition
Given € = (eq,...,&,) satisfying , let (¥ be the Lagrangian embedding constructed by
Definition Define a smooth function pe : N — R as follows.

e Tip region. For each Lawlor neck L;, choose a smooth function p; : L; — [1,00)
such that p;(x) depends only on |x|, and pj(x) = |x| when |x| > Ry. For x € P; =
Lj 0 B(i4h)R,» pe(x) is defined to be €; - p;(x).

o Intermediate region. On each Q; = X; x (R, R2),

pe(o,r) = ke, (1) + (B2 — 1) [1 R (R;R—;)}

where £, (r) is given by (8.2). Note that pe(o,7) = ke, () when Ry < r < (1 —2h)R;.
By the proof of Lemma pe(o,7) = Ro when r > (1 — h)Ra. Also, note that when
(1 —=2h)Ry < r < Ry, pe(o,r) is independent of €5, and is increasing in r.

e Quter region. On the outer region X° = X \L_l(U?=1 T;(B(1-n)r,)), extend the function
from the intermediate region by the constant Rs.

3.4. Lagrangian Neighbourhoods. In [13| section 6.3]., Joyce constructs the Lagrangian
neighbourhood Wye : Uye € T*N — M of 15(IN) as follows.

Definition 3.7. For a special Lagrangian immersion, ¢ : X — M, with only transverse self-
intersection points of type 1, {xj}?=1v let N be the static manifold constructed by Definition
Given € = (eq,...,&,) satisfying , let (* be the Lagrangian embedding constructed by
Definition Define a Lagrangian neighbourhood ¥ ye : Uye € T*N — M for ¢ as follows.

Step 1: Tip region. Remember that the tip region P; is a subset of the Lawlor neck L;.
Denote by 7 the bundle projection of the cotangent bundle. Apply Corollary to the Lawlor
neck L; and ¢ to find an open set U1, © T*L; and an embedding @, : Us;1, — C™. Define

Une n ' (Pj) = Uy, 0w ()
\PNE|UNem7r*1(Pj) =Tjo0 (I)Eij :

Step 2: Intermediate region. As in step 2 of Definition [3.1], apply Proposition [2.3]to the cone
Cj = %; x (0,00) to find an R, -invariant open set Ug, < T*C; and equivariant embedding



22 WEL-BO SU, CHUNG-JUN TSAI, AND ALBERT WOOD
®¢; : Ug; — C™. The map ke, given by step 3 of Definition induces a diffeomorphism
(Raj)T : T*Qj = T*(Ej x (R, Rg)) — T*(Ej X (Ele,Rg)) .

Similar to (2.§), let fdgij (¢:p) = (q,p+ (dQc,)(q)) be the Self—diffeomorphismﬁ of T*(¥; x
(¢jR1, R2)). Define Une n 771(Q;) to be

((Fe)1) ™ {(U,t,g,s) e T*(S) x (e;R1. Re)) ¢ fan., ((0.%),6 + sdv) € UC} :

and define the map to be

\IINE|UNsﬁ7T_1(Qj) = T] s} (I)Cj e} fdQsj O (stj)T .

Step 3: Outer region. With the help of Lemma [3.4] and Lemma Une and Ve are
independent of € on the overlap between the intermediate and outer region. One use the same
Moser’s trick argument as that in step 3 in the proof of Theorem to extend Uye and W e
over X°. The extensions are also independent of e.

We leave it for the readers to check the well-definedness of the open set and the embedding,

or one may consult [13, Definition 6.7].

4. THE LAGRANGIAN MEAN CURVATURE FLOW EQUATION

Given a special Lagrangian immersion ¢ : X — M, with only transverse self-intersection
points of type 1, our goal for the remainder of this work is to construct u : N x [A,00) — R,
and e(t) = (e1(t),...,en(t)) such that du € Uyew) for all ¢, and ¥ yeq) o du is the solution to
the mean curvature flow (where the notation du denotes the spatial exterior derivative at time
t). The equation reads

P 1
<\Ist<t> o du) =H(t), (4.1)
ot
where H(t) is the mean curvature vector of (U er) odu) (IN), and L denotes the orthogonal
projection onto its normal bundle. In this section, we take our first step towards this goal, by
rewriting as a differential equation involving the potential function w. In particular, with
a suitable assumption on the topology of ¢+ : X — M (Proposition , we are able to rewrite
We will require the following basic facts about the geometry of Lagrangian submanifolds.
Suppose that F': L — (M, g, J,w) is a Lagrangian immersion, and denote by TLL the normal
bundle of F(L). Then there is a bundle isomorphism

L — T*L
noo— Frw ) -
In particular, suppose that Y is a section of F*(T'M), then
F* (w(Y*h, ) = F* (WY =Y T ) = F* (w(Y, ) (4.2)

20r equivalently, fiq. sends (o,t,c,s) to (o,v,¢ + (d2Q:) (0, 1), 5 + e (g, v)).

ot
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using the fact that F*w vanishes. Furthermore, suppose that M is a Calabi—Yau manifold, and

let © be its holomorphic volume form. One has the (multi-valued) function 67 = arg(F;‘f)),

the Lagrangian angle, whose exterior derivative is a well-defined 1-form on L. According to
[9, section II1.2.D], dfy, is the image of the mean curvature vector of L under the above isomor-

phism,

F* (w(Hp, -)) = —doy, . (4.3)

4.1. The Equation. The main purpose of this subsection is to rewrite as a differential
equation in the exterior derivative of the potential u : N x [A,00) — R. Denote by F; the
embedding ¥y« o du, and by #(du) the Lagrangian angle of F; : N — M. Since N°®) is of
zero-Maslov class, we may choose §(du) to be a single-valued function. By and ,
reads

d[0(du)] = —F} <w(a§* )> . (4.4)

The right hand side will be computed on different pieces.

4.1.1. Outer Region. On the outer region X°, Uy« is independent of €(¢). In this case, the
right hand side of (4.4)) was computed by Behrndt in his thesis [2, Lemma 4.11]. The proof is
included for completeness.

Lemma 4.1. Let vy, : L — (M, g, J,w) be a Lagrangian embedding, and ¥y, : U, € T*L — M
be a Lagrangian neighbourhood. Then, given a one-parameter family of closed 1-forms ny on L

whose image belongs to Uy,

oo (oY ) < o0

Proof. We work on Uy, equipped with the induced Kahler triple (¥7 (¢), ¥} (J),wr). Denote by
Ft : L — Uy, the embedding given by 7, i.e. Ft := W on. Since 1, is closed, Ft isa Lagrz}ngian
embedding. By (4.2)), computing the left hand side is equivalent to computing F}* (wL(aal“;t, ).

Choose a local coordinate system {g;} on L. Let {p‘} be the coordinate induced by {dg;}
for the fibers of T*L. The canonical symplectic form is Y. dg; A dp’. Write n; as Y., n/(¢)dg;.

In terms of the (g,p) coordinate, Ft(ql, cosgm) = (@1, @yt (@), - ., m™(q)), and a;;t =
>, 0 0. Tt follows that

i ot opt
B (%)) = e (0 ) = -

7

It finishes the proof of this lemma. ]

It follows that on the outer region, (4.4)) becomes

d [‘Z‘} = d[6(du)] . (4.5)
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4.1.2. Tip Region. On the tip region P; = L;j N B(14p)R,, the image of :° belongs to T;(Bg,).

Computing the right-hand side of 1} is equivalent to computing Ft*(wo(a(gt, -)) for

Fy = ®., L, 0du: Pj< Lj — Bg, = C™,
where @ (4yp; is defined in Corollary We suppress the subscript j in the following calcula-
tions. By using the chain rule on Fy(q) = &(t) - @, (q,e(t)*du(q)),

OF,  £(t) - AP, omnt)
e

(4.6)

where 17, = e(t)"2du.
For the first term on the right hand side of (4.6)), note that F, is the position vector, and
thus F*(wo(F}, -)) = Ff(—2Xo). According to Corollary

F} (wo (ﬂl}t, )) _ 70 (du)*®Z ;) 1, (M)

e(t) e(t)
— 250 ()" o, — d (0 o, © L)
= —281@ du + 2e(¢)e'(t) d [OéLj o fey © du]

e(t)
The map f. odu: Lj — T*L; is e(t)2du.

For the second term on the right hand side of (4.6]), apply Lemma to the map @y, and
the family of 1-forms 7;. One finds that

F (M}(e(t)M7 )) - —5(1&)2M

ot ot
e'(t) ou
=2 —d|—=].
S|
To sum up, on the tip region P;, becomes
d [Zﬂ =d[0(du) + (g;(t)*) - ar, o (g;(t)*du)] . (4.7)

4.1.3. Intermediate Region. On the intermediate region Q; = ¥; x (R, R2), the image belongs
to (Tj0®¢,)(X; x (0, Rp)), where C; = ¥; x (0,00) = II" uTI?%, and ®¢, is as in Deﬁnition
Computing the right hand side of 1’ is therefore equivalent to computing Ft* (wey ( a{gt, -)) for

Fy = fag. ) © (Rey)t o du: Q; — Uc, < T*Cj .
The canonical symplectic form we; on T*Cj = T*(X; x (0,00)) is ws, + dv A ds.

In the following calculation, we suppress the subscript j, and use the equivariant coordinates
introduced around ({2.1). By a direct computation,

(du) (07 T) = (07 Ty (dEu) (0" T)v (aru) (0" T)) ’

(Rs(t))T(U7 e, 5) = (U’ Ke(t) (T)’ Ss ((8rﬁ€(t))(r))_15) )
fdﬂg(t) (Ua Lq, 5) = (Uv v, ¢+ (dEQE(t))(O-7 t)’ s+ (arga(t))(o-’ t)) :
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In this setting, we will also take the partial derivative of Q.(c,t) (3.3) and x.(r) (3.2) in €. Let

A~

Ft(J, T’) = (J, (dz’u)(U,T) + (dEQa(t))(Ua /{E(t)(’r‘))) DX X (Rl,Rg) — T*Y ,

- (Oru) (o, ) ) "
Ei(o,r) = | ke (1), ———5 + (0:Qc(p)) (0, Ky (7 : X X (R1,Rs) — T*(0,00) .
1) = (e () (G + (00) () ) 2 (B ) = T7(0,)
The above computation means that F, = (Ft, F’t), and
- OF; . OF, . OF,
* —_— = * _ . * _ .
Ey (“’C< ot )) E (w2< ot )) + <(d”d5)< ot )) ‘ (4.8)

For the first term on the right hand side of (4.8]), the same argument as that in the proof of
Lemma [£.1] shows that

Ft* (wz (a;:t, )) = _gt [(dzu)(U, ) + (dEQs(t))(Ua Ke(t) (7"))]

= (as|5]) 00 -0 (@50:20) (000
—&'(t) - (ehicn) (1) - (d2(0eQe(r))) (0, Kery (7)) -
By a direct computation,
F7 ((de A dﬁ)(%}?, ) =) - (Oete)(r) - [

(Orkic(r))(r)
_J [ (Opu) (o, 1)
(Orkie(r))(r)

a (08200 | o))

=— <6r [Z]) (o,r)dr+d {E/(t) (Ockiey)(r) - W]
+ /(1) (Ochiciry) (1) - (ds(0:Qc(r))) (0, Kieqry (1))
—&'(t) - (0:(0eQe(r))) (05 ety (1)) + (Ortic(ry) (r) dr
Putting these into gives that

D)9 7) 4 (28, 0) (0, ket “'))]

~ 5F ou aaﬁs =
B wo( S '>>=d[—aﬁ5’<t>' . -aru—e%t)-<a€ag(t>>me<t>] .

8T/<;8(t)

It follows that, on the intermediate region @Q;, (4.4) becomes

a2~ ale@ ry SO ey R
ot = (U)'*‘Ej(t) : ru_5j(t)'( aQsj(t))O’fsj(t) . (4.9)

‘ 67"'%8.1 ®)

4.1.4. Conclusion. Equations (4.5)), (4.7)) and (4.9) are summarised in the following proposition:

Proposition 4.2. Given a special Lagrangian immersion, ¢ : X — M, with only transverse
self-intersection points of type 1, suppose that there is 1-parameter family of functions on N,
u, A e R and e(t) = (e1(t),...,en(t)) such that each €;(t) satisfies fort € [A,0). Let
Upery @ Uyewy — M be the Lagrangian neighbourhood constructed by Definition . Let u :
N x [A,0) = R be a function such that du belongs to the open set Upyeqy fort e [A,00).
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Then the one-parameter family of immersions W yew odu : N — M is a solution to mean

curvature flow if and only if

d [0(du) + (g(t)?) - ar,; o d(eg;(t)?u)] on Pj
5 as“a t / _
d [(;] ={d [H(du) +el(t) - 67«528 cOru — €5(1) - (0:Qe, 1)) onEj(t)} on Q; (4.10)
d[6(du)] on X° .

Here, k. 1y and Q. () are defined in Definition @ ar; is the output of Theorem@ on the
Lawlor neck L;.

4.2. On the Potential. The right hand side of (4.10) is locally exact. It is natural to ask
when the (4.10) can be integrated to the level of potentials. The Lagrangian angle 0(du;) is
globally defined. We fix the branch by requiring that Oye|xo = 6[d0]|x. = 0.

¥
J 9y
1% and II%5 respectively. Let {X I‘;}Z/:l be the connected components of the outer region X°. It

Each intermediate region @); has two connected component, Q]-_ and Q7 , corresponding to

follows that if there exist time-dependent constants, Cp,(t), Cy-(1), Co+ and Cxg (t) such
J J
that

0(du) + (gj(t)%) - ar,; o d(g;(t)"?u) + Cp,(t) on Pj ,

ou Oc ke . _

5, = 4 0(du) +€j(1) M;x; (0w — () - (9:02(0) © Ry + Cr(t) om QF . (411)
0(du) + Cxs (1) on X9,

then[4.10|holds. We now investigate the necessary conditions for the existence of such constants.

4.2.1. Intermediate-Outer region. The overlap between the intermediate and outer region cor-

responds to ¥; x ((1 —h)Ra, R2) < Q. From Lemma Ke;t)(r) =7, and Qg ()0, 1) =
2;(o,t). Both functions are independent of €;(t). It follows that the matching condition of
(4.11]) on the intermediate-outer region is

Cxy(t) = Coe(t) i X3nQF #9 . (4.12)

J
4.2.2. Intermediate-Tip region. The overlap between the intermediate and tip region corre-
sponds to ¥; x (R, (1 + h)R1) < @Q;. The expression on the right hand side of is
based on the coordinate of each piece. To compare the equation, we have to use the same
parametrization. Parametrize the overlap part of P; by the transition map:

(I)Cj Odej : Ej X (Rl,(l + h)Rl) e Qj - f)J .
Denote ®¢; o d€; by ¢;. For u : Q; — R, one has to plug u o (pj_l for w into (4.11) on P;,
and compose with ¢;. That is to say, (4.11) on P; transforms into the following expression on
%j x (R, (14 h)Ry) < Qj
H(du) + (Ej(t)Q)/ “a,; © d(sj(t)_Qu [} goj_l) 0 @; + ij (t)
= 0(du) + (gj(1)*) - ar, o (@)1 0 d(gj(t)"*u) + Cp, (1) by (L.2)

= 0(du) + (sj(t)2)’ {255&?;2 + g(é’,n@j)(a,r) — &(jo,r) + cJ_r(Lj)] +Cp;(t) by )
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Since L; has two ends, c+(L;) are the corresponding constants produced by Theorem for
the Lawlor neck L; = L?4. Recall that we choose ar, such that c_(L;) = 0, and so ¢y (L;) is
given by the right-hand side of (2.21). For convenience, we denote ¢; := ¢4 (L;j).

For (4.11)) on Q; © 3; x (R1, (1 + h)Ry), it follows from Lemma that ., ) (r) = ()7,
and Q. ;)(0,t) = ;(t)? €j(o,e;(t)"'r). A direct computation shows that (4.11]) on Q;—r becomes

0(du) + 63-(75) Oru — 53- (t)[2¢(t)€;(o,1) —ej(t)r (0r€j)(o,7)] + CjS (t) .

r
ej(t)
Therefore, the matching condition of ([£.11]) on the intermediate-tip region is (g;(¢)?)"¢; +
Cp,(t) = Cy+(t) and Cp,(t) = Cy-(t). The matching condition therefore reduces to

J J

Coi (1) = Cg- (1) = 5 (55(1)%) (4.13)

J

4.2.3. Conclusion. Putting (4.12) and (4.13]) together gives the following proposition. In what

follows, we write b = j if Q; connects to X9, and similarly we write ¥/ = j if Q; connects to
& =
X9,
bl

Proposition 4.3. Assume that there exist time-dependent constants Cy(t) associated with the

transverse intersection points {x1,...,xn} of t : X — M such that for each j € {1,...,n},
Cj )+ (50 = Cy (1), (4.14)

where by convention c_(Lj) = 0 and c4(Lj) =: ¢j. Then the equation (4.10|) given by Propo-

sition can be integrated to the level of potentials (4.11), by choosing Cxs(t) = Cp(t),
Cp, = Cg- = Cy(t) when b= j, and Cpy+ := Cy(t) where b’ = j .
j “ j =

Since ¢; > 0, condition (4.14) implies that every tip region must connect to two different
components of the outer region.

4.3. Some Graph Theory. The purpose of this subsection is to “visualise” the conditions
given by Proposition and where possible convert the conditions (4.14]) to conditions on the
neck parameters €. It will be convenient to borrow some concepts from graph theory.

Firstly, we introduce a combinatorial representation of the topology of N, which will be a
directed graph, (V,E). The vertex set V consists of a vertex for each connected component of
the outer region X§:

V={X9,...,X°}.

n

The edge set £ consists of an edge for each tip region P}, or equivalently, each x; = L(:):;—”) e M:

E={x1,...,zn} .

Note that for each j, the edge associated with z; goes from X9 to XS by our notation

convention. See Figure [3] for an example.
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The incidence matrix for the directed graph (V,€) is the n’ x n = |V| x |€| matrix that
contains the relationship between the edges and vertices. It is defined to be

1 i

tj=b,
By =1{-1 if j =b,

0 otherwise .

For b e {1,...,n" = |V|}, let X} be the connected component of X containing X¢9. Denote
by V the n’ x n’ diagonal matrix whose (b, b)-entry is the volume of ¢(X;) in M, denoted Vj.

The proof of the following lemma is elementary linear algebra, which is left as an exercise
for the reader.

Lemma 4.4. Suppose that (V,E) is a tree. Then, BT V1B is a positive definite and symmetric

matriz.

In this graph-theoretic language, Proposition [4.3]can be thought of as a condition on a vertezx
weighting, i.e. a function on V. In particular, we consider a time-dependent vertex weighting
mapping V — C®([A, 0)), where X} is mapped to Cy(t). The condition (4.14)) may therefore

be written as

Cy (1) c1- (ea(t)?)
BT | = : : (4.15)
Co(t) cn - (en(t)?)
In the case where BTV !B is invertible, (e.g. if (V, &) is a tree), then (4.15)) is implied by
Cr (1) c1 - (e1(t)?)
: =viBBIvIB)! : : (4.16)
Co,(t) Cn - (en(t)?)

We may then define Cp(t) by this equation, from which it follows that (4.11]) holds, and so the
MCF equation may be integrated to the level of potentials. In particular, we have the following
theorem for the tree case:

Proposition 4.5. Suppose that (V, &) is a tree. Then the equation (4.10) given by Proposition
can be integrated to the level of potentials (4.11)).

Note that one can add the same (time-dependent) constant to the components of the left

hand side of (4.15)), and they still obey (4.14).

5. THE LINEAR OPERATOR AND ITS APPROXIMATE KERNEL

In this section, we derive the linearisation of the LMCF equation (Proposition |5.2), and
construct an approximate kernel for this operator (5.12)).

From now on, we will assume the conditions in Proposition [4.3] are satisfied, so that the
Lagrangian mean curvature flow can be integrated to the level of potentials. Given any smooth
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function u : N x [A,0) — R such that du(x,t) € Uye(y for all (z,t) € N x [A,00), define a
function £(du) : N — R by

(g5()?) - ap,; o d(ej(t)%u) + Cp, (t) on Pj ,
Ocke . _
§(du) = { €5(t) - amgj.g; “Opu —€5(t) - (0eQc; (1)) © Feyr) + CjS (t) on jS , (5.1)
Cxs(t) on X9,

(it follows from the assumption that there exist time-dependent constants Cp, (t), Cqx+(t), and
J

Cxs(t) such that {(du) is well-defined). The LMCF on the level of the potential u near N¢ is

now given by the following scalar nonlinear equation on N x [A, o0):

Oru = 0(du) + &(du). (5.2)

The function £(0) has geometric significance. In fact, it is not hard to see that £(0) is the
potential of the velocity of N€, namely,
de®

() (w7 )) = dlE(0)]. (5-3)

For the remainder of the paper, we will linearise the right hand side of (5.2)) at the zero
section 0 and split it into zeroth order, linear and higher order parts, denoted as follows:

dru = One +£(0) + L§[u] + Q%[u]. (5.4)

5.1. Linearised LMCF. Denote the embedding of the zero section by (* := ®ne 00 : N x
[A,0) > M. Let u: N x [A,0) — R be a smooth function such that sdu(z,t) € Uyew) for all
(xz,t) € N x [A,0) and small s € R.

We first employ the following result by Behrndt [2].

Lemma 5.1. The deformation vector field of ¢ in the direction of du is given by

d

4| Eaeod(su) = J()uVu + (15)+V (du) (5.5)

s=0

for some ‘A/(du) € I'(TN), where the gradient Vu is computed using the induced metric g° =
(t5)*g on N. Moreover, the linearisation of the Lagrangian angle is given by

d

T 0d(sw) = Ageu — (VO,V(du))ge - (5.6)

s=0

Next, we linearise £(du). In the tip region, we have

% 5=0 €(sdu) = (e5(0)°) % s=0 ar,; o d(g;(t)?su)
= (2loge;(1))'(dBr,)(du"), (5.7)

where, in standard local coordinates {z°, pitit, of T*N, du" is the vertical vector field du" :=

%% on Uye. In the intermediate region, it is clear that
J

d

d OcKe, (1)
ds

- Or. (5.8)

&(sdu) = (1)

=0 Orkie (1)
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Finally, in the outer region, we have
1 esdu) = 0 (59)
— sdu) = 0. .
ds 5=0
The above computations are summarised by the following proposition.
Proposition 5.2. The linearisation of at the zero section is given by

d
Opu — L§[u] = dpu — £|S:0(9 + &) (sdu)

— O — Ager + (Y0, V(du))ge — S%[u]. (5.10)
where S€[u] is a first order linear differential operator defined by
(2loge;(1))'(dBy,)(du") on Py ,
S[u] = { €5(t) - Jeriey (0 - Ort on Q;-—r , (5.11)
0 on X9 .

Orkic;(t)

5.2. Approximate Kernels. Define the function a; : P; U Q; — R by

a;(p) = ar,y(p) for p e Pj,

-1
a;(o,r) = aLj‘Q <<pj(0, E; Ke; (7"))) for (o,r) € Qj,
where ¢; is as in Definition for L = L;. By interpolating this function with constants on
the exterior region, we construct the ‘approximate kernel’ of our linearised operator.

Explicitly, given d := (di, ..., dy) € R”, we define the function wg to be:

-

dy on Xp
dj +2=(d; —d on P;

wsi=1{ & 9 g —dg)ey . T (512)
dix(% ke, (1)) + < R (di, — di)g]) (1 - X(2€j ng(r))) on Q;
dix(% Ke, 7‘)) < it i(di — di)g]) (1 — X(ng—ﬁgej(r))) on Q;

Remark 5.3. The functions w§ form the ‘approximate kernel” for the following reason. It is
shown in [13, p. 49] (see also [18, Lemma 11]) that w§ approximate the small eigenfunctions of
the Laplacian Age, with eigenvalues of the order O(|e|™~2). It follows that if |e| is small, w§
approximate harmonic functions on N€. Since our linearised operator £§ will turn out to be a
small perturbation of the Laplacian (see Lemma, we have Lfwg ~ 0. These functions are

the obstructions to the uniform invertibility of the linearised operator.

6. A PRIORI ESTIMATES FOR THE LINEAR OPERATOR

In this section, we prove a uniform injectivity estimate for solutions to the inhomogeneous
heat equation which are orthogonal to the approximate kernel (Theorem [6.7]).

We will from now on assume that e(t) satisfies the following estimates. Ultimately (after we
restrict attention to the particular case of special Lagrangian tori inside the complex torus), we
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will choose the neck parameter €(¢) so that N¢ is close to a Lagrangian mean curvature flow.
In particular, € will solve an ODE that appears as the dominant term in an integral error, and
such a solution will automatically satisfy these estimates (c.f. Remark .

Assumption 6.1. There exist A > 0 and C,C’ > 1 such that:

1-m

1 1
Cl w2 < |e(t)| < Ct m—=2, |&t)| < Ctm—z < C'e(t)™ 1,

|€'(t1) — €'(ta)] 1=m , 20

and < Ctwstats < Ole(t)m 172, (6.1)
t1 — ta]®

for all ¢ € [A,o0), t1,ts € [£,2t], 0 < [t1 — ta| < ¢ 2.

Note that Assumption [6.1] also provides the following bound on the weight function given in
Definition for some constant C’ > 1:
(C) o s

tTm—2

<pey<Cp_ 1. (6.2)

m—2

6.1. Liouville Theorems. The proof of Theorem [6.7]is based on a blow-up argument which
ultimately reduces the question to Liouville-type theorems on various model spaces. We start
by establishing these theorems.

6.1.1. Lawlor Necks. The corresponding Liouville theorem on the Lawlor neck is obtained by
adapting the scheme of Lockhart and McOwen [20,121]. The main machinery in the current
setting is established by Joyce in [11, section 7.3], which is summarised here for the reader’s
convenience. Note that A in [11] is the Hodge Laplacian, which differs from the Laplacian in
this paper by a minus sign.

Let L < C™ be a Lawlor neck described by Proposition Let p(x) : L — [1,00) be the
smooth function defined in Deﬁnition Given k € NU {0} and v € R, define the spaces C¥(L)
to be the set of locally C* functions whose weighted norm

k
lulcs = D) sup /™ Viul,
j=0 L

is finite. The covariant derivative and the norm are computed using the induced metric g = ¢} go,
where ¢f, : L — C™ is the inclusion map. The C° space is defined to be the intersection of all
C¥ spaces: CP(L) = iy CX(L).

Similarly, the weighted Sobolev spaces Wf P is defined by the norm

k 1/p
lullyyer = <2f |67l o dVg) :
=0k

As usual, denote W.*P(L) by LE(L). For any v € R, p > 1, and k > 2, the Laplace operator
Ay Ci(L) — Cghi(L) extends to a continuous operator

ARP L WEP(L) — WEIP(L)
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The operator Alﬁ’p is Fredholm for generic v. Here is the complete characterization. The
Lawlor neck L is asymptotic to II° U II? near infinity. The link X of II° U II? is the disjoint
union of two round spheres. Let

Ds, = {v e R|v(—v + m — 2) is an eigenvalue of Ay} .
It is not hard to verify that Dy is a discrete subset of R satisfying m — 2 € Dy, 0 € Dy, and
Dy, n (2 —m,0) = @. It turns out that AFP is Fredholm if and only if v € R\Ds.

Its Fredholm index, Ind (A]ﬁ’p ) = dim ker (Afi’p ) — dim coker (A’,ﬁ’p ), depends only on the

connected components of R\Dy, 3 v, and is given by
Ind (A’;vp) — Ny (v), (6.3)
where Ny, : R — Z is defined by

_Z’YEDZQ(OJ/) my(y) whenv >0,

Nx(v) =
ZveDzm[u,O] my () when v <0,

and my/(v) is the multiplicity of the eigenvalue v(—v + m — 2) of Ay.

From now on, focus on the Fredholm case, v ¢ Dxy. According to the weighted elliptic
estimate and the weighted Sobolev embedding, any u € ker(A],f’p ) < WP (L) must be smooth,
uw e CP(L). By using the maximum principle, if u € ker(AS?) ¢ WAP(L) with v > 0, then
u = 0. In other words, A%? is injective when v > 0.

Lemma 6.2. Let u € Wf’p(L) with v > 0. Suppose Agu = 0 in the distributional sense, then
u = 0.

Remark 6.3. By the duality property, the cokernel of ARP g isomorphic to the dual space of
the kernel of A"

—v+m—2»

follows that AL? is an isomorphism when v € (0,m — 2).

where 1/p + 1/q = 1. Thus, AFP s a surjective when v < m — 2. It

We now prove a Liouville theorem for the heat equation on the Lawlor neck.

Proposition 6.4. Let u : L x (—0,0) — R be a solution to the heat equation Oju = Agu.
Suppose there exist ¢ > 0 and v € (0,m — 2) such that |u(-,t)] < Cp~™ for all t € (—0,0).
Then, u = 0.

Proof. By the the weighted Schauder estimate ([2] and [31, section 3.2]) and the bootstrapping
argument, u(-,t) € C¥(L) for any k > 2. It follows that [(Ay)fu| < Cpp~v~% for any £ € N.

Fix ¢ with 4¢ > m — 2v, and let w = (A,)u. Clearly, dyw = Ajw. Consider E(t) =
3§, w?(-,t)dV,. The choice of £ guarantees that E(t) < oo. Its derivative is

%E(t) = L wAgwdV, = —L [Vw|2dVy <0,

and hence E(t) is non-increasing in t¢. It follows that lim;_, o E(t) exists, and denote the limit
by E.

We claim that F = 0, which implies that w = 0. Pick a sequence t; — —o0. Define w (x,t)
to be w(z,t; +t). After passing to a subsequence, w converges smoothly on every compact
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subset of L x R to an eternal solution @ : L x R — R of the heat equation. Since |@| < Cp~*~%,
it follows from the dominated convergence theorem that

f@('7t>2dvg= lim w(~,tj+t)2dVg=2E forallteR .
L

tj—>—%0 Jr
Taking derivative in ¢ give
0- dlj B(-,1)>dV, = f Va(- 62 dv, .
a2, ; g
It follows that @(-,t) is a time-dependent constant function. Since @(-,t) tends to zero at the
end of L, the constant must be 0. Hence, £ = 0 as claimed.

In other words, (Ag)‘u = 0. According to Lemma u=0. O

6.1.2. Punctured m-Planes. The model space for the intermediate region is the cone over the
link. In our setting, it is the union of two punctured R"’s, endowed with the standard metric
on R™.

Proposition 6.5. Let u : (R™\{0})x (-0, A) — R be a solution to the heat equation dyu = Agu,
for some A € R. Suppose that there exist C > 0 and 0 < v < m — 2 such that |Viu(x,t)| <
Clz|77* for all t € (—o0,A) and £ € {0,1,2}. Then, u = 0.

Proof. This proof is a modification of the proof of 3, Proposition 5.3]. It follows from the rate
condition that u satisfies the heat equation on R™ in the sense of distribution.

Fix any to € (—o0, A). For any ¢ > 0 and any zo € R™\{0},

1 |z —aq|?
u<1‘0,t0) = f - :

—e 4t u(z,tp—t)dz.
Rm\{0} (47t) 2

Now, fix xg, and suppose that ¢ > 9|z¢|?>. When |z — zg|> < ¢, it follows from the triangle
inequality that |z| < 3+/%, and thus

<Otz j 2| Vde < Cot ™2,

|x|2<1ﬁ:t

47t)

1 _le—zgf?
—e & u(z,tog—t)de
la—o|2<t ( 2

When |z — 20|? > t, it follows from the triangle inequality that |z| > 2v/t and |z — zo| < $|z|.
Since e™* < C3s~ 2 for any s > 0,

]_ \zfmo\g
‘(4 LA ’ < Cale — o™ < Cs ||
i 2

Therefore,

|
e 4 wu(x,tg—t)de
|z—x0]2>¢ 2

< Cs J 2|7V de < Oyt 2,
(4mt) |z|2> ¢

Putting the estimates together gives
lu(zo, to)| < (Co + C7) 72 (6.4)

whenever t > 9|z|?. By taking ¢t — o0, it implies that u = 0. O
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6.1.3. Immersed Special Lagrangians. We now return to our original special Lagrangian im-
mersion ¢ : X — M, and recall that X splits into smooth compact connected components
X = UZ/:I Xp. Using the notation of Definition and in analogy with Definition there
exists a continuous function p : X — [0, 00) such that

e por loY;on B, n TJ-_I(L(X)) is the distance to the origin, with respect to go;

p =Ry on X\ (Uj_ ¢ ' (T(Br,)));
e the zero set of p is exactly {z1,...,2,};

e pis smooth on X\{z1,...,2,}.

The manifold X is endowed with the smooth metric +*g.

Proposition 6.6. Let b e {1,....n'}, and let u : Xp\t ' ({x1...,2,}) x (—0,0) — R be a
solution to the heat equation dyu = Au. Suppose that

f udVyg =0 and |Viu(,t)| <Cp "
X

J

for some C >0, ve (0,m —2), and all t € (—00,0) and £ € {0,1,2}. Then, u vanishes on Xp.

Proof. Note that X is a compact, smooth manifold, with the smooth metric t*g. It follows
from the growth rate condition that u obeys the linear heat equation on X in the sense of
distribution. Hence, v must be a constant on Xj. It follows from the zero integration condition
that ©u = 0. ]

6.2. A Priori Estimate for the Heat Operator. We now apply our Liouville theorems to
prove an a priori sup estimate via a blowup argument. In what follows, we recall the weight
function pe of Definition we denote the induced metric on N by ¢° := (¢:°)*g, and define
the following weighted norm for tensors on IV:

1T

v, A = sup tﬂpV —1 (‘T)‘TLQE
(z,t)eNx[A0)  tm2

Theorem 6.7. Let € : [A,0) — R, be a smooth function satisfying and , and fix

(1, v) € (X%, 00) x (0,m—2). Then there ezists a constant C > 0 with the following significance.

Suppose u,1p : N x [A,0) — R satisfy |¢[,,,a < 00 and solve the Cauchy problem:

oru(z,t) = Agelul(z,t) + Y(x,t), (z,t) e N x [A, 0),

(6.5)
u(xz,A) =0, xeN
and u satisfies the orthogonality conditions
JN u(z, t)wy(x) dVye(xz) = 0, te[A, 0) (6.6)
forallbe {1,...,n'}. Then
sup t“p”_%g lul <C sup t'p"T2 |y (6.7)

Nx[Ae0) E ™ Nx[Ao0) t ™2

Proof. Assume that the estimate does not hold. Then there exist sequences u¥) : N x [A, 00) —
R, ) : N x [A,0) — R, and €U : [A, 0) — R%, satisfying the following properties:
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e 4@ (@) golve the Cauchy problem 1} for each j € N.
e u9) satisfies the orthogonality conditions ) for each j € N.
® SUPN x[A0) TPV o [uD] > supy g ) t“PV+2 _|$)] for all j € N.

Thus, for each j, we can p1ck (z},t;) € N x [A, 00) such that

v j _ v j v+2 (9)
sup o 4 [u] = e (@)D (@), t)] = - sup tHp 9] (6.8)
Nx[At] t ™2 Tt me ! 2 Nx[Agy]

By interior parabolic Schauder estimate, we must have t; — oo. By passing to a subsequence
we assume that A < %tj, so that in particular A —¢; < —%tj < 0. Defining

Jul sup #4p" s Jul,

7V7Ay'::
AN R =

we rescale u9), w(j) by HUU)H_l

wwA,j SO that in addition to the three properties above,

® v / 1 / ) o . . .
tjptjfﬁ(%)lu(])(%ty)\ =N pns =1 1D, e0a, — O (6.9)

By passing to a subsequence, we assume that :c; converges on N, to . According to where
the limit point is, we have the following 3 cases. For convenience, we denote the pullback metric

7)
by g; := (LEJ )*g.

_1
Case 1. limj_,on 1" P (7)) <o
J

By the definition of p., on passing to a subsequence it follows that there exists k such that
for sufficiently large 7, x; € P, v Q,‘f We therefore will work in this region, suppressing the
index k (e.g. Ly will be written L, el(cj ) will be written z-:(j)) We define the scaling factors A,

() ()

the region Ps”’, the map S;”’ and the rescaled functions u al d}(] as follows:

A= eW(t) =0, t(s) i=t; + A2s,
PO = PUS x (Ry,eD(t(s)™™), PO = {(y,5) : s€[~4);%;,0),y e PY)}
S (Ra, eV (t(9))71) = £ x (£V)(¢(5)) Ra, Ra), s@<,y—@¢@@@V>

Uyv, (5
A u) (y,t(s)) for y € P,

7). pl) LR N(j)( )= | |
v ’ ’ u Yy,s) = .
tpﬁy'“(j) <(E€<J’>(t(s)))_1 o 89 (y), t(S)) for y € PY\P,

v+2 j
tENF20) (y, 1(5)) for y € P,

t?AjHQ’Z)(]) (mf(j)(t(S)))_1 © ng)(y)v t(5)> for y € Ps(j)\P.

Define z : PU) — N, z(y, s) := (Ea(j)(t(s)))_l o ng)(y), and y; = (Séj))_1 oﬁam(tj)(x;-), and
define the time-independent weight function ) : PU) — R, as in Definition (without the
outer region interpolation) using the standard embedding of the Lawlor neck Ly into C™. We
(4)

also endow Py”’ with the rescaled metric (writing eU) for £U)(¢(s)) for simplicity):

)\J-_QL:(]-)LgO for ye P

/
gi(y,s) =4 7 ,
)‘j 2¢*L;"(j)Lgo for y € Ps(])\P.
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Up to pullback, this metric is simply g} (-, s) = A;ng(-,t(s)). Note that ) (t;)~2(xe@))*gy —

go locally uniformly in C*. We therefore see that the metric g} converges in CX. to 1790 = gr:
2 % ok

jhfolc A 205G 190 = (en)*go, jlij{.lo AT G 90 = " go-

Now, the Case 1 assumption along with (6.2)) imply that, after passing to a subsequence, there
exists a constant C' such that for all j € N with :z; e Qt:

eD ()™ pair (@) < C

J

— Ky (r(@]) < CeV(ty) <D ()7,

implying that y; € Péj ) lies in a compact region independent of j. Defining the time-independent
weight function p : Ps(] ) . R* as in Definition m, we may use and Assumption to
derive bounds on %7, J(j) as follows:

. t“pt_m%z(x)”\u(j)(:v,t)\ <lforzeN, te[At))

v

I .
. t: E(J)(t,) .
5(9) J J —20A 4. (9)
= |u ,9)| < for se [A>%(A —t;),0), ye P/,
| (y )‘ (tj + >‘j23> D S)—m£2 (x(y)) [ J ( J) ) Y
— |79 (y, 5)| < Cply) ™" for s € [~5A7%;,0), y e PY).
o 9D Jupsz;— 0
~ 4 A2\ [Py -l (2(Y:9)) '
() I t(s) ™ =0 iforml pG)
= [P (y, s)] ( 0 ) 05 uniformly on
—_ ’J(ﬁ)(y, s)| — 0 uniformly on PU),

Now we calculate the PDE that is satisfied by %) and J(j). We consider the tip and interme-
diate regions of PU) seperately.

In the tip region, 7_(}, , © ) —1d. Then, by (5.10) and ||

0,19 (y, 5) = X200 (a(y, 5), 1(s)) = A2 ( Ay ut + 1/1(”) = Ay (8D + 90,

In the intermediate region,

. . N qu) () |
a0 (y, 5) = thar+? [atu<f>(x,t)+<d”€“’ (x)> dzr (x,t)dzt ( dsetr (m)+r(x))]

dr ~ del)
_ iz | A, D) 4 opl) — (e ! du® @ t)de(j) _4R0 0
i 9;(t) dr dr 77 dt de(@)
A N(]) N(]) 9 dﬁg(j) -1 d8(]) dﬁg(]’) dﬂ(J)
= By H YT =X (d,,,(ﬂf)> Tt (_ FEGESR r(x)> & )

2

1 __2
We note that < C-t(s)m=2 - t;™?, so that the

dk _(; 71d ) dk (;
(B2 () (— @) + ()

. () . . .
coefficient of dﬁry (y,s) converges to 0 on compact spacetime regions as j — 0. Therefore,

passing to a subsequence, we have the convergences y; — Yo, (PY), g;) — (L x (=0,0),91)
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locally smoothly, %9) — @ in C’ﬁa’f, J(j) — 0 in C’I%C, where % is an ancient solution to the heat

equation
Osu(y, s) = Au(y,s), (y,s) €L x(—x,0),

satisfying |u(-,7)| < ¢p~”. Finally, @ is nontrivial since u(yq,0) = 1 by . This contradicts
Proposition

1

Case 2. limj_,on 1" p{ﬁ(m;) = o0 and lim;_, 4 pfﬁ(lﬂ;) =0.
j
In this case,
_1
t. " r(x near R
poay@)=1h 1
t; Ry near R,

and so the Case 2 assumption implies that there exists & such that z; € ¥ x (R, (1-h) Rp), after
passing to a subsequence. Suppresing the index &k as before, we define the rescaled intermediate
region Qg] ) and rescalings of the functions u9) and ¢U):

Aj = Rt (1) (M(75)) = peti ;) (75) = 0.

QY = S x A\TeW(t; + N2s)Ri, AT (L — h)Ry), QU i= {(y, s) i yeQY), se [—%Aftj’o)}
SS9 QW - % x (0,Ry), SS9 (0,r) := (,\j7)

19 QW SR, @ (y,s) = tAvuY) (E;]% 0 SV (y),t; + A?S)

P9 QU SR, U (y,s) == N2 (R 0 SU)(y), 1 + A2s).

Define t(s), z(y, s), y; and g;. as in Case 1. Using we may derive bounds for 4(@):

t“pt_%(x)”m(j)(x,tﬂ <1 for t € [A, t;],
m
i ) . B
— |[aY)(y, s)| < (tj +j)\?8) r(y) for s € [A; 2(A —t5),0],
— |aW)(y,s)| < Cr(y)™" for s € [—%A;Qtj,O].

The linear PDE satisfied by 4 is given by 1) and 1} in the same way as for Case 1 in
the intermediate region:

(Y, s).

A N~ dk_s L 3e) Ak du)
D = A, @) L) 1 )2 () )
Ost Agj(s)u + Y+ A ( T (ﬂ:)) Era N Gl

As in Case 1, after passing to a subsequence we have the convergences ) — T, @Z(j) — 0,
QY) — (Z x (0,00)) x (0,0), gg» — g, where g is the metric on ¥ x (0, 0) corresponding to the
flat metric on two punctured copies of R, and = satisfies

ou

Pl Agu for s e (—o0,0).

[u(y,s)| < cr(y)™",
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Furthermore, by interior parabolic Schauder estimate, u satisfies |V¥u(y, s)| < C|y|™~F, for
k € {0,1,2}. Finally, to show that @ is nontrivial, note that

1 Py (5) .
ry))=X;"p_1 (/)= 21— el:= (,C).
R AR (A
So passing to a subsequence if necessary, y; — ¥ € ¥ x I, and by , u(y,0) = 5. This
contradicts Proposition

(%) > 0.

Case 3. im0 p _ f
¢

J

In this case, taking C as in Assumption we make the definitions:

@ ._ : 14 4 g) s
Qk C (y,S) ©SE [ Qt]aoo)u Yy E Ek X [C(t] +S) R17R2]

X0 = QY v (X° x [~1t),»))
k=1

m2

) (71 ()
a9 x0) LR, ﬁ(j)(y, s) 1= té%u(])(“g(j)(y) Jtj+s)  on @y

tyu(j)(y, tj + s) on X° x [A —t;,00),
()
JO XD LR O = PV FOW) ) on
Py 1 + 5 on X° x [A — 1, 0),
We equip XU) with the metric 9;(-»8) = gj(,t; + s), so that we have the convergence
*

(X(j),g;) — (X\¢ 7 '({z1,...,2,}),%g) in Cloc We may derive bounds on %) and @) as

in Cases 1 and 2:

@0 9) < Cp o, )™ for s € [-115,0),

~ . J

|00 (y,s)| — 0 uniformly on compact subsets.
After passing to a subsequence, we have convergences 4 — @, ¢ — ¢, where u satisfies
u(y,s) < ep(y) for p : X — [0,00) as in section The Case 3 assumption implies that
p_i(xg-) — P > 0 so that zo, € X\t '({z1,...,2,}), and 1@) implies that u(xy,0) #

0 It follows from that d,u = Ax4u, and implies that SXb\rl({xl anh U AVyxg =

0 for all b € {1,. ! } Finally, by interior parabolic Schauder estimate (see for example,
[2, Proposition 7.3]), w satisfies |V*(y, 7)| < Cp(y)~V~*, for k € {0,1,2}. Proposition [6.6{ now
gives a contradiction. ([l

7. EXISTENCE THEORY FOR THE TORUS CASE

For the remainder of this work, we will focus on a particular case of the preceding theory -
flat special Lagrangians in complex tori.

Assumption 7.1. The Calabi—Yau manifold M and immersed special Lagrangian ¢ : X — M
take the following form:
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o ———0 X1
,’13* *

Xl X2

M =C™/T

F1GURE 3. Three figures of two Lagrangian tori Xi, X» inside a complex torus
M with a type 1 transverse intersection. In order, the figures depict: the graph-
ical representation of section a topological representation, a diagrammatic
representation of the containment X; u Xo < M.

e M is a complex torus, i.e. M := C™/T for a lattice I' (where m > 3), and the Calabi-
Yau structure is induced from the standard one on C™.

e The underlying manifold X of the special Lagrangian immersion is the disjoint union
of two m-tori, X = X1 u Xo, and ¢ : X — M is a special Lagrangian embedding for
b=1,2. The map ¢ : X — M has only one transverse self-intersection point of type 1
(as defined in Definition , which is denoted by x, € M, and it may assumed that
1" Yxy) = {27, x}}, where 27 € X and 2} € Xo.

Remark 7.2. It is fairly easy to construct examples. Consider the two planes II° and II? as
[2-17) with k = 1. Choose a basis for TI° and a basis for II?. Set the lattice to be generated by
them.

Working under Assumption the preceding theory has the following simplifications:

e The map Y : Bg — M of Lemma [2.1§ may be taken to be the composition of an affine
isometry A € SU(m) x C™ and the torus projection 7p : C™ — M; T = 7po A. It
therefore satisfies the following strengthened properties: T*g = gg, T*Q = Q.

e For the desingularisation of ¢ : X — M constructed in section [3| only one Lawlor neck
is needed. It is denoted by L. The constant in is denoted by ¢z, := ¢4 (L) (and
c—(L) is set to be 0).

e The vector function €(¢) becomes a scalar function £(t).

e The desingularisation is denoted (* : N — N€. N°¢ consists of one tip region, P, one
intermediate region with two connected components, Q*, and two connected compo-
nents of the outer region, X° = X? u X3. The graph representation of X as in section
consists of two vertices, V = {X7{, X9} with a single directed edge between them,
E ={P}. Namely, n =1, n' = 2.

e The asymptotic cone C' matches precisely with the outer region X, i.e. A = 0.
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e The approximate kernel defined in section is spanned by two functions {1,w‘(€071)}.
To simplify the computations, we work instead with the basis {1,w®}, where w® is
normalised to be orthogonal to 1:

1
€ . £ £
w- = w(o,l) — WJ w(o,l)d‘/jgs. (71)
Since the underlying graph is a tree, Proposition [4.5implies that the Lagrangian mean curvature
flow equation may be expressed on the level of potential functions by (5.2). In particular, we

define {(du) by (5.1) using the following specific time-dependent constants:

e Vo de2(t
Crlt) = Co-(t) = Cxp 1) = —p 2220,

cr,V; de2(t
Co+(t) = Cxg(t) := 7 +§/2 dzf ),

(7.2)

where as before, V; denotes the volume of +(X;) for j € {1, 2}.
Our goal is now to find A, ¢ and u solving (/5.2) under Assumption

7.1. Estimates in the Torus Case. We will require the following estimates for the induced
metric g%, its volume form dVge, the nontrivial approximate kernel element w®, and the La-
grangian angle. Throughout we use Assumption for estimating the time derivative and
Holder derivative of €(t), and for convenience use the notation ﬁzh f = % for the

Holder quotient.

Lemma 7.3. Let gy be the Euclidean metric on R™, and gc be the cone metric on ¥ x (0,00).
Under Assumptions[6.1] and [7.], the induced metric g° on N satisfies

gF =90 on XPuU (X x[27,Ry)), b=1,2, (7.3)

OEEI=Im=TH), (g.1) € T x (&7, 227),
()(t727nfk€2m)7 (0', t) €2 X (€R17€T)7

¢ =¢e%gr, on P. (7.5)

IVE(g° — 90)lge (0, %) = L k=0,1,2,  (7.4)

1
The volume form dVye on the tip region P satisfies (for ti,ta € [t,2t], 0 < |[t1 —ta| <t m=2):

AVye = e™dVy, 0. dVye = O(e™ 1) dVy, 0y dVye = O(e(t)*™ %) dVy, (7.6)
|75 12 AVge (1)] = O(e(8)*™ %) AV, (7.7)
175, 4,00 AVge ()] = O(e(8)*™272%) dV7. (7.8)
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The volume form dVy on ¥ x (eRy,2e") satisfies (for ti,ta € [t,2t], |t1 —t2| < tiﬁ):

1+ 0(em=7)) dV, t)EX x (e7,27),
a, - [0, (9 en k2 79
(1+ O ™e™)) dVe, (o,v) € X x (eRy,e7),
O(em(1=7)=1y qv , 7 N T 27,
o.dVe = (e ) dVe (o,v) € X x (7,27 (7.10)
O(x=mem™ 1) dVg, (o,v) € X x (eRy,€7),
o O(e™2=71=20)qVy,  (o,v) e X x (e7,2¢7),
|77, 0, AVge(0)] = ey (7.11)
O(x me*m==)dVy, (o,v) € ¥ x (eRy,e7),
o O(em™2-7)=2720) 4V,  (o,v) e X x (e7,2¢7),
oV =4 (7.12)
O(v me=m Y dVe,  (o,t) € ¥ x (eRy,e").

Proof. We prove only the estimates for the tip region P < N; the arguments for the other
regions are analogous. Choose local coordinates for P, so that the induced metric is (¢°);; =
g (‘%E o ) It follows that

ox;’ E

0% 0iF 0 0%F
€). . = 2 €Y. . = _— _—
(9%)ij = O(e®), 0:(9%)ij =g (axias, afj) +g <axi, axjag> : (7.13)

We note that (* = Y(e(t)er), where ¢f, : L — C™ is the inclusion map of the Lawlor neck, so
% = Ty (¢1) = O(1). Therefore, we calculate using 1'

£ g 62[/8 82L8 £ £ m
0-(9%)ij = Oe),  02(9%)ij = 29 (ax,ag’ ax.ag) =0(1), (g°)ij =€ (t)0:(¢%)ij = O(™)
i j

otz (97)ig = 0c(97)isl,y - €'(a) - [t — £ = O(e™F27%)
1,00(9%)ij = 1,0, (£'0:(97)is) = Py (€)0=(9%)ig |y, + €' (02) 10,02 (97)ij = O™ 727),

where a,b € [t1,t2]. Using these estimates, along with the fact that there exist ¢, C' such that
ce?™ < det(g°) < Ce?™, we may bound the volume element and its derivatives as required. [J
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Lemma 7.4. Under Assumptions and the function w® satisfies (for ti,te € [t,2t],
2
‘tl — t2’ < tim*Q).'

<1
on 7. H(X x (eR1,e7)),
|8tw

otherwise,

7 o] = O(gm—272) on K- 12 x (eRq,e7))

frt2 0 otherwise,
A ewf| < Ke(r)~mem=2 on 7. H(X x (eR1,e7)),
0 otherwise,
P Aguf| < Ke(r) me2m—2-2a on K- 12 x (eRy,e7)),
e otherwise.

Proof. The spatial estimates of w® follow from |13, Proposition 7.3]. For the time derivative,
note that dywg = 0 on X} and P from the definition of w3. On Q, we compute

Otkie = [1 - X (T;R]?)] e'r =0(),

O = (aL’Q o p)(o, 5_1/€5(T))[6_2€//€5(T) + 5_1@t/<a€]

= 0=l for re k7 (eRy, 7).

The result now follows from a calculation. The Holder derivative estimates follow similarly,
2
using the fact that [t; —to| <t™ ™2 = |d} ., f| < C-10:f(c)|e?2 for some c€ [t1,t2]. O

Lemma 7.5. Under Assumption for any T € (0,3) and k € {0,1,2}, we have

9] m(1—7)—kt = (o,1), T 2e7T),
TR0 (2)] = (e ) x=(o,v), ve (e, 2) (7.14)

0, otherwise,

where | - | is computed using the pullback metric g°.

Proof. The proof follows as in |13, Proposition 6.4], with the improvements coming from the
fact that by Assumption A=0and T*g = go. O

7.2. Weighted Parabolic Holder Spaces. We define suitable Holder spaces for our differ-

ential operators. Given A > 0, (u,v) € R%, a € (0, 3

,5), and a time-dependent tensor 7" on N,
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and letting inj(¢°) denote the injectivity radius of the induced metric g¢ = (.)*g, we define:

I Tl i= sup  ##p¥ 4 (2)[Tlge, (7.15)
(e )N x[Ace) 1

|T(SU1, t) — T(x% t)’_(]s

T A= su su t* min{ pV 2 (1), p¥ T2 (29 ,
[ ]u,u,a, te[A,Ic)zo) x1,x22ﬂ {ptm 2( ) ptmijz( )} dga(xl,wg)%‘
dge (21,22)<min{inj(g°),1}
(7.16)
T(x,t1) —T(x,t2)]|ge
<T>,u,,1/,a,A := sup sup sup tupl/+21a (x)’ (‘T’ 1) ($7 2)|g (717)

zeN t>A 1y toet,28], tm—2 [t — ta|®
2

0<|t1—to|<tm—2

Here, the norms are computed by the induced metric on the corresponding tensor bundles, and
the difference T'(x1,t) — T'(x2,t) is understood using the parallel transport along the unique

shortest geodesic between 1 and xo to compare the values.

Definition 7.6. Define a weighted parabolic Holder norm for tensors T" on N by

’Mv'/’A + [T]/LJ/,Oé,A + <T>M,V7Q,A' (7.18)

The weighted parabolic Holder spaces PZL’]Z’% are then defined to be the space of functions
u: N x [A,00) = R such that the norm

l
[ull prse = . [0iul pooc Z [V7ulpooa (7.19)

is finite. Analogously, we define the weighted parabolic Hélder norm |- | 0.« (and corresponding
¢,A

Banach space C?’X) for functions h : [A,0) — R:

h(t1) — h(t
HhHCg,ch = sup t%|h(t)] + sup sup tcM (7.20)

te[A,0) te[A,00)  t1,taet,2t], t1 — ta]®
2

0<|t1 —to|<tm—2

In order to apply the Schauder fixed point theorem to solve our nonlinear PDE for functions
belonging to these spaces, we will require the following compact embedding theorem.

Lemma 7.7. For ' < pu, o <a, ' <, and A > 1, the inclusions

0,a 0,a/ Ik,a 1,k,o’
Con = Cone Blja = Biia

are compact.

Proof. For the first inclusion, consider a bounded sequence {hk},‘;O ! in the unit ball of Co’a

We aim to show that there is a subsequence which is Cauchy in coe 3 A By Arzela—Ascoli and a
diagonal argument, we may pass to a subsequence such that ||hy — hHCO([ AA) — 0 for a unique
h e C°([A,)) and for any A’ > A.

We now show that this subsequence is Cauchy in oo ; . Fix € > 0 and choose A’ > A such
that 2(A')¢'~¢ < e. We estimate separately on the mtervals [A,A’] and [A,0) as follows:
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[he = hull o | (P = ha) (t1) — (hg — hz)(h)!)

- ¢ ¢ |
o= sup |5 |hg(t) — h(t)] + sup t :
(A4 te[A,A] ( t1,t2... |ty — t2|*

/

[|<hk — hy)(t1) — (hy — m><t2>|]°é

t1 — ta|*

< (A')CI{WC — hilcora,a) + sup (2]hs — Iy ”CO([A,A’]))‘S'}

t1,ta...
C [Hhk — hllcoqanny + (Ihellcoean) + lhilcoe(aan )%(Hhk — hullcog AA/]))‘(:/] ;

|k — Tl < (M), — hllgoe < e

CO o OO))
Since the first estimate tends to 0 as k,I — o0, it follows that {h;}}2 is Cauchy in C’O;‘X as
required.

For the second inclusion, we consider the case (I, k) = (0, 0) for simplicity (the general case is
proven similarly). Take a bounded sequence {u}}> ; in the unit ball of PS B 'Y By Arzela—Ascoli
and a diagonal argument we may pass to a subsequence such that |lug — ul|covx[a,a) — 0 for
a unique u : N x [A,00) —> R and any A’ > A. We now show that this subsequence is Cauchy
in PE OVO/‘\ Fix € > 0, and define A’ so that 2(A/)*~# < e. We split the domain into N x [A, A’]
and N x [A’,;00), and estimate the norm on each separately as follows.

On N x [A,A’]: Both ¢t and p are uniformly bounded above and below, and so |ux —

w| PO0 (A Y be proven to converge to 0 as in the previous case, by considering each
W AN

constituent seminorm and estimating in terms of |lug — wl|co(a,an)-
On N x [N/, 00):

_ N —p _
|k ul\\pg;?y,i(ﬂx[,\,’oo)] < W) lup — il oo < e

0,0,a/

We therefore have proven that {uy};2; is Cauchy in Pons as required.

0

7.3. A Priori Estimates and Existence Theory for the Linearised Operator. We now
proceed with the linear theory for our linearised operator, which will be viewed as a bounded
operator on the weighted Holder spaces of Definition The main result is Theorem [7.12
Since the linearised operator has a non-trivial kernel, we prove our estimates and existence

theory on the orthogonal complement of the approximate kernel, which will be denoted by:

A, wHt = {u e CO([A, ), LA(N, ¢°)) : JNu-wE dVge = fNu-l dVye =0, Vte[A, oo)}.
B B (7.21)

We will first consider the simpler case of the heat operator. It is clear from the definition that
we have the following.

Lemma 7.8. Let > 0, v € (0,m —2), a € (0,1/2). The linear operator oy — L5 : C (N x
(A,0)) - CL(N x (A,0)) extends to a bounded operator

1,2, 0,0,
O — Age PW,A PW/+2A
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We first note that our a priori estimate for the heat operator implies the following weighted

Schauder estimate.

Corollary 7.9. Let u >0, ve (0,m—2), (O 3) and A > 0. There exists a constant C' > 0
such that if u € 132‘ A {1, wHt and ¢ € P V+2 A Solves the Cauchy problem

Oiu— DNgeu =1 te[A 0),

(7.22)
u(z,A) =0, x€N,
then
Hqujfa <C H¢HP00a

v+2,A

Proof. By the scaling property of the induced metric ¢° and the standard interior Schauder

M,V,A) :

Since u € (1,w®)*, we may apply Theorem [6.7|to bound |ul, A in terms of Y] po0.e O
w,v+2,A

estimate, we have

fulprze < C (¥l poos  +lu

Supposing now that u € Pl’z’o‘ (1, w®)* satisfies

oru— Ageu =Y +a(t) + b(t)w® te[A, 0),

(7.23)
u(zx,A) =0, x€eN,
then by the Schauder estimate above we have
a < © o
[ull pr2e < Cllv + alt) + b(t)w" pooa
< Cllpooa,  +Cla®)lpooe  +Clbt)w?]pooa . (7.24)

It is therefore important to estimate a(t) and b(¢) in terms of u and .

Lemma 7.10. Consider u € P1 2 T dw N and e P y+2A satisfying . Then:

1 J' 1
a(t) = ———— Ou — 1) dVpe, b(t =J (atu—Asu—w>-w€dVa,
() VOI(NE) M( ) g () HU)EH%Q N 90 g
and a(t) and b(t) satisfy the estimates
2 2a vT
t o <C O, +C’A_ 2.0,
la( )“P372+27A HQbHPL{S = ||U!|p;j’A
2aT vT
b(t)w 50,0 <C 0,0 CA™™ 2.
1b(t)w llp‘g’gH’A Hl/}HP!‘iS n T HUHP;EA

Proof. The formulae for a(t), b(t) are obtained by integrating the differential equation against
the elements of the approximate kernel {1,w*®}, and using the orthogonality conditions.

For the estimates, recall that by Assumption

_ 2 _
[t1 —ta| <t m2 = Wtal,tzﬂ < C -0 f(c)|e*
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for some ¢ € [t1,t2], where for convenience we use the notation &tam f = % for the

Holder quotient. Differentiating the orthogonality condition and using the estimates on the
volume form from Lemma [7.3] yields

#o+ (m)a(t)] < C - sup <upf 10 (dVy)] + 4] pooe f 2 dvgs)
[T 79N M w,v+2,A M

t m=2 te[A,00)

2e™
<C- sup {\uﬂpm,a (J pre™m 2 AV, + J ¢rlgim=2 dt)
te[A,00) L P eR1

Ro
+ HwHP0,0ya <J p_I/_ng dVL + f t—V+m—3 dt + J d%g) }
wv+2,A P R, i

<C swp (fulprag 22" 4 [ poos ),
tE[A,OO) v, A w,v+2,A

tp tu+2+2a( )th Lat)| < C - sup <HU|PJ‘3’X JN TV20,(dAVe)| + p | 4,0 1 0t(dVge )|

te[A,00)
+ HTZJHPO,O,Q J p—V—2—2a dVgs + p_l/_2|&z,t2 (d‘ ,g€)>
wv+2,A N

< . 2m—2—2a—T1v )
<C: swp (Julpyzg e +lelpnos, )

which implies the estimate for a(t). The estimate for b(t) follows analogously, using the estimates
from Lemma and the fact that w®, |[w®|| ;> are uniformly bounded. 0

Finally, to extend the above estimates from the heat operator to our linearised operator L,
we require the following estimate on the difference between the Laplacian and the linearised
operator:

Lemma 7.11. Given 7 < m+2, we have the decomposition Lj = Age + Pg, where P§ is a first
order differential operator satisfying

Ce(t)™ b dul,e on P; T ot= A,
B 0, otherwise.

In particular, there exists C(A) > 0 with limp_,o, C(A) = 0 such that

Paldlpooe < C)ulprs

12a 0,0,
v, A P/,L,V—‘,—QA

As a result, L extends to a bounded operator L :
Proof. By Proposition [5.2] we have
L5[u] = Ageu — (VOy=, Vo(du)yge + S°[ul,
where S¢[u] is a first order linear differential operator defined by
(2loge;(t))'(dBe,)(du") on P;
Sl = {0 gty G onQf
0 on X9 .
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Hence,
Pilul = —(VOne, Vo(du)dge + S°[u].
By Lemma [7.5]
[(VOne, Vo(du)yge| < Ce(t)™ )77 |dulge,  on QF,

By Assumption we have

|S¢[u]| < Ce(t)™ |dulge, on Pju Q;—r.
Combining these together and using the assumption 7 < #ﬁ yields

[Pilu]l < C ()™ " |dulge.

From this, we further estimate:

1-m
o 2P [ul] < C=(t)™ " pe (#02* dulye) < CAWE ] i

if 7 € (0, %ﬁ) The Holder norm estimate follows similarly, by using |Vdfy-| = O (™1 =7)=27)
and |0;VOy<| = O(e™ 27 from Lemma O

We now combine these estimates to deduce the estimates and existence theory for d; — L5.

Theorem 7.12. Given pn > 0, v e (0,m — 2), a € (0, %), T € (0, ﬁ), there exists A » 1 with
the following significance. Given 1 € PS,’BfZA’ there exists a unique u € Pﬁff\‘ A (LwHt and

a,b:[A,0) > R such that

Oru — Lg[u] = + a(t) + b(t)w®, te[A,0),

(7.25)
u(z,A\) =0, ze€N,

and u satisfies the a priori estimate

HU‘HP;’E’X < CHw‘|P0y0,a (726)

wv+2,A

for some C' > 0 independent of t.

Proof. First, we claim that, given v € PS:SfZ A» there exists Ag » 1 such that for each A > A,

there exists a unique u : N x [A, ) — R solving

Oru— Ageu =Y +a(t) + b(t)w® te[A, 0),

(7.27)
u(zx,A) =0, xeN,

with estimate HuHP;iX < CWHPﬁ’SfQ K where C' > 0 is independent of A.

For this purpose, define a zeroth order operator

1 1
Felu :={J - (Opw® + Agew® dVe—i—f u-waﬁdVE}—l—J u OpdVie.
lu] lwe )2, Uy (0 o) dVy N e Vol(N¢) Jn e

Note that F°[u] encodes how the orthogonality condition is changed in time. Let

1 1
I A cwf dVie - .
V= o JNWVQ w2, wa w dVge -w
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By standard parabolic theory, there exists u : N x [A, A + T] — R solving

Opu — Ageu + Fe[u] =, te[A,A+T],

(7.28)
u(x,A) =0, zeN.

Letting
1

a(t) = Vol(NF) JN(@:U — ) dVie,

bt) = —

Jwe 7
it follows that the triple (u,a,b) solves

Ou — Ageu = Y + a(t) + b(t)w®

J\N (ﬁtu — Ags’u, — w) ~w® dVgs,

and by Corollary (7.9 and Lemma [7.10, for A > 0 large enough, the estimate [u]p120 <
v, A
C|l¥| poo.ea  holds, for any T > 0. It follows that the operator
v +2,A

A5+ (u, alt), b(t)) —> G — Ageu — alt) — b(t)us

as a bounded operator from szx A (1, weHt x ng COK to P B ‘2.4 18 a linear isomorphism
whose inverse is bounded by C', which is independent of A > AO This proves the claim.

Now, our goal is to show that £ = A§ — P is invertible. Write
Af —P§ = AG (T — (A5 'Pg) ,
where Z is the identity operator in Plgg N (1, we) x CE:X X C’gi Since by Lemma [7.11

|(A5)~'P§| — 0 as A — oo, it follows that Z — (A5)~'Pg is invertible for large A > 0. Hence,
Af — Pg is invertible for large A > 0. 0

8. ESTIMATES FOR THE ERROR TERMS IN THE TORUS CASE

In this section, we provide pointwise estimates for the zeroth order term, Oy- + £(0) and
the quadratic term Q°[du], which will be utilised in the iteration scheme of section @ We also
estimate the projection of the zeroth order term onto the approximate kernel, whose dominant
term provides the approximate ODE that ¢(¢) should satisfy.

8.1. The Zeroth Order Error. The main zeroth order error estimate is the following.

Proposition 8.1. Assume that the constants p > 0, v € (0,m —2), a € (0,3) and 7 € (0, 3)

satisfy the relation
2¢ v+2

2 1-— . 8.1
T mtltoa m—2<ﬂ<m—2(7(y+ )+ A —7)m) (8.1)
Then, we have

dim [0 +EO)|pooa = 0. (82)

Precisely, we have the following bounds in terms of A:

HHNEHPS’gf; . < CA#*%(T(V+2)+(1—r)m)’ Hé.(O)HPSBfQA < CAﬂ*ﬁ(mﬂa)7 (8.3)
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for some C > 0 independent of A.
Remark 8.2. Notice that
Tv+2)+1—-17m—-rv+2)=1—-7)(m—-2—-v)>0.
Hence, the ranges for the constants in are non-empty.
Proof. We first estimate the Holder norms of 6y-. By construction, it suffices to consider the

transition region &z (X x (7,2¢7)).

By Lemma we have for z, 2" € B_1(X x (¢7,2¢7)),

ol 2 (2, 1) One (2, 1) < C the(t) TV He(p)I-Tm < Ctu—ﬁ(¢(v+2)+(l—r)m)’

€
and similarly, using |dfye| < Ce(t)=7)m=7,

‘9]\[6 (CC, t) - 9N€ (%l, t)‘

e v+2+2a t
Pe (%) dge (x, z')2

< Ctu€<t>7(u+2+2a) . g(t)(l—T)m—T . g(t)f(l—Za)

<C tufﬁ(T(Vﬁ'Z)“r(l*T)m) .

On the other hand, for to > t1, t1,to € [t,2t], 0 < |t; — ta] < t_%, and x = (o,r) €
Ut1<t<t2 E;l(z X (57(t)7257—(t)))7

01\75(33,751) — (9]\]5(35,?52)

= (00 @) ((0, Ke(t,) (1), AQc(21) (0, Fie(ry) (1)) — (0 0 P) (0 Kie(ty) (1)) Qe (1) (0, K1) (7))

s=1
- f . %(e 0 ®)((0, ie(s) (1)), dQe(5) (0, o) (1)) ds, (8.4)

where e(s) := e(sty + (1 — s)t1). Using €’(s) < Ce(t)™ |t; — t2| and 0.k-(r) < re(r) o g1,
we deduce that

054D (5) (0, () (1)) = O((t)™ T I=TM=2)) 1y — ],
measuring by the induced metric gg. Inserting this into 1) gives
’91\75(1‘,751) — QNE(I',tQ)’ <C €(t)m_2+7‘t1 — tQ‘.

Thus,

tupl/(-;)2+2a(x) ‘HN‘E (x"tl) — 91’\75 (1‘, t2)‘ <C tufﬁ(r(u+2)+m+772a(1fﬂ-))'
€ t1 — to]®

Putting these together, we obtain

T(v+2)+(1—71)m

1On< ] poo.a < C AT m=2 =o0(1), asA — 0.
wv+2,A
: 2a T(v+2)+(1-1)m
ifr>_ S and p < —/ —5——.
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We now estimate £(0). Recalling our choice of time-dependent constants from (7.2), £(0) is
given by

’<s<t>2>' (arly — %) on P
(26 ) — (0-Qe1) © Féa(t)) on QT ,

§00) = S &/(t) (~2e()%; — (0-9u) 0 Fey) o Q@
—(e (t)Q)’ViLKZ on X9,

(e(t)?) on X9 .

In the transition region we have
€<t>/aaﬂa _ O(g(t)m+(m_2)(l_7))’

which is smaller than (g(¢)?)’. From this observation it is now easy to deduce that

() e < N
Hé( )H PS:B@,A ¢
D

8.2. The Quadratic Error. Let Q°[du] := —0n= — £(0) + dru — Lj[u] be the quadratic error
term. We now estimtate Q°[du] in terms of weighted norms of w.

Proposition 8.3. There is C' > 0 and A » 1 such that if u € Plsx, t,t1,to = A with

0<|t; —ta] < tm—2, and x,x1,29 € N with 0 < dge (w1, 22) < poy(71), then

Q]| (2.1) < Clul e -+ 2072 ), (8.5)
|Q°[du](z1,t) — Q°[du](z2,)| 24 24— 2a
Ay (1, 72)2 < Cllulprae - 7% p " (21), (8.6)
Qf[du](x, t1) — QF[du|(x,t 9 9y 4—9g _m+2-2a
< ldult |t11)— t2|a[ (@ %) <C||U||pi«3,z -t 2”/’5(%) 20y Ot mT (8.7)

Proof. Write Q°[du] = Qj[du] + Q¢[du], where
Q5[du] = On<[du] — On- — An=u + (VOy-, Vo(du)),
Qeldu] = [du] — £(0) — S°[u].

We first estimate Qj. In the tip region, the induced metric is uniformly equivalent to the metric

5?ng. Using the scale-invariant property of Lagrangian angle we have

Q3. t, du(, 1), Vdu(z,1)| < C (2| dufZ + |VdulZ. ), we P,

for some C > 0 independent of €. Similarly, in the intermediate region, the metric is uniformly
equivalent to the cone metric, and the scale-invariant property of Lagrangian angle implies

|Q5((v,0),t,du((r,0), 1), Vdu((r,0), )| < C (7 *|dulze + [Vdul3e),  (v,0)) € Q5
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for some C' > 0 independent of e. Combining these estimates yields
|Qg(x, t, du(z,t), Vdu(z,t))| < C (p;2(x,t)|du(x,t)|§5 + |Vdu(x,t)|§s) , (x,t) e N x [A, ).
Multiply both sides by t#p?*? gives
t#pL T2 |Q5 dul| < Ct* (p¥|dulje + pL 2|V dul}:)
=C [t_upa_u_z (tupgﬂyd“’gsf i (tuP?H‘VdMgS)Q]

< 20t7#p7 2 ul]

1,2, -
PLWA

The estimate for Qz [du] follows similarly. From the explicit expression 1' we only need
to consider the tip region. By Taylor theorem,

Eneldu] = (5?)’ [ozL(:B, 0) + dyar(x,0) - 5]72du + O(e;4|du|3Lj)] .

It follows that, using |(5?)’| < 1,
Qzldul(z,1)] < Ce;?ldul, )3 < Cp?(a, 1) du(z, 1)
Multiply both sides by ##p?*? and estimate as above gives

thpf "2 |Qgldul| < Ot 7 ull}

PR
Combining everything together yields
|Q°[du]| < |Q5[du]| + |Q¢[du]| < Ot~ 2p- 21,

This proves (8.5).
To prove (8.6), we fix t € [A, ), and view Oye[du](-,t) and £[du](,t) as coming from
restricting smooth functions

O(z,y.2), E(z.y), zeN, yeTiN, ze ® TN,
to the graph {(z,du(z,t), Vdu(z,t)) : x € N}, namely, we have
One|du](x,t) = O(x,du(z,t), Vdu(z,t)), &[du](z,t) = E(z, du(z,t)).
Note that by scale-invariant property we have

020b050| < Cpzo°,  |osob=l < Cpz°°, a,b,ce NU{0}.

zYyYz €

Then a long but straightforward computation using mean value theorem shows that, for x; #
w9 € N with dge (21, 22) < pe(z1,1),

|Qpldu](z1,t) — Qgldu](xa,t)]

e V42420
p& (.Z'l) dge(xl,.fQ)za

< Ct#p " (a)|ulprza-
P,u,,V,A

Similarly,
|Q¢[du](x1,t) — Qg[du](x2,1)]

dge (1, 29)%

Combining these estimates yields

A < Ot 2 o) fulne
v,
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Finally, we prove . Similar computation as Joyce |13, Proposition 5.8] and Pacini |28,
Proposition 5.6] shows that if «, 5 are small closed 1-forms on N, then for each fixed t,

1Q°[a] — Q°[B]l < C (p= | — Bl + |V (a = B)]) (o= el + p= |8l + [Val + [V8]) .
Letting o = du(-, t1), 8 = du(-,t2) yields

g o0+ (g ) QW [du(x, t1)] — Q°D[du(x,12)]]
5 )
t1 — to|*

< CtHp7" 2z, 1) |[u) 0.0
P,u,,u,A

On the other hand, by the assumption on € we have

e(t1) _ e(t2) m
|Q [du(x,th] 52| [du(z, t2)]| < Csup [€(t)e; ()] < Ct w1,
1— 12 J

2
Combining these estimates, we conclude that for ¢1,t2 = A with 0 < [t] — to| <™ ™2,

|Q°[du](z, t1) — Q°[du](z,t2)]
|t1 — ta|®

This proves (8.7)). O

m+2—2«

< Ct72up;2’/7472aHUH?_-,l,z,a + Ot mt
JTR 79N

8.3. Projection onto the Approximate Kernel. Finally, we will require the following inte-
gral estimates, which are the projection of the zeroth order terms onto the approximate kernel.

Lemma 8.4. We have
J One dVive = £ A + 00+, (8.8)
SEx(e7,2e7)

Proof. This follows from the proof of [13, Proposition 7.5] by estimating 6y by sin(6x=)+O0(6%),
and using Lemma [2.15] and Lemma O

Applying this Lemma, we have the following projection formula for the zeroth order term.

Proposition 8.5. The L? projection of the zeroth order error On- + £(0) onto the approzimate
kernel spanR{l,wfoyl)} is given by

ViVe (de?(t) AVi+ Vs a1
< Cwt - il m +7)m )
R R { SRR oM, (59)

and

f [One + £(0)] - 1V = O(0+7Im), (8.10)
N

Proof. Tt follows from these choices that

. de?(t) c de?(t)
jNé(U) w1y dVge = L & BrL + Lﬁ £(0) - wig ) + fxg cLeq
de?(t
~1s-er - T 4 o040m ),

where in the second line we used the assumption that dfi(tt) = 0(e™1(2)).




INFINITE-TIME SINGULARITIES OF LMCF 53

Combining with Lemma and using the fact that the volume of the interpolating region
is O(e™) yield
[ e+ 01 wiy v

deQ(t)_ cLVa de?(t)
dt Vi+Vy dt

_ Viva {dgz(t) + évl + VQEm(t)} + 0(5(T+1)m)‘

= gm(t)A + Vo cp, (‘/2 _ O(ng)) + O(E(T+1)m + 6(277—)m)

TtV U g v
This proves (8.9). Equation (8.10)) follows from a similar computation. O

By , , the projection onto the normalised approximate kernel element w® (as
defined in ([7.1]) ) takes the same form:

f [On- + £(0)] - w® AV
N

ViVs d€2(t) AVi+V, m
=CL, + — €
i+ Vs dt c,. ViV

(t)} + O(elTHm). (8.11)

Remark 8.6. In the iteration scheme of Section [9} the above integrals will appear as error
terms that we wish to minimise. We will therefore define £(¢) to be a small perturbation of a
solution of the following ODE:

de?(t) A /1 1
dt cr,

7t V2> () = 0. (8.12)

We note that any solution ¢(¢) to this ODE satisfies Assumption

9. SOLVING THE NONLINEAR EQUATION IN THE TORUS CASE

We are now ready to state and prove our main theorem precisely. For the remainder of
the paper, we make the following assumptions on v, «, 7, u, ¢, which imply all previously made
assumptions on these constants:

m 1 2a 1
7_270}7 _2)7 077 ) ) ) 9.1
”e<max{2 " ae( 2) T€<m+1+2a m+2> (9-1)
2+2 1 242
ue<y+ 2 (T(I/+2)+(1—7')m)>, Ce(O,min{ m ,u—y+ * oz})‘
m

m—2 'm—2 -2 m— 2

3m—8 1 T(1—7
(For example, (v, 0,7, 1) = (*, 135, 72y Stoby

) and ( sufficiently small).

Theorem 9.1. Let m > 3, let + : X — M be a special Lagrangian immersion in a flat
complex torus (M>™, g, J,w, Q) satisfying Assumption and let v, o, 7, 1, ¢ be real constants
satisfying . Let N be the corresponding abstract manifold as defined in Definition
and let P;Z%X‘, C’g:ﬁ be the Banach spaces on N x [A,00) and [A,0) respectively as defined in

Definition 7.6
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Then there exist u € Pﬁ’f’f{, e:[A,0) — (0,00) satisfying Assumptz'on and a : [A,00) —
R such that

Opu = 0(du) + &(du) + a(t) fort>A

u(z,A) =0 on N x {0}, 82

where O(du) is the Lagrangian angle of the Lagrangian embedding ¥ -1y o du : N — M as in
sectz’on and &(du) is defined in with constants Cp, Cg+, Cxp defined by .

The family W e@y odu : N — M of Lagrangian submanifolds satisfies mean curvature flow,
and forms an infinite-time singularity. As t — oo we have smooth convergence N¢ — (X)
away from the transverse self-intersection point.

As shown in section {4} given a pair (u, €) satisfying the family of Lagrangian embeddings
Upne odu: N x [A,00) — M is an eternal Lagrangian mean curvature flow F; : N — M that

forms an infinite-time singularity, converging away from the singular point to the immersion
t: X - M.

To prove Theorem we first carefully define an iteration map .# on the Banach space
Pﬁif\‘ x C’g”f\‘ for which a fixed point (u, h) corresponds to a solution (u,e) of 1} We then
1,2,

show that .# maps a compact subset of P

o X C’?:X‘ continuously into itself, and apply the

Schauder fixed point theorem to conclude that a fixed point exists.

9.1. Definition of the Iteration Map. Denote the unit balls of ijﬁ, Cg:[o( by

1,2,a ko k,a .
oy = {uePlWX Nl prae < 1}, Ihe = {heCC’X hl g < 1}.

«

We now define the iteration map .# : By, A % I?”A — B, 5 % Ig/o\‘ Given a pair (u,h) €
B3\ x I, the pair (v, k) = & (u, h) € P28 x C2Y is defined as follows:

Step 1. (Ansatz for (t)): First, we define

1
[m=2AVI+V, t m=2
(1) ._[ —en t+JAh(s)ds] , (9.3)

and use £(t) to construct the Lagrangian embedding £®) and related quantities and functions
that depend on £(t) as in section |3} By definition, () satisfies the ODE:
de? AVi+ Vs 2

— "= — h(t).
dt+CL V1V2 ¢ m—2€ ()

It is easy to check that e(t) satisfies Assumption We then construct the desingularisation
N using £(t).

Step 2. (u~»v): Next, we define v € Pﬁiz Define ¢ := On- + £(0) + Q°[du]. By Proposi-
tion and Proposition we see that ¢ e P;?:Bfl A+ We may therefore apply Theorem
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to show that there exist v € Pliz A {1 wHt a: [A,0) » Rand b: [A,0) — R satisfying:

0o — Lj[v] = One +£(0) + Q°[du] + a(t) + b(t)w®, te [A, ),

(9.4)
v(z,A) =0, ze€N,

and

|M@ﬁg<CWWh%$W (9.5)

Step 3. (h ~ k): Finally, we define k € C’g,’f\‘. Integrating 1) against the functions 1 and
w® respectively, and using the projection formulae (8.10) and (8.11)), we obtain the following
expressions for a(t) and b(t):

alt) — Vol(l ) f (0w — L5[v] — ) dVe
(1 ) ( (2w — L5[v] — Q°[du]) AV + 0(a<1+7>m)> , (9.6)
b(t) = “ijQL 2 JN (A — L5[0] — ) wF Ve
_ “wj”% 2 < (@ = 5] = QT

ViVa [de2 cmAVi +Va (Lrym
CLV1+V2[dt+ PR TAT ]+O(€ )

_ 1 € € € cpViVa 2€mh(t) (1+1)m

(JN(ﬁtv Li[v] — Q°[du])w® dVye + ViV, m_2 + O(e )) . (9.7)

- JwEf7

It is therefore natural to define k(t) as follows, in order to cancel out the dominant term from

this expansion of b(t):

m—2Vi+ Vs —m
2¢c,. WiVy

k(t) := h(t) — w72 - b(2). (9-8)

9.2. Estimates for the Iteration Map. In order to apply the Schauder fixed point theorem,

we now aim to prove the following proposition regarding the iteration map .7:

Proposition 9.2. For any y/ < p, o/ < «, (' < (, the iteration map 5 : B}, \ x Ig’X‘ —
szf\‘ X C’gﬁ defined in section is continuous with respect to the norm on P1 21,0/‘\ X Cgﬁ\,
and has image lying in BM,MA X ICX'

We first estimate the projection of the inhomogeneous term v onto the approximate kernel.

Lemma 9.3. Let

ViVe (de2(t) ™AV + Vi J
G t = — . adVE. 99
(*) CLV1+V2{ @ T wn v -wtdly (9.9)

V+2

Then, if ”u”P,iff( <1, ve (max{§ — 2,0}, m —2) and p > , then for any ¢ > 0 satisfying

Tm

¢ < min{;7%,2(n — ZE5)}
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2
and 0 < [t; — to] <t~ ™2, it follows that

M < Ce(t)™- +—C (9.10)
|t — to]®

Proof. By projection formula (8.11]) we have
IG(t)] < Ce(t)THm 4 f |Q°[du]| - w® AVie.
UN
Since Hu”Pi,’i,’X <1, by 1’ we have

J 1Q°[du]| - w® dVe < C =2 J;V P2 dAVe.
VN

GO+

Note that for any small a > 0, by assumption we have —2v — 4 + m — a < 0. Hence,
JN p;21/74 dVga _ f p: —2v—4+m— ap;m+a dV Cg(t)f2uf4+mfa JN p;era d‘/gs.

As p. — 7 and p;™t* < CF~™T® on N, where 7 is the intrinsic distance to the intersection
point on X7 u X9, dominated convergence theorem implies

f pngra d‘/gs < J ffera dVX/ < C(a) < 0
N X1uXa

for all t = A. Tt follows that, by choosing a sufficiently small such that p > ”+22 + 3,

Q°(duw)| - w® Ve < Cla)e(t)™t 20278 < Claye(tym 29,
N

which shows
|G(t)| < Ce(t)™ -5,

A similar argument using gives

’G(tl) — G(t2)‘ < C€(t)m . t—z
|t — to]

2
providing 0 < [t; — to| <t~ m—2. O

Lemma 9.4. Given 1 € PY% oA With Hz/JHPo 00 S 1, let the triple (u,a(t),b(t)) be the solution
to the Cauchy problem )

Oru — Lglu] =¥ + a(t) + b(t)w®, on N x (A, 0),

u(+,A) =0, on N,

with orthogonality condition u € (1, w®)*. Define
B(t) = f (1 + b)) - wk dVe. (9.11)

Then if p > Y2129 then for 0 < |t — to| <t~ m- w2 and ¢ > 0 satisfying ¢ < p — L2t2a

m—2 7’
|E(t) — Eta)|

E(t)] +
O+

< Ce(t)™°. (9.12)



INFINITE-TIME SINGULARITIES OF LMCF 57

Proof. Write E(t) = Ey(t) — E1(t), where
Fo(t) = f dru-wf AV, Ey(t) = f £5[u] - wf dVe.
N N
We first estimate Ey(t). By differentiating orthogonality condition in time, we have

Ey(t) = —J u - Opw® dVge — f u - w® pdVge.
N N

It follows from Lemma and Lemma and the assumption on e(¢) that

Fo(t1) — Ep(t S
|E0(t)| + ’ 0( 1) O( 2)‘ < Ce(t)mt u+m172(1/+2+2o¢)|
[ty — to|®

ullpoos
2
for 0 < |t1 —t2| <t m-2,
To estimate F1(t), write
Bi(t) = J Ageu-wr dVje + f PElu] - uf V-,
N N
where Pg := L§ — Age. Then by Lemma @ and Lemma we obtain
B0 < | ol |Awf| Ve + [ (Pl ] v
N N
< N —ut gt m.
C lul g 755 <(t)
Similar estimate using the Holder estimates in Lemma [7.4] Lemma [7.3 and Lemma [7.11] yields

FEi(t1) — Eqi(t A a
[E1(t1) — Ei(t2)] < Cul prae t™*F 212 (6™
|t1 — t2|0‘ Hov, A

2
for 0 < [t; — ta| <t~ m—2. Hence,

|Eq(t1) — Er(t2)] V2420

< m g—p+ = o

2
for 0 < [t; — ta2| <t~ m—2. Combining these estimates, along with Theorem we obtain

|E(t)| + PRI < Ce(t)ymt M =

for 0 < [t — to| <t 2. O

2,0/

pA %

Proof of Proposition[9.3 To show that .# is continuous with respect to the norm of Pﬁ;
C’g,’j\l, one may use a contradiction argument as in the proof of |3, Proposition 5.3].
For the estimate on k(t), note that by definition we have

m—-2Vi+Ve __,

ko) = h(o) - " 2V e, b
,mm—2 dEz(t) Em(t)AV1+V2 1Vi+ W, <
e e e e L 0]
_ —E(t)_m (m — 2)(V1 + VQ) (G(t) + E(t))

2c,ViVo
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It follows from Lemma and Lemma that we may choose ¢ > ¢ such that

k(ty) — k(t .
()] + B Z ROl ey ) < e (9.13)
t1 — ta|*
~@-0)
— [k < CA=C. (9.14)

Finally, we may estimate v using (9.5]), Proposition and Proposition
@ < - «@ «@ € @ )
[vlpreae <€ (HQNHPS:S;ZA + e pooe + @ [dullpo0a

<C (Au—ﬁw(uw)m—r)m) AR (m=20) | g —pt 52 )

QO

Taking A sufficiently large therefore ensures that .# maps Bf,f% A X Ig ) toitself, as required. [J

9.3. Proof of Theorem Consider the iteration map .# defined in section 9.1} By Propo-
sition it may be viewed as a function on the product of unit balls, .# : Bim A X Ig:[o( —
B;O;V, A X Ig:f\“.

By Lemma BZ‘% A X ZE:K is a compact subset of Pj,QUOX X CO;le' for any p/ < p, o < a,
¢’ < (. Since .# is a continuous map by Proposition we may therefore apply the Schauder
fixed point theorem to conclude that there exist (u,h) € By, A % Ig’f\‘ such that (v,k) :=
S (u,h) = (u, h). Define £(t) and the Lagrangian embedding ¢° using the function % as in (9.3).
Since h € Igﬁ, e(t) satisfies Assumption By and , the fixed point (u, h) satisfies

h(t) = k(t) = b(t) =0,
u(t) = v(t) = 0w — Lj[u] = On- + £(0) + Q°[du] + a(t)
— Owu = 0(du) + &(du) + a(t),

as required.

Q

A We have

Finally, since u € B

du(z,t)]ge < ] preat ™ p "3 (z) < C £t (), for all (z,) € N x [A,0). (9.15)
v, A t m—2

v+2

m—27
grangian neighbourhood Up.r) for all t > A for A sufficiently large. We may then apply

Since p > this shows that the time-dependent 1-form du(-,t) is contained in the La-

Proposition to obtain a solution to the mean curvature flow given by Wy« o du(-,t). The
estimate (9.15)) implies that W .t o du converges to the immersion ¢ : X — M.

0
We end this section by studying the convergence of the mean curvature flow solution N; :=

U ey o du(V, t) as t — oo.

Proposition 9.5. We have the following locally smooth convergence of submanifolds in C™:
e() " [YTTHNy) A By ] > L as t — oo (9.16)
Proof. By construction we know that e(¢) ™'Y~ (NN;) N B.(;y~—1 can be written as a graph ®, o

(e(t)~2du) over L. Then u € B, s implies that |dulg, +[Vdulg, = o((t)?) as t — oo. Hence,
the graph @, o (¢(t)~2du) converges to L as t — o0 on B, (4)r-1, locally in the C'-sense. Since
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u is a solution to the parabolic equation (4.7) on L, by parabolic regularity the convergence is
locally smooth. O

Corollary 9.6. The second fundamental form |Ap,| blows up at a rate O (tﬁ> ast — o0.

Proof. By construction and the fact that u € By, \, |An,| remains bounded away from the

region Ny N T (B, ()~ ). The blow-up rate now follows from Proposition O
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