On Money as a Medium of Exchange

Kiyotaki and Wright (1989 JPE)

September 2013
Motivations

- Capture the essential feature of money – a medium of exchange.
- Money emerges endogenously.
- Which goods are used as money depends on intrinsic properties (storability, recognizability...etc) and extrinsic belief.
- How fiat money has value (extrinsic belief, preference, technology).
Model: production and consumption

- Main features: Specialization (in consumption and production) → a Double-coincidence-of-wants problem.
- A continuum of agents with measure 1
- 3 type of agents, 3 goods:
 Agent i consumes good i (utility u_i) and produces $i + 1 \pmod{3}$
Model: storability of goods

• Goods are indivisible, come in size one and storable at a cost c_i.

• Each agent can store only one unit of good at a time.

• Assume $c_3 > c_2 > c_1 \geq 0$: focus on storability
Model: matching and inventory distribution

- Meeting technology: bilateral meeting per period
- $P_{ij}(t)$: proportion of type i with good j at date t

 \[P_{ii}(t) = 0 \quad \forall t \quad , \quad P_{ij} = 1 - P_{i,j+1} \]

- $P(t) = [P_{12}(t), P_{23}(t), P_{31}(t)]$ is all we need to know.
Trading strategy

- Each agent chooses a trading strategy to maximize his expected discounted utility from consumption net of production and storage costs, taking as given the strategies of other agents and $P(t)$.

- Environment is time-invariant, infinite horizon, steady state $\rightarrow P(t) = P, \forall t$, and we consider strategies for i that depend on the good j he has and the good k his trading partner has.

- Trading strategy:

$$\tau_i(j, k) = \begin{cases}
1 & \text{if } i \text{ trades } j \text{ for } k \\
0 & \text{otherwise}
\end{cases}$$
• $\tau_{j,i} = 1$: always trade for consumption good as long as u_i is big enough.

• $\tau_{j,k} = 1 \Rightarrow \tau_{k,j} = 0$

• The only aspect of trading strategies to determine is whether type i trades his production good $i + 1$ for good $i + 2$ as a medium of exchange.

• Agents trade iff it is mutually agreeable:
$\tau_i(j, k) \cdot \tau_h(k, j) = 1$
Trading strategy (con’t)

- V_{ij} - expected life-time discounted utility for type i with good j given that he follows a maximizing strategy.

- $\tau_i(j, k) = 1$ iff $V_{ik} > V_{ij}$.
 In equilibrium, agents of the same type will not trade.
Pure strategy profile: $S = (S_1, S_2, S_3)$

- Let $S_i = 1$ if i trades good $i + 1$ for good $i + 2$, and 0, otherwise.

- A pure strategy profile is $S = (S_1, S_2, S_3)$.

- e.g. $S_2 = \Pr(\text{agent II trades 3 for 1})$
 $\Rightarrow 1 - S_2 = \Pr(\text{agent II trades 1 for 3})$

- $\Delta_i \equiv V_{i,i+1} - V_{i,i+2} > 0 \iff S_i = 0$
Steady state inventory distribution

Let \(P_1 = P_{12}, P_2 = P_{23}, P_3 = P_{31}. \)

\[
\begin{align*}
&\Rightarrow \left\{ \\
&P_1 P_2 S_1 = (1 - P_1) P_3 \\
&P_2 P_3 S_2 = (1 - P_2) P_1 \\
&P_3 P_1 S_3 = (1 - P_3) P_2
\end{align*}
\]

solve for \(P^* = (P_1^*, P_2^*, P_3^*) \)
Definition of equilibrium

Definition

A steady state Nash equilibrium consists of \(\tau = (\tau_1, \tau_2, \tau_3) \) and \(P \) satisfying

- **Maximization**: Given other’s strategies and \(P, \tau_i \) maximizes expected utility for type \(i \).

- **Rational expectation**: Given \(\tau \), \(P \) is the resulting steady state inventory distribution.
Fundamental equilibrium: \(S = (0, 1, 0) \)

Given others’ strategies and \(P \),

\[
V_{12} = \left(\frac{1}{1 + r} \right) \{-C_2 + \frac{1}{3} [V_{12} + P_{21}(u_1 + V_{12}) + P_{23} \max(V_{12}, V_{13}) + V_{12}] \}
\]

\[
V_{13} = \left(\frac{1}{1 + r} \right) \{-C_3 + \frac{1}{3} [V_{13} + V_{13} + P_{31}(u_1 + V_{12}) + P_{32} \max(V_{12}, V_{13})] \}
\]
Fundamental equilibrium: \(S = (0, 1, 0) \)

\[
\begin{align*}
rV_{12} &= -C_2 + \frac{1}{3}[P_{21}u_1 + P_{23} \max(0, V_{13} - V_{12})] \\
rV_{13} &= -C_3 + \frac{1}{3}[P_{31}(u_1 + V_{12} - V_{13}) + P_{32} \max(V_{12} - V_{13}, 0)]
\end{align*}
\]

\[\Rightarrow C_3 - C_2 > \frac{1}{3}[P_{31} - P_{21}]u_1 \text{ then } V_{12} > V_{13}\]

\(V_{21} > V_{23} \) and \(V_{31} > V_{32} \) for all parameter values and \(P_{i,j} \).

Inventory distribution = \((1, \frac{1}{2}, 1)\)
Speculative equilibrium: \(S = (1, 1, 0) \)

\[V_{13} > V_{12} \text{ iff } \]

\[C_3 - C_2 < \frac{1}{3} \left(P_{31} - P_{21} \right) u_1 \]

\[\sqrt{2} - 1 \]

⇒ \[\begin{align*}
P_{21} &= 2 - \sqrt{2} \\
P_{12} &= \frac{\sqrt{2}}{2}
\end{align*} \]