Measure of Distance

• We wish to define the distance between two objects

• Distance metric between points:
 – Euclidean distance (EUC)
 – Manhattan distance (MAN)
 – Pearson sample correlation (COR)
 – Angle distance (EISEN – considered by Eisen et al., 1998.)
 – Spearman sample correlation (SPEAR)
 – Kandall’s τ sample correlation (TAU)
 – Mahalanobis distance

• Distance metric between distributions:
 – Kullback-Leibler information
 – Hamming’s mutual information
R: Distance Metric Between Points

“dist” function in *stat* package:
- Euclidean
- Manhattan

hopach package:
- `disscosangle(X, na.rm = TRUE)` **

bioDist package:
- `cor.dist`
- `spearman.dist`
- `tau.dist`
\[g_1 = (-1.76, -1.45, 0.33) \]
\[g_2 = (0.04, -0.75, 0.29) \]
\[g_3 = (1.51, -1.60, 2.07) \]

Euclidean distance:

\[g_1 \text{ vs } g_2: \sqrt{(-1.76 - 0.04)^2 + (-1.45 - (-0.75))^2 + (0.33 - 0.29)^2} = 1.93 \]
\[g_1 \text{ vs } g_3: \sqrt{(-1.76 - 1.51)^2 + (-1.45 - (-1.60))^2 + (0.33 - 2.07)^2} = 3.70 \]
\[g_2 \text{ vs } g_3: \sqrt{(1.51 - 0.04)^2 + (-1.60 - (-0.75))^2 + (2.07 - 0.29)^2} = 2.45 \]

<table>
<thead>
<tr>
<th></th>
<th>g1</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td>g2</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>g3</td>
<td>3.70</td>
<td>2.45</td>
</tr>
</tbody>
</table>

```r
> g1 = c(-1.76,-1.45,0.33)
g2 = c(0.04,-0.75,0.29)
g3 = c(1.51,-1.60,2.07)
g = rbind(g1,g2,g3)
dist(g)
g1   g2
  g2  1.931735
  g3  3.707155  2.460041
```
\[g_1 = (-1.76, -1.45, 0.33) \]
\[g_2 = (0.04, -0.75, 0.29) \]
\[g_3 = (1.51, -1.60, 2.07) \]

Manhattan distance:

\[g_1 \text{ vs } g_2: |-1.76 - 0.04| + |-1.45 - (-0.75)| + |0.33 - 0.29| = 2.54 \]
\[g_1 \text{ vs } g_3: |-1.76 - 1.51| + |0.33 - 2.07| = 5.16 \]
\[g_2 \text{ vs } g_3: |0.04 - 1.51| + |0.29 - 2.07| = 4.10 \]

<table>
<thead>
<tr>
<th></th>
<th>g1</th>
<th>g2</th>
<th>g3</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td></td>
<td>2.54</td>
<td>5.16</td>
</tr>
<tr>
<td>g2</td>
<td>2.54</td>
<td></td>
<td>4.10</td>
</tr>
<tr>
<td>g3</td>
<td>5.16</td>
<td>4.10</td>
<td></td>
</tr>
</tbody>
</table>

R code:

```r
> dist(g, method="manh")
g1  g2
g2  2.54
"g3  5.16  4.10`
Cosine Correlation Distance

- Note: disscosangle(hopach)

\[ d_{\alpha}(x, y) = \sqrt{1 - \left( \frac{x \cdot y}{\|x\| \|y\|} \right)} \]

where \( x \cdot y = \sum_{i=1}^{n} x_i y_i \), \( \|x\| = \sqrt{\sum_{i=1}^{n} x_i^2} \)

```r
> library(hopach)
> disscosangle(g)

 g1 g2 g3
[1,] 0.0000000 0.6325593 0.9748645
[2,] 0.6325593 0.0000000 0.4846881
[3,] 0.9748645 0.4846881 0.0000000
```
Correlation-based distance:

\[
\begin{array}{c}
\text{g1} & \text{g2} \\
g2 & 0.420527385 \\
g3 & 0.496338511 \quad 0.004069727 \\
\end{array}
\]

\[
\begin{array}{c}
\text{g1} & \text{g2} \\
g2 & 0.5 \\
g3 & 0.5 \quad 0.0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{g1} & \text{g2} \\
g2 & 0.66666667 \\
g3 & 0.66666667 \quad 0.00000000 \\
\end{array}
\]
Measure of Distance

• We wish to define the distance between two objects

• Distance metric between points:
  – Euclidean distance (EUC)
  – Manhattan distance (MAN)
  – Pearson sample correlation (COR)
  – Angle distance (EISEN – considered by Eisen et al., 1998.)
  – Spearman sample correlation (SPEAR)
  – Kendall’s $\tau$ sample correlation (TAU)
  – Mahalanobis distance

• Distance metric between distributions:
  – Kullback-Leibler information
  – Hamming’s mutual information
Kullback-Leibler Information

- Kullback-Leibler information (KLI) considers if the shape of the distribution of features is similar between two genes.
Kullback-Leibler Information

\[ KLI(f_1, f_2) = \int \log \left( \frac{f_1(x)}{f_2(x)} \right) f_1(x) dx \]

\[ d_{KLD}(f_1, f_2) = \left[ KLI(f_1, f_2) + KLI(f_2, f_1) \right] / 2 \]

Note:

1. KLI (d_{KLD}) = 0 if \( f_1(x) = f_2(x) \).
2. KLI is not symmetric but \( d_{KLD} \) is.
3. \( d_{KLD} \) does not satisfy the triangle inequality.
4. KLI or \( d_{KLD} \) is not defined when \( f_1(x) \neq 0 \) but \( f_2(x) = 0 \) for some \( x \).
Mutual Information

- **Mutual information** (MI) attempts to measure the distance from independence.

\[
MI(f_1, f_2) = \int \int \log \left( \frac{f(x, y)}{f_1(x)f_2(y)} \right) f(x, y) dy dx
\]

**Note:**

1. If \(x\) and \(y\) are independent then \(f(x,y) = f_1(x)f_2(y)\) so that \(MI = 0\).
2. Does not satisfy the triangle inequality.
Mutual Information

- (Joe, 1989) Transformation:

\[ \delta^* = \left[ 1 - \exp(-2MI) \right]^{1/2} \]

\[ 0 \leq \delta^* \leq 1 \]

\( \delta^* \) can be interpreted as a generalization of the correlation!
R: Distance Between Distributions

**bioDist** package:
- KLD.matrix (kernel density)
- KLdist.matrix (binning)
- mutualInfo
Exercise: Apop.xls

http://homepage.ntu.edu.tw/~lyliu/IntroBioinfo/Apop.xls

Try to compute the distances between the rows (genes).
man = dist(Apop,"manhattan")

heatmap(as.matrix(man))

heatmap(as.matrix(man),Rowv=NA,Colv=NA)
heatmap(as.matrix(man),Rowv=NA,Colv=NA,symm=T)

library(gplots)
heatmap.2(as.matrix(man),dendrogram="none",keysize=1.5,
          Rowv=F,Colv=F,
          trace="none",density.info="none")
pairs(cbind(man, MI, KLsmooth, KLbin))
Cluster Analysis

- **Clustering** is the process of **grouping together** similar entities.
  - It is appropriate when there is **no prior knowledge** about the data.
  - In a machine learning framework, it is known as **unsupervised learning** since there is no known desired answer for any particular **gene** or **experiment**.
Cluster Analysis

• The entities that are similar to each other are grouping together and form a cluster.
  – **Step 1**: Defining the similarity between entities
    → distance metric
  – **Step 2**: Forming clusters
    → clustering algorithms
Measure of Distance

- Distance metric between points:
  - Euclidean distance (EUC)
  - Manhattan distance (MAN)
  - Pearson sample correlation (COR)
  - Angle distance (EISEN – considered by Eisen et al., 1998.)
  - Spearman sample correlation (SPEAR)
  - Kendall’s $\tau$ sample correlation (TAU)
  - Mahalanobis distance

- Distance metric between distributions:
  - Kullback-Leibler information
  - Hamming’s mutual information
Cluster Analysis

• The entities that are similar to each other are grouping together and form a cluster.
  – Step 1: Defining the similarity between entities
    → distance metric
  – Step 2: Forming clusters
    → clustering algorithms
Clustering

• According to distance between two objects, the entities that are closer to each other are grouping together and form a cluster. → clustering algorithms

Note: Anything can be clustered. The clustering results may not be related to any biological meanings between the members of a given cluster.
Clustering

• Usually the results of clustering is shown in a clustering tree, or a dendrogram.
Clustering Algorithm

- Partitioning: k-means, PAM
- Hierarchical clustering
- Model based: SOM
Partitioning Algorithms

- Partitioning method: Construct a partition of \( n \) objects into a set of \( k \) clusters

\[ k = 3 \]
Partitioning Algorithms

• **Given a** *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
  
  – *k-means*: Each cluster is represented by the center of the cluster
  
  – *k-medoids* or PAM (Partition around medoids): Each cluster is represented by one of the objects in the cluster
**K-means Clustering**

**Step 1:** Determine the number of clusters, $k$.

**Step 2:** Randomly choose $k$ point as the centers of clusters.

**Step 3:** Calculate the distance from each pattern to $k$ centers and associate every object with the closest cluster center.

**Step 4:** Calculate a new center for the updated clusters.

**Step 5:** Repeat steps 3 and 4 until no objects are relocated.
K-means Clustering Example: $k = 2$
K-means Clustering Example: \( k = 2 \)
Example of $K$-means Clustering Result

Average distance to the center of clusters
$k$-mean Clustering: Properties

1. It is possible to produce empty clusters. To avoid such situation, one can:

   (i) let the starting cluster centers be in the general area populated by the given data.

   (ii) randomly choose $k$ points as initial centers.
\textit{k-mean Clustering: Properties}

2. The results of the algorithm can change between successive runs of the algorithm.
PAM

- *PAM* (Partitioning Around Medoids):
  - starts from an initial set of *medoids* (objects)
  - iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
  - provides a novel graphical display, the *silhouette plot*, which allows the user to select the optimal number of clusters.
  - works effectively for *small data sets*, but does not scale well for large data sets
Step 1: Select $k$ representative objects arbitrarily.

Step 2: For each pair of non-selected object $h$ and selected object $i$, calculate the total swapping cost $TC_{ih}$

- If $TC_{ih} < 0$, $i$ is replaced by $h$
- Then assign each non-selected object to the most similar representative object

Step 3: Repeat Step 2 until there is no change.
PAM

K=2

Do loop

Until no change

Swapping O and O_{random} If quality is improved.

Assign each remaining object to nearest medoids

Randomly select a nonmedoid object, O_{random}

Compute total cost of swapping

Total Cost = 20

Total Cost = 26
PAM

- the next plot is called a silhouette plot
- each observation is represented by a horizontal bar
- the groups are slightly separated
- the length of a bar is a measure of how close the observation is to its assigned group (versus the others)
Silhouette plot of \text{pam}(x = \text{as.dist}(d), k = 3, \text{diss = TRUE})

\text{n = 38}  

3 clusters $C_j$

\begin{align*}
\text{j: n}_j \text{ ave}_{i \in C_j} s_i \\
1: 18 \mid 0.40 \\
2: 8 \mid 0.54 \\
3: 12 \mid 0.73 \\
\end{align*}

Average silhouette width: 0.53
Partitioning Methods: Comment

• Number of clusters, $k$:
  – If there are features that clearly distinguish between the classes (e.g. cancer and healthy), the algorithm might use them to construct meaningful clusters.
  – If the analysis has an exploratory character, one could repeat the clustering for several values of $k$. 
Clustering Algorithm

- Partitioning: k-means, PAM
- Hierarchical clustering
- Model based: SOM
Hierarchical Clustering

- *k*-means clustering returns a set of *k* clusters.
- Hierarchical clustering returns a complete tree with individual patterns as leaves and the convergence points of all branches as the root.
Hierarchical Clustering

Step 1: Choose one distance measurement

Step 2: Construct the hierarchical tree:

- **Bottom-up (agglomerative) method:** $n \rightarrow 1$; starting from the individual patterns and putting smaller clusters together to form bigger clusters.

- **Top-down (divisive) method:** $1 \rightarrow n$; starting at the root and splitting clusters into smaller ones by non-hierarchical algorithms (e.g., $k$-means with $k = 2$).
Hierarchical Clustering: Example

- **Example**: Consider 5 experiments (A, B, C, D, E) with the following distance metric:

  Bottom-up (agglomerative) method: putting similar clusters together to form bigger clusters.
Hierarchical Clustering: Example

<table>
<thead>
<tr>
<th></th>
<th>{A,B}</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B}</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>?</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>?</td>
<td>400</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>?</td>
<td>600</td>
<td>200</td>
<td>–</td>
</tr>
</tbody>
</table>

⇒ Need to define inter-cluster distances
Inter-Cluster Distances

- Single Linkage
- Complete Linkage
- Centroid Linkage
- Average Linkage
Hierarchical Clustering: Example

If we use average linkage: $d_{\{A,B\},C} = (d_{A,C} + d_{B,C}) / 2$, etc.

\[
\begin{pmatrix}
\{A,B\} & C & D & E \\
\{A,B\} & - & - & - \\
C & 350 & - & - \\
D & 750 & 400 & - \\
E & 950 & 600 & 200 & - \\
\end{pmatrix}
\]

\[d_{\{A,B\},C} = (d_{A,C} + d_{B,C}) / 2 = (400 + 300) / 2\]
Hierarchical Clustering: Example

* use average linkage

{A,B}  C  {D,E}

\[
\begin{pmatrix}
- & - & 350 \\
- & - & - \\
850 & 500 & - \\
\end{pmatrix}
\]
A hierarchical clustering diagram can be used to divide the data into a pre-determined number of clusters by cutting the tree at a certain depth.
Properties of Hierarchical Clustering

• Different tree-constructing methods:
  – The same data and the same process obtain the same results by running the same bottom-up method.
  – The same data and the same process obtain two different results by running the same top-down method.

• Different linkage type produce different results.
Hierarchical Clustering: Comments

- **Objective of the research:** To obtain a clustering that reflects the structure of the data. The dendrogram itself is almost never the answer to the research question.

- Various implementations of hierarchical clustering should not be judged simply by their speed; slower algorithms may be trying to do a better job of extracting the data features.

- The order of the objects and clusters in the dendrogram may be misleading.
Orders in Dendrogram
Clustering Algorithm

- Partitioning: k-means, PAM
- Hierarchical clustering
- Model based: SOM
SOM: Motivation

• Misleading dendrograms:

  $K$-means

  Hierarchical

• The SOM clustering is designed to create a plot in which similar patterns are plotted next to each other.
Self-Organizing Feature Maps (SOM)

- SOM: A map consists of many simple elements (nodes or neurons); it is constructed by training.
  - SOMs are believed to resemble processing that can occur in the brain
  - Useful for visualizing high-dimensional data in 2- or 3-D space
Self-Organizing Feature Maps (SOM)

• Clustering is performed by having several units competing for the current object
• The unit whose weight vector is closest to the current object wins
• The winner and its neighbors learn by having their weights adjusted
Self-Organizing Feature Maps (SOM)

- This process can be visualized by imagining all SOM units being connected to each other by rubber bands.

A 2D SOFM trained on 3-dimensional data.
- Eisen 1998
- Algorithmic Approaches to Clustering Gene Expression Data [link](http://citeseer.nj.nec.com/shamir01algorithmic.html)
- Tibshirani, Hastie, Narasimhan and Chu (2002) [link](http://www.pnas.org/cgi/reprint/99/10/6567)