Types of Rates

- Treasury rates
- LIBOR and LIBID rates
 - London Interbank Offer Rate
 - London Interbank Bid Rate
- Repo rates (repurchase agreement rate)
Measuring Interest Rates

- There are many kinds of compounding frequencies used for an interest rate, for example, quarterly or annual compounding.
Discretely Compounding

\[1 \times \left(1 + \frac{R}{m} \right)^{mn} \]

\(m = \text{number of compounding intervals per year} \)
\(n = \text{number of years} \)
\(R = \text{annual interest rate} \)
Continuously Compounding

Let $m \rightarrow \infty$

$$\lim_{m \rightarrow \infty} \left(1 + \frac{R}{m}\right)^{mn} = e^{Rn}$$

where $e = 2.718281828$
<table>
<thead>
<tr>
<th>m</th>
<th>Final Sum (n=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1200</td>
</tr>
<tr>
<td>2</td>
<td>1.1236</td>
</tr>
<tr>
<td>12</td>
<td>1.126825</td>
</tr>
<tr>
<td>365</td>
<td>1.1274746</td>
</tr>
<tr>
<td>∞</td>
<td>1.1274969</td>
</tr>
</tbody>
</table>
Continuous Compounding
(Page 79)

- In the limit as we compound more and more frequently we obtain continuously compounded interest rates
- 100 grows to $100e^{RT}$ when invested at a continuously compounded rate R for time T
- 100 received at time T discounts to $100e^{-RT}$ at time zero when the continuously compounded discount rate is R
Define

\(R_c \): continuously compounded rate
\(R_m \): same rate with compounding \(m \) times per year

\[
P \cdot e^{R_c n} = P \left(1 + \frac{R_m}{m} \right)^{mn}
\]

\[
e^{R_c} = \left(1 + \frac{R_m}{m} \right)^m
\]

\[
R_c = m \cdot \ln \left(1 + \frac{R_m}{m} \right)
\]

\[
R_m = m \cdot (e^{R_c / m} - 1)
\]
Zero Rates

A zero rate (or spot rate), for maturity T is the rate of interest earned on an investment that provides a payoff only at time T.
Example (Table 4.2, page 81)

<table>
<thead>
<tr>
<th>Maturity (years)</th>
<th>Zero Rate (% cont comp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>1.0</td>
<td>5.8</td>
</tr>
<tr>
<td>1.5</td>
<td>6.4</td>
</tr>
<tr>
<td>2.0</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Bond Pricing

- To calculate the cash price of a bond we discount each cash flow at the appropriate zero rate.
- In our example, the theoretical price of a two-year bond providing a 6% coupon semiannually is

\[
3e^{-0.05 \times 0.5} + 3e^{-0.058 \times 1.0} + 3e^{-0.064 \times 1.5} \\
+ 103e^{-0.068 \times 2.0} = 98.39
\]
Bond Yield

- The bond yield is the discount rate that makes the present value of the cash flows on the bond equal to the market price of the bond.

- Suppose that the market price of the bond in our example equals its theoretical price of 98.39.

- The bond yield (continuously compounded) is given by solving
 \[3e^{-y \times 0.5} + 3e^{-y \times 1.0} + 3e^{-y \times 1.5} + 103e^{-y \times 2.0} = 98.39 \]
 to get \(y = 0.0676 \) or 6.76%.

4.12
Par Yield

- The par yield for a certain maturity is the coupon rate that causes the bond price to equal its face value.

- In our example we solve

\[
\frac{c}{2} e^{-0.05 \times 0.5} + \frac{c}{2} e^{-0.058 \times 1.0} + \frac{c}{2} e^{-0.064 \times 1.5} \\
+ \left(100 + \frac{c}{2}\right) e^{-0.068 \times 2.0} = 100
\]

to get \(c = 6.87 \) (with s.a. compounding)
In general if m is the number of coupon payments per year, d is the present value of 1 received at maturity and A is the present value of an annuity of 1 on each coupon date

\[
100 = A \frac{c}{m} + 100d
\]

\[
c = \frac{(100 - 100d)m}{A}
\]
Sample Data (Table 4.3, page 82)

<table>
<thead>
<tr>
<th>Bond Principal (dollars)</th>
<th>Time to Maturity (years)</th>
<th>Annual Coupon (dollars)</th>
<th>Bond Cash Price (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.25</td>
<td>0</td>
<td>97.5</td>
</tr>
<tr>
<td>100</td>
<td>0.50</td>
<td>0</td>
<td>94.9</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
<td>0</td>
<td>90.0</td>
</tr>
<tr>
<td>100</td>
<td>1.50</td>
<td>8</td>
<td>96.0</td>
</tr>
<tr>
<td>100</td>
<td>2.00</td>
<td>12</td>
<td>101.6</td>
</tr>
</tbody>
</table>
The Bootstrap Method

- An amount 2.5 can be earned on 97.5 during 3 months.
- The 3-month rate is 4 times $2.5/97.5$ or 10.256% with quarterly compounding
- This is 10.127% with continuous compounding
- Similarly the 6 month and 1 year rates are 10.469% and 10.536% with continuous compounding
The Bootstrap Method continued

- To calculate the 1.5 year rate we solve

\[4e^{-0.10469 \times 0.5} + 4e^{-0.10536 \times 1.0} + 104e^{-R \times 1.5} = 96 \]

to get \(R = 0.10681 \) or 10.681%

- Similarly the two-year rate is 10.808%
Zero Curve Calculated from the Data (Figure 4.1, page 84)
Forward Rates

The forward rate is the future zero rate implied by today’s term structure of interest rates.
Calculation of Forward Rates

Table 4.5, page 85

<table>
<thead>
<tr>
<th>Year ((n)</th>
<th>Zero Rate for an (n) -year Investment (% per annum)</th>
<th>Forward Rate for (n) th Year (% per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>4.6</td>
<td>5.8</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>6.2</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Suppose that the zero rates for time periods T_1 and T_2 are R_1 and R_2 with both rates continuously compounded.

The forward rate for the period between times T_1 and T_2 is

$$\frac{R_2 T_2 - R_1 T_1}{T_2 - T_1}$$
Upward vs Downward Sloping Yield Curve

- For an upward sloping yield curve: \(\text{Fwd Rate} > \text{Zero Rate} \)

- For a downward sloping yield curve: \(\text{Zero Rate} > \text{Fwd Rate} \)
A forward rate agreement (FRA) is an agreement at $t = 0$ that a certain rate R_k will apply to a certain principal during a certain future time period.

FRA are usually settled at T_1, assuming R_M is the actual LIBOR rate at T_1, the payoff of this FRA is

$$\frac{L (R_M - R_K) (T_2 - T_1)}{1 + R_M (T_2 - T_1)}$$
Forward Rate Agreement continued

- An FRA at $t = 0$ can be valued by assuming that the forward interest rate is certain to be realized:

$$V_{FRA} = L(R_F - R_k)(T_2 - T_1)e^{-R_2T_2}$$

- Usually R_k is set to be R_F such that the value of FRA at $t = 0$ is zero.
Duration (page 89)

- Duration of a bond that provides cash flow c_i at time t_i is

$$B = \sum_{t_i} c_{t_i} e^{-yt_i}$$

$$D = \sum_{t_i} t_i \left[\frac{c_{t_i} e^{-yt_i}}{B} \right]$$

where B is its price and y is its yield (continuously compounded)

- This leads to

$$- \frac{dB}{dy} / B = D$$
Duration Continued

\[B = \sum_{t_i} c_{t_i} e^{-y t_i}, \quad D = \sum_{t_i} t_i \frac{c_{t_i} e^{-y t_i}}{B} \]

\[- \frac{dB}{dy} = \frac{1}{B} \left(- \sum_{t_i} c_{t_i} e^{-y t_i} (-t_i) \right) \]

\[= \frac{1}{B} \left(\sum_{t_i} t_i c_{t_i} e^{-y t_i} \right) \]

\[= \sum_{t_i} t_i \frac{c_{t_i} e^{-y t_i}}{B} \]

\[= D \]
Duration Continued

- When the yield y is expressed with compounding m times per year

$$- \frac{dB/B}{dy} = \frac{1}{1 + y/m} D$$

- The expression

$$D^* = \frac{1}{1 + y/m} D$$

is referred to as the “modified duration”
Duration Continued

\[B = \sum_{t_i} \frac{c_{t_i}}{(1 + y / m)^{m \cdot t_i}}, \quad D = \sum_{t_i} t_i \frac{c_{t_i}/(1 + y / m)^{m \cdot t_i}}{B} \]

\[- \frac{dB}{dy} / B = \frac{1}{B} \left(- \sum_{t_i} \frac{c_{t_i}}{(1 + y / m)^{m \cdot t_i + 1}} \cdot (-m \cdot t_i) \cdot \left(\frac{1}{m} \right) \right)\]

\[= \frac{1}{B} \left(\sum_{t_i} t_i \frac{c_{t_i}}{(1 + y / m)^{m \cdot t_i + 1}} \right)\]

\[= \frac{1}{1 + y/m} \left(\sum_{t_i} t_i \frac{c_{t_i}/(1 + y / m)^{m \cdot t_i}}{B} \right)\]

\[= \frac{1}{1 + y/m} D\]

\[D^* = - \frac{dB}{dy} / B = \frac{1}{1 + y/m} D\]
Duration Matching

- This involves hedging against interest rate risk by matching the durations of assets and liabilities
- It provides protection against small parallel shifts in the zero curve
Convexity

The convexity of a bond is defined as

\[C = \frac{1}{B} \frac{\partial^2 B}{\partial y^2} = \frac{\sum_{i=1}^{n} c_i t_i^2 e^{-y t_i}}{B} \]

so that

\[\frac{\Delta B}{B} = -D \Delta y + \frac{1}{2} C (\Delta y)^2 \]
Theories of the Term Structure
Page 93

- Expectations Theory: forward rates equal expected future zero rates
- Market Segmentation: short, medium and long rates determined independently of each other
- Liquidity Preference Theory: forward rates higher than expected future zero rates
 - Investors prefer to preserve their liquidity and invest funds for short periods of time
 - Borrowers prefer to borrow at fixed rates for long periods of time
 - Banks raise long-term rate relative to expected future short-term rate to reduce the demand for long-term fixed-rate borrowing and encourages investors to deposit their fund for long terms