Chapter 6: Statistical Power
(検定力)

LIN, Shuan-Wen 林宣文
LIN, Chien-Hsun 林建勳
FONG, Meng-Jhang 馮孟章
Why should we care about this?

• We can use power analysis to determine...
 1. What sample size (樣本數) we need,
 2. The level at which to randomize (隨機層級),
 3. How many different treatment groups (實驗組數) we can test,
• And other design issues.
Statistical Background

For further “statistics” help, go find STATISTICS 101 class!

LIN, Chien-Hsun 林建勳
Two things we care about......

1. Is the effect FALSE? Significance Test
 • Do students make difference?

2. Is the effect TRUE? Power Test
 • Do students become better?
Hypothesis Testing

\[H_0: \text{Effect size} = 0 \]
\[H_1: \text{Effect size} > 0 \]

How can we decide which is true?
<table>
<thead>
<tr>
<th>DATA</th>
<th>TRUE STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H0 is true</th>
<th>H1 is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not rejects H0</td>
<td>NOT FALSE</td>
<td>Data not support H1</td>
</tr>
<tr>
<td>Rejects H0</td>
<td>FALSE Positive</td>
<td>TRUE ENOUGH</td>
</tr>
</tbody>
</table>

Significance Level

POWER of the test
Critical Value (Determined by significance level)
What happens if we lower significance level...
Less variant?
When will we say:
 “There is really a positive effect”?

Minimum Detectable Effect (MDE) size:
Given a set of
significance size and power size,
at which we can say
“The effect is really detectable!!”
Significant size: 10%
Power size: 70%
How to choose MDE size?

• What are MDE of similar treatments?

 - “One penny for little.”
 • One banana for monkey RA.
Sample and Power

FONG, Meng-jhang 馮孟章
Budget Size and Power

- Money: the more, the better.
- We don’t have enough budget
- How to allocate/randomize the sample, that is the question!
Allocation Ratio and Power

• More allocation, more accurate measure
 • diminishing returns

• Principle: equal allocation among all groups maximizes the power

➢ Exceptions always exist.
Choosing allocation fractions

• Key point: budget constraint

1. When one budget pays for both program and evaluation
2. When MDE size varies by treatment group
3. When the comparison group (baseline) plays a particular important role
• When **one budget** pays for both **program** and evaluation

<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program costs</td>
<td>$1,000</td>
<td>$0</td>
</tr>
<tr>
<td>Evaluation costs</td>
<td>$100</td>
<td>$100</td>
</tr>
<tr>
<td>Total costs</td>
<td>$1,100</td>
<td>$100</td>
</tr>
</tbody>
</table>
• When **MDE size** **varies** by treatment group

➢ Treatment 1: Pagamo
➢ Treatment 2: free learning supplements
 • less expensive
• When the comparison group (baseline) plays a particular important role

- Treatment 1 vs. the comparison
- Treatment 2 vs. the comparison
- Pooled data from treatments vs. the comparison
Power with Clustering

• Randomize at the level of, for example, the school
• Reduce power (for a given sample size)
 • intracluster correlation
Choosing the Number of Clusters

• Key point: budget constraint
 • Fixed cost

➢ Trade-off:

• marginal power vs. marginal cost of each additional person per cluster
 • clusters = N vs. clusters = 1
How to Design a High-Powered Study

LIN, Shuan-Wen 林宣文
When Designing the Evaluation...
(實驗設計時...)

• Choose a decent sample size (適當的樣本數)
• Use fewer treatment group (減少實驗組)
• Randomize at the lowest level possible (降低隨機層級)
• Use a design that increases compliance (確實分隔實驗組與對照組的實驗設計)
When Designing the Evaluation (cont.)
(實驗設計時...)

• Use a design that limits attrition
 (避免樣本遺漏)
 (Will be introduced in detail in chapter 7.)

• Use stratification (分層抽樣)
 (Has been introduced in chapter 4.)

• Choose an allocation fraction (適當的分組方式)
When Planning the Data Collection...
(準備資料蒐集時...)

• Choose proximate outcome measure
 (近似的結果測量)
• Collect data on control variables (使用控制變數)
• Collect multiple observations on one person
 (對同一樣本重複試驗)
• Plan data collection to limit attrition (避免樣本遺漏)
• Limit procedural variation (減少操作誤差)
When Implementing the Evaluation --Managing Threats (實驗進行時)

• Increasing compliance (保持實驗組與對照組的隔離)
• Limit attrition (避免樣本遺漏)
When Undertaking the Impact Analysis...
(分析結果時...)

• Use control variables (使用控制變數)
• Choose a significance level (挑選適當的顯著水準)
Take-Home Knowledge

• After the presentation, you should know...
 1. What is power? What is MDE?
 2. How MDE work? How MDE affects your evaluation?
 3. What is important to design your study?