Solutions to Homework Chap 6 for Introduction to Optoelectronics

6.2
The EHP photogeneration rate from the illuminated crystal surface follows

\[G_{\rho} = G_e \exp(-\alpha x) \]

Total number of EHP generated per unit time in a small volume \(d\chi \) is \(G_{\rho} d\chi \). Thus,

Total number EHP generated per unit time in \(l_{\alpha} + W + L_e = A \int_{l_{\alpha}} G_e \exp(-\alpha x) dx \)

or

\[\frac{dN_{\text{ext}}}{dt} = \frac{G_e A}{\alpha} \left[1 - \exp(-\alpha (l_{\alpha} + W + L_e)) \right] \]

Since the photogenerated electrons flow through the external circuit, the photocurrent \(I_{\rho} \) is then

\[I_{\rho} = \frac{eG_e A}{\alpha} \left[1 - \exp(-\alpha (l_{\alpha} + W + L_e)) \right] \]

For long wavelengths, \(\alpha \) will be small. Expanding the exponential we find,

\[I_{\rho} = eG_e A (l_{\alpha} + W + L_e) \]

which applies under nearly uniform photogeneration conditions.

If \(d\rho \) is the change in the photon flux over an interval \(d\chi \), then

Rate of EHP generation in \(A d\chi = A d\rho = A G_e \alpha d\chi \)

\[G_{\rho}(x) = \text{Photogeneration rate at } x = \frac{A G_e \alpha}{A d\chi} = \alpha d\rho(x) \]

Now the intensity is defined by

\[I = \text{Intensity} = \text{Photon flux \times Energy per photon} = \Gamma_{\rho} h \gamma \]

Thus,

\[G_{\rho}(x) = \frac{I(x)}{h \gamma} \quad \text{and} \quad G_{\rho}(0) = \frac{I(0)}{h \gamma} \]

or

\[G_s = \frac{I}{h \gamma} \]

6.3

The solar cell is used under an illumination of 1 kW m\(^{-2}\). The short circuit current has to be scaled up by 1000/600 = 1.67. Figure 6Q3-2 shows the solar cell characteristics scaled by a factor 1.67 along the current axis. The load line for \(R = 20 \Omega \) and its intersection with the solar cell \(I-V \) characteristics is at \(P \) which is the operating point. Thus,

\[I = 22.5 \text{ mA and } V = 0.45 \text{ V} \]

The power delivered to the load is

\[P_{\text{out}} = IV = (22.5 \times 10^{-3})(0.45) = 0.101 \text{ W}, \text{ or } 10.1 \text{ mW}. \]

This is not the maximum power available from the solar cell. The input sun-light power is

\[P_s = (\text{Light Intensity})(\text{Surface Area}) \]

\[= (1000 \text{ W m}^{-2})(4 \text{ cm}^2 \times 10^4 \text{ m}^2/\text{cm}^2) = 0.4 \text{ W} \]

The efficiency is

\[\eta = 100 \frac{P_{\text{out}}}{P_s} = 100 \frac{0.101}{0.4} = 2.5\% \]

which is poor.
The open circuit voltage depends on the temperature whereas I_{sc} has very little temperature dependence. Use

$$V_{oc} = V_{oc} \left(1 - \frac{T}{T_0}\right)$$

(1)

to calculate the V_{oc} at different temperature given V_{oc} at one temperature. Then calculate V_{oc} using

$$V_{oc} = V_{oc} \left(1 + \frac{0.72}{V_{oc} + 2}\right)$$

(2)

then FF using

$$FF = \frac{V_{oc} - \ln(V_{oc} + 0.72)}{V_{oc} + 2}$$

(3)

and then P using

$$P = FF \times V_{oc}$$

(4)

as summarized in Table 6Q9-1.

<table>
<thead>
<tr>
<th>n</th>
<th>I_{sc} mA/cm²</th>
<th>V_{oc}; Eq. (1)</th>
<th>V_{max}; Eq. (2)</th>
<th>FF; Eq. (3)</th>
<th>P mW/cm²; Eq. (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>0.580 V</td>
<td>22.97</td>
<td>0.793</td>
<td>16.03</td>
</tr>
<tr>
<td>20 °C</td>
<td>35</td>
<td>0.686 V</td>
<td>34.19</td>
<td>0.847</td>
<td>20.34</td>
</tr>
<tr>
<td>-40 °C</td>
<td>35</td>
<td>0.686 V</td>
<td>17.10</td>
<td>0.744</td>
<td>17.90</td>
</tr>
<tr>
<td>40 °C</td>
<td>35</td>
<td>0.545 V</td>
<td>20.19</td>
<td>0.773</td>
<td>14.73</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>0.580 V</td>
<td>11.49</td>
<td>0.666</td>
<td>15.52</td>
</tr>
<tr>
<td>20 °C</td>
<td>35</td>
<td>0.686 V</td>
<td>17.10</td>
<td>0.744</td>
<td>17.90</td>
</tr>
<tr>
<td>-40 °C</td>
<td>35</td>
<td>0.686 V</td>
<td>17.10</td>
<td>0.744</td>
<td>17.90</td>
</tr>
<tr>
<td>40 °C</td>
<td>35</td>
<td>0.545 V</td>
<td>10.09</td>
<td>0.638</td>
<td>12.15</td>
</tr>
</tbody>
</table>

Conclusions: $n = 2$ case has a lower FF and also lower power delivery.

NOTE: The temperature dependence of the open circuit voltage V_{oc} was derived in the text as

$$V_{oc} = V_{oc} \left(1 - \frac{T}{T_0}\right)$$

This expression is valid whether n is 1 or 2. Recall that $n = 1$ represents diffusion in the neutral regions and $n = 2$ is recombination in the space charge layer. In the $n = 1$ case $I_{sc} \propto n_i$ and in the $n = 2$ case $I_{sc} \propto n_i^2$, thus in general $I_{sc} \propto n_i^{2n}$.

Consider the open circuit voltage,

$$V_{oc} = \frac{n_i k T}{e} \ln \left(\frac{K T}{I_{sc}}\right)$$

or

$$\frac{e V_{oc}}{n_i k T} = \ln \left(\frac{K T}{I_{sc}}\right)$$

At two different temperatures T_1 and T_2, but at the same illumination level, by subtraction,

$$\frac{e V_{oc1}}{n_i k T_1} - \frac{e V_{oc1}}{n_i k T_2} = \ln \left(\frac{I_{sc2}}{I_{sc1}}\right) = \ln \left(\frac{n_i^{2n_2}}{n_i^{2n_1}}\right)$$
where the subscripts 1 and 2 refer to the temperatures T_1 or T_2 respectively.

We can substitute $n_{23} = (N_2/N_1)^{x_{23}} \exp(-E_g/kT_2)$ and neglect the temperature dependences of N_2 and N_1 compared with the exponential part to obtain,

$$\frac{aV_{oc1}}{nkT_1} - \frac{aV_{oc2}}{nkT_2} = \frac{E_g}{nkT_2} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Rearranging for V_{oc2} in terms of other parameters we find,

$$V_{oc2} = V_{oc1} \left(\frac{T_1}{T_2} \right) + \frac{E_g}{nk} \left(\frac{1}{T_1} \right)$$

6.10

a. The definition of α is shown in Figure 6Q10-1(a) and (b). We can plot the light intensity vs. α as shown in Figure 6Q10-2 which shows the maximum is at $\alpha = 90^\circ$ as expected. Notice how broad the curve is, implying that there is still substantial intensity when α is a low angle.

The light intensity is maximum when $\alpha = 90^\circ$, thus

$$I_{max} = 1.353(0.7)^{a_{\max}} = 0.95 \text{ kW m}^2$$

and

$$\text{Maximum Power per unit area = (Efficiency)(Maximum Intensity) = 0.095 kW m}^2 = 95 \text{ W m}^2$$

so that at the best spot on Earth, the best one can do with this solar cell is 95 W m2.

b. Under test conditions, we have $V_{oc} = 0.45 \text{ V}$, $I_{oc} = I_{sc} = 400 \text{ mA}$ at 1 kW m2, at 27 $^\circ$C, that is $V_{oc} - 0.0259 \text{ V}$

$$V_{oc} = nV_T \ln \left(\frac{I_{sc}}{I_T} \right) \quad \therefore \quad 0.45 = 1(0.0259) \ln \left(\frac{400 \times 10^{-3}}{I_T} \right)$$

giving

$$I_T = 1.1 \times 10^{-8} \text{ A}$$

At Eskimo Point, $\alpha = 90^\circ - 63^\circ - 27^\circ$ (see Figure 6Q10-1) which gives a light intensity of

$$I_{sc} = 1.353(0.7)^{a_{max}} = 1.353(0.7)^{90^\circ - 63^\circ - 27^\circ} = 0.736 \text{ kW m}^2$$

which means that the Eskimo Point photocurrent I_{sc} is determined by

$$I_{sc} = \frac{I_{sc} \text{ (Eskimo Point)}}{1 \text{ kW m}^2}$$

$$\therefore \quad I_{sc} = 294 \text{ mA}$$

The dark current depends on the temperature. At -10°C, $V_T = k_T/\alpha = 0.0227 \text{ V}$.

The change in the dark current I_T can be found as follows. Let V_T = bandgap voltage $= E_g/\alpha = 1.1 \text{ V}$ for Si. Then, $n = 1$ means that

$$I_T \propto n^2 \propto \exp \left(-\frac{V_T}{V_T} \right)$$

so that

$$\frac{I_T \text{ (Eskimo Point)}}{I_T \text{ (Test)}} = \exp \left[\frac{V_T}{V_T \text{ (Eskimo Point)}} - \frac{V_T}{V_T \text{ (Test)}} \right]$$

$$\therefore \quad \frac{I_T \text{ (Eskimo Point)}}{1.1 \times 10^{-8} \text{ A}} = \exp \left[-\frac{1.1}{0.0227} + \frac{1.1}{0.0259} \right]$$

solving gives

$$I_T = 2.77 \times 10^{-15} \text{ A}$$

so that the Eskimo Point OC voltage is

$$V_{oc} = nV_T \ln \left(\frac{I_{sc}}{I_T} \right) = 1(0.0227) \ln \left(\frac{294 \times 10^{-3}}{2.77 \times 10^{-15}} \right) = 0.523 \text{ V}$$

Maximum power is

$$P_{max} = FFV_{oc} = (0.73)(244 \text{ mA})(0.523 \text{ V}) = 93 \text{ mW}$$