Contents

1 Introduction 1

2 Tests of Serial Uncorrelatedness 2
2.1 Q Tests 2
2.2 The Spectral Tests 6

3 Tests of Martingale Difference 9
3.1 Martingale Difference 9
3.2 Tests of Martingale Difference 10

4 Tests of Serial Independence 11
4.1 The Variance Ratio Test 11
4.2 The BDS Test 13

5 Tests of Time Reversibility 14

References 19

© Chung-Ming Kuan, 2008, 2009
1 Introduction

Conducting various diagnostic tests is an important step in time series modeling. In the literature, there exist numerous diagnostic tests designed to examine the dependence (correlation) structure of a time series. If a time series is serially uncorrelated, no linear function of the lagged variables can account for the behavior of the current variable. If a time series is a martingale difference sequence (its precise definition will be given in Section 3.1), no function, linear or nonlinear, of the the lagged variables can characterize the behavior of the current variable. For a serially independent time series, there is no any relationship between the current and past variables. Diagnostic testing on data series thus provides information regarding how these data might be modeled. When a model is estimated, diagnostic tests can be applied to evaluate model residuals, which also serve as tests of model adequacy.

In practice, there are three classes of diagnostic tests, each focusing on a specific dependence structure of a time series. The tests of serial uncorrelatedness include the well known Q tests of Box and Pierce (1970) and Ljung and Box (1978), the robust Q^* test of Lobato, Nankervis, and Savin (2001), the spectral tests of Durlauf (1991), and the robust spectral test of Deo (2000). There are also tests of the martingale difference hypothesis, including Bierens (1982, 1984, 1990), Bierens and Ploberger (1997), Hong (1999), Dominguez and Lobato (2000), Whang (2000, 2001), Kuan and Lee (2004), and Park and Whang (2005). For the hypothesis of serial independence, two leading tests are the variance ratio test of Cochrane (1988) and the so-called BDS test of Brock, Dechert, and Scheinkman (1987); see also Campbell, Lo, and MacKinlay (1997) and Brock, Dechert, Scheinkman, and LeBaron (1996). Skaug and Tjostheim (1993), Pinkse (1998), and Hong (1999) also proposed non-parametric tests of serial independence.

There are also tests of another important time series property, namely, time reversibility. A time series is said to be time reversible if its finite-dimensional distributions are all invariant to the reversal of time indices. For example, sequences of independent random variables and stationary Gaussian ARMA processes are time reversible. On the other hand, a linear, non-Gaussian process is time irreversible in general. Tong (1990) also states that “time irreversibility is the rule rather than the exception when it comes to nonlinearity” (p. 197). Thus, a test of time reversibility may be interpreted as a joint test of linearity and Gaussianity or a test of independence; see e.g., Ramsey and Rothman (1996).
and Chen, Chou, and Kuan (2000). It has been shown that a test of time reversibility is particularly powerful against asymmetric dependence (Chen and Kuan, 2002).

In this note we shall introduce some commonly used diagnostic tests for time series. We will not discuss non-parametric tests because they are, in general, not asymptotically pivotal, in the sense that their asymptotic distributions are data dependent or depend on some nuisance parameters. This note proceeds as follows. Section 2 focuses on the tests of serial uncorrelatedness. In Section 3, we discuss the tests of the martingale difference hypothesis. Section 4 presents the variance ratio test and the BDS test of serial independence. The tests of time reversibility are discussed in Section 5.

2 Tests of Serial Uncorrelatedness

Given a weakly stationary time series \(\{y_t\} \), let \(\mu \) denote its mean and \(\gamma(\cdot) \) denote its autocovariance function, where \(\gamma(i) = \text{cov}(y_t, y_{t-i}) \) for \(i = 0, 1, 2, \ldots \). The autocorrelation function \(\rho(\cdot) \) is such that \(\rho(i) = \gamma(i)/\gamma(0) \). The series \(\{y_t\} \) is serially uncorrelated if, and only if, its autocorrelation function is identically zero.

2.1 Q Tests

To test if \(\{y_t\} \) is serially uncorrelated, existing tests of serial uncorrelatedness focus on a given number of autocorrelations and ignore \(\rho(i) \) for large \(i \). The null hypothesis is, for a given number \(m \),

\[
H_0: \rho(1) = \cdots = \rho(m) = 0. \tag{2.1}
\]

Let \(\hat{\gamma}_T(i) \) denote the \(i \)th sample autocovariance:

\[
\hat{\gamma}_T(i) = \frac{1}{T} \sum_{t=1}^{T-i} (y_t - \bar{y})(y_{t+i} - \bar{y}),
\]

with \(\bar{y}_T \) the sample average of \(y_t \), and \(\hat{\rho}_T(i) = \hat{\gamma}_T(i)/\hat{\gamma}_T(0) \) is the \(i \)th sample autocorrelation. For notation convenience, we shall suppress the subscript \(T \) and simply write \(\bar{y}, \hat{\gamma}(i) \) and \(\hat{\rho}(i) \).

Writing \(\rho_m = (\rho(1), \ldots, \rho(m))' \), the null hypothesis (2.1) is \(\rho_m = 0 \), and the estimator of \(\rho_m \) is \(\hat{\rho}_m = (\hat{\rho}(1), \ldots, \hat{\rho}(m))' \). Under quite general conditions, it can be shown that, as
T tends to infinity,

$$\sqrt{T} (\hat{\rho}_m - \rho_m) \xrightarrow{D} \mathcal{N}(0, V),$$

where \xrightarrow{D} stands for convergence in distribution, and the (i,j) element of V is

$$v_{ij} = \frac{1}{\gamma(0)^2} \left[c_{i+1,j+1} - \rho(i)c_{1,j+1} - \rho(j)c_{1,i+1} + \rho(i)\rho(j)c_{1,1} \right],$$

with

$$c_{i+1,j+1} = \sum_{k=-\infty}^{\infty} \mathbb{E}\left[(y_t - \mu)(y_{t+i} - \mu)(y_{t+k} - \mu)(y_{t+k+j} - \mu) \right] - \mathbb{E}\left[(y_t - \mu)(y_{t+i} - \mu) \right] \mathbb{E}\left[(y_{t+k} - \mu)(y_{t+k+j} - \mu) \right];$$

see Lobato et al. (2001). Thus,

$$T(\hat{\rho}_m - \rho_m)'V^{-1}(\hat{\rho}_m - \rho_m) \xrightarrow{D} \chi^2(m). \quad (2.2)$$

This distribution result is fundamental for the tests presented in this section.

Under the null hypothesis, V can be simplified such that

$$v_{ij} = c_{i+1,j+1}/\gamma(0)^2 \quad \text{with}$$

$$c_{i+1,j+1} = \sum_{k=-\infty}^{\infty} \mathbb{E}\left[(y_t - \mu)(y_{t+i} - \mu)(y_{t+k} - \mu)(y_{t+k+j} - \mu) \right].$$

In particular, when y_t are serially independent,

$$c_{i+1,j+1} = \begin{cases} 0, & i \neq j, \\ \gamma(0)^2, & i = j, \end{cases} \quad (2.3)$$

so that V reduces to an identity matrix. Consequently, the normalized sample autocorrelations $\sqrt{T}\hat{\rho}(i)$, $i = 1, \ldots, m$, are independent $\mathcal{N}(0,1)$ random variables asymptotically. It follows from (2.2) that the joint test of (2.1) is

$$Q_T = T\hat{\rho}_m'\hat{\rho}_m = T \sum_{i=1}^{m} \hat{\rho}(i)^2 \xrightarrow{D} \chi^2(m). \quad (2.4)$$

\footnote{Fuller (1976, p. 256) gives a different expressions of V in which the (i,j) element of V is

$$v_{ij} = \sum_{k=-\infty}^{\infty} \rho(k)\rho(k-i+j)+\rho(k+j)\rho(k-i) - 2\rho(k)\rho(j)\rho(k-i) - 2\rho(k)\rho(i)\rho(j)\rho(k) + 2\rho(i)\rho(j)\rho(k)^2.$$}
Note that the χ^2 limiting distribution is obtained from the condition of serial independence, which is stronger than the null hypothesis. This is the well known Q test of Box and Pierce (1970).

Remark: Basing on the result that $\sqrt{T}\hat{\rho}(i)$ are independent $\mathcal{N}(0,1)$ random variables asymptotically, many computer programs draw a confidence interval for the plot of sample autocorrelations $\hat{\rho}(i)$. For example, the 90% and 95% confidence intervals of $\hat{\rho}(i)$ are, respectively, $\pm 1.645/T^{1/2}$ and $\pm 1.96/T^{1/2}$, which permit a visual check of the significance of $\hat{\rho}(i)$.

When y_t are independent random variables with mean zero, variance σ^2, and finite 6th moment, we have from a result of Fuller (1976, p. 242) that

$$\text{cov}(\sqrt{T}\hat{\rho}(i), \sqrt{T}\hat{\rho}(j)) = \begin{cases} \frac{T-i}{T} + O(T^{-1}), & i = j \neq 0, \\ O(T^{-1}), & i \neq j. \end{cases}$$

This result provides an approximation up to $O(T^{-1})$. Then for sufficiently large T, the diagonal elements of V are approximately $(T - i)/T$, whereas the off-diagonal elements essentially vanish. This leads to the modified Q test of Ljung and Box (1978):

$$\tilde{Q}_T = T^2 \sum_{i=1}^{m} \frac{\hat{\rho}(i)^2}{T - i} \frac{D}{\chi^2(m)}, \quad (2.5)$$

cf. (2.4). The Box-Pierce Q test and the Ljung-Box \tilde{Q} test are asymptotically equivalent, yet the latter ought to have better finite-sample performance because of its correction factor $(T - i)/T$. In practice, the Ljung-Box Q statistic is usually computed as

$$T(T + 2) \sum_{i=1}^{m} \frac{\hat{\rho}(i)^2}{(T - i)},$$

which is of course asymptotically equivalent to (2.5).

Another modification of the Q test can be obtained by assuming that

$$\mathbb{E}[(y_t - \mu)(y_{t+i} - \mu)(y_{t+k} - \mu)(y_{t+k+j} - \mu)] = 0, \quad (2.6)$$

for each k when $i \neq j$ and for $k \neq 0$ when $i = j$. Given this assumption, $c_{i+1,j+1} = 0$ when $i \neq j$, but

$$c_{i+1,j+1} = \mathbb{E}[(y_t - \mu)^2(y_{t+i} - \mu)^2], \quad (2.7)$$

© Chung-Ming Kuan, 2008, 2009
when \(i = j \). Thus, \(V \) is diagonal with the diagonal element \(v_{ii} = c_{i+1,i+1}/\gamma(0)^2 \), which can be consistently estimated by

\[
\hat{v}_{ii} = \frac{\frac{1}{T} \sum_{t=1}^{T-1} (y_t - \bar{y})^2 (y_{t+i} - \bar{y})^2}{\left[\frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})^2 \right]^2}.
\]

Then under the null hypothesis, we have the following test due to Lobato et al. (2001):

\[
Q_T^* = T \sum_{i=1}^{m} \hat{\rho}_i^2 / \hat{v}_{ii} \xrightarrow{D} \chi^2(m).
\] (2.8)

Note that the \(Q^* \) test does not require serial independence of \(y_t \), in contrast with the Box-Pierce and Ljung-Box \(Q \) tests, but it requires (2.6) which is not easy to interpret.

It can be seen that (2.7) would reduce to (2.3) if \(y_t \) are conditionally homoskedastic. Thus, estimating \(c_{i+1,j+1} \) makes the \(Q^* \) test more robust to conditional heteroskedasticity, such as ARCH (autoregressive conditional heteroskedasticity) and GARCH (generalized ARCH) processes. Note that a process may be serially uncorrelated yet conditional heteroskedastic. The \(Q^* \) test is to be preferred in practice because of its robustness.

Remarks:

1. When the \(Q \)-type tests are applied to the residuals of an ARMA(\(p,q \)) model, the asymptotic null distribution becomes \(\chi^2(m - p - q) \).

2. The asymptotic distribution of the Box-Pierce and Ljung-Box \(Q \) tests is derived under the assumption that \(\{y_t\} \) is serially independent. This distribution result is also valid when \(\{y_t\} \) is a martingale difference sequence with additional moment conditions. Thus, these \(Q \) tests can also be interpreted as tests of independence (or martingale difference), with a focus on autocorrelations.

3. The asymptotic null distribution of the \(Q \)-type tests is valid provided that data possess at least finite \((4 + \delta) \)th moment for some \(\delta > 0 \). Many financial time series, unfortunately, may not satisfy this moment requirement; see e.g., de Lima (1997). For such time series, the limiting \(\chi^2 \) distribution of the \(Q \) tests may not be a good approximation to its finite-sample counterpart.
2.2 The Spectral Tests

Instead of testing a fixed number of autocorrelations $\rho(j)$, it is also possible to asymptotically test if $\rho(j)$ are all zero:

$$H_0: \rho(1) = \rho(2) = \cdots = 0. \quad (2.9)$$

Recall that the spectral density function is the Fourier transform of the autocorrelations:

$$f(\omega) = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \rho(j)e^{-ij\omega}, \quad \omega \in [-\pi, \pi],$$

where $i = (-1)^{1/2}$ and ω is the frequency. When the autocorrelations are all zero, the spectral density reduces to the constant $(2\pi)^{-1}$ for all ω. It is then natural to base a test of all autocorrelations by comparing the sample counterpart of $f(\omega)$ and $(2\pi)^{-1}$.

Let $I_T(\omega)$ denote the periodogram, the sample spectral density, of the time series $\{y_t\}$. The difference between $I_T(\omega)$ and $(2\pi)^{-1}$ is

$$\frac{1}{2\pi} \left(\sum_{j=-(T-1)}^{T-1} \hat{\rho}(j)e^{-ij\omega} - 1 \right),$$

which should be “close” to zero for all ω under the null hypothesis. Recall that $\exp(-ij\omega) = \cos(j\omega) - i\sin(j\omega)$, where \sin is an odd function such that $\sin(j\omega) = -\sin(-j\omega)$, and \cos is an even function such that $\cos(j\omega) = \cos(-j\omega)$. Then,

$$\frac{1}{2\pi} \left(\sum_{j=-(T-1)}^{T-1} \hat{\rho}(j)e^{-ij\omega} - 1 \right) = \frac{1}{\pi} \sum_{j=1}^{T-1} \hat{\rho}(j) \cos(j\omega).$$

Integrating this function with respect to ω on $[0, a]$, $0 \leq a \leq \pi$, we obtain the cumulated differences:

$$\frac{1}{\pi} \sum_{j=1}^{T-1} \hat{\rho}(j) \frac{\sin(ja)}{j},$$

which should also be “close” to zero for all a under the null hypothesis. The spectral test of Durlauf (1991) is then based on the normalized, cumulated differences:

$$D_T(t) = \frac{\sqrt{2T}}{\pi} \sum_{j=1}^{m(T)} \hat{\rho}(j) \frac{\sin(j\pi t)}{j}, \quad (2.10)$$

where $\pi t = a$ and $m(T)$ is less than T but grows with T at a slower rate.

© Chung-Ming Kuan, 2008, 2009
Recall that a standard Brownian motion B can be approximated by a sequence of i.i.d. $\mathcal{N}(0, 1)$ random variables $\{\epsilon_t\}$ via the following expression:

$$W_T(t) = \epsilon_0 t + \frac{\sqrt{2}}{\pi} \sum_{j=1}^{T} \epsilon_j \frac{\sin(j\pi t)}{j} \Rightarrow B(t), \quad t \in [0, 1],$$

where \Rightarrow stands for weak convergence. Then,

$$W_T(t) - t W_T(1) = \frac{\sqrt{2}}{\pi} \sum_{j=1}^{T} \epsilon_j \frac{\sin(j\pi t)}{j} \Rightarrow B^0(t), \quad t \in [0, 1], \quad (2.11)$$

where B^0 denotes the Brownian bridge. It is readily seen that (2.10) is quite similar to the right-hand side of (2.11).

Recall that, under the null hypothesis, $T^{1/2} \hat{\rho}(j)$ converge in distribution to independent $\mathcal{N}(0, 1)$ random variables when (i) y_t are serially independent, or (ii) y_t satisfy (2.6) with conditional homoeoskедasticity. Basing on the approximation (2.11) and the asymptotic normality of $T^{1/2} \hat{\rho}(j)$, we have from (2.10) that

$$D_T(t) \Rightarrow B^0(t), \quad t \in [0, 1]. \quad (2.12)$$

The spectral tests of Durlauf (1991) are based on various functionals on D_T.

Specifically, Durlauf (1991) considered the following test statistics whose limits follow easily from (2.12) and the continuous mapping theorem.

(1) Anderson-Darling test:

$$\text{AD}_T = \int_0^1 \frac{[D_T(t)]^2}{t(1-t)} \, dt \Rightarrow \int_0^1 \frac{[B^0(t)]^2}{t(1-t)} \, dt;$$

(2) Cramér-von Mises test:

$$\text{CVM}_T = \int_0^1 [D_T(t)]^2 \, dt \Rightarrow \int_0^1 [B^0(t)]^2 \, dt;$$

(3) Kolmogorov-Smirnov test:

$$\text{KS}_T = \sup_{s,t} |D_T(t) - D_T(s)| \Rightarrow \sup_{s,t} |B^0(t) - B^0(s)|;$$

(4) Kuiper test:

$$\text{Ku}_T = \sup_{s,t} |D_T(t) - D_T(s)| \Rightarrow \sup_{s,t} |B^0(t) - B^0(s)|.$$

© Chung-Ming Kuan, 2008, 2009
These limits are also the limits of the well-known goodness-of-fit tests in the statistics literature. Some of their critical values have been tabulated in, e.g., Shorack and Wellner (1986).

Similar to the finding of Lobato et al. (2001), Deo (2000) noted that when y_t are conditionally heteroskedastic, the asymptotic variance of $T^{1/2}\hat{\rho}(j)$ would be $\mathbb{E}(\hat{y}_t^2\hat{y}_{t-j}^2)/\gamma(0)^2$. In this case, (2.12) fails to hold because D_T is not properly normalized, and hence D_T converges to a different weak limit. As a result, the limiting distributions of the tests considered by Durlauf (1991) have thicker right-tails under conditional heteroskedasticity and render these tests over-sized. That is, these tests reject too often under the null hypothesis than they should.

Deo (2000) proposed the following modification of D_T in (2.10):

$$D_T^c(t) = \frac{\sqrt{2T}}{\pi} \sum_{j=1}^{m(T)} \hat{\rho}(j) \frac{\sin(j\pi t)}{j},$$

where

$$\sqrt{\hat{\nu}_{jj}} = \frac{1}{\hat{\gamma}(0)} \left(\frac{1}{T-j} \sum_{t=1}^{T-j} (y_t - \bar{y})^2(y_{t+j} - \bar{y})^2 \right)^{1/2}.$$

With additional regularity conditions, Deo (2000) consider the modified Cramér-von Mises test based on D_T^c:

$$\text{CVM}_T = \int_0^1 [D_T^c(t)]^2 \, dt \Rightarrow \int_0^1 [B^0(t)]^2 \, dt.$$

This modification is analogous to the Q^* test of Lobato et al. (2001). The simulation results of Deo (2000) demonstrate that the modified spectral test is indeed robust to some series that are conditionally heteroskedastic.

Remarks:

1. Durlauf (1991) refers to the spectral test as a test of the martingale difference hypothesis. It should be noted, however, that the condition of all autocorrelations being zero is necessary but not sufficient for the martingale difference hypothesis.

2. The Durlauf test compares the periodogram with the spectral density under the null, i.e., $(2\pi)^{-1}$. Other nonparametric tests may be constructed by comparing a nonparametric estimate of $f(\omega)$ with $(2\pi)^{-1}$.
3 Tests of Martingale Difference

3.1 Martingale Difference

Let \(\{F^t\} \) denote a sequence of information sets such that \(F^s \subseteq F^t \) for all \(s < t \). Such a sequence is known as a filtration. A sequence of integrable random variables \(\{y_t\} \) is said to be a martingale difference sequence with respect to the filtration \(\{F^t\} \) if, and only if, \(\mathbb{E}(y_t \mid F^{t-1}) = 0 \) for all \(t \). When \(\{y_t\} \) is a martingale difference sequence, its cumulated sums, \(\eta_t = \sum_{s=1}^t y_s \), are such that \(\mathbb{E}(\eta_t \mid F^{t-1}) = \eta_{t-1} \) and form the process known as a martingale. By the law of iterated expectations, a martingale difference sequence must have mean zero. This implication is not restrictive, as we can always evaluate the “centered” series \(\{y_t - \mathbb{E}(y_t)\} \) when \(y_t \) have non-zero means.

The concept of martingale difference can be related to time series non-predictability. We say that \(\{y_t\} \) is not predictable with respect to the filtration \(\{F^t\} \) (in the mean-squared-error sense) if, and only if, the conditional expectations \(\mathbb{E}(y_t \mid F^{t-1}) \) are the same as the unconditional expectations \(\mathbb{E}(y_t) \). That is, the conditioning variables in \(F^{t-1} \) do not help to improve on the forecast of \(y_t \), so that the best \(L_2 \) forecast is not different from the naive forecast. Clearly, this definition is equivalent to requiring \(\{y_t - \mathbb{E}(y_t)\} \) being a martingale difference sequence with respect to \(\{F^t\} \).

In the time series analysis, it is quite common to choose the information sets \(F^t \) as the \(\sigma \)-algebras generated by \(Y^t = \{y_t, y_{t-1}, \ldots, y_1\} \). The martingale difference property in this context is thus equivalent to the predictability of \(y_t \) based on its past information \(Y^{t-1} \). It should be noted that the predictability defined in this way is very restrictive, because \(y_t \) may not be predictable based on \(Y^{t-1} \) but may become predictable when the information sets are expanded.

It is well known that \(\{y_t\} \) is a martingale difference sequence if, and only if, \(y_t \) are uncorrelated with \(h(Y^{t-1}) \) for any measurable function \(h \), i.e.,

\[
\mathbb{E}[y_t h(Y^{t-1})] = 0, \quad \forall h. \tag{3.1}
\]

Taking \(h \) in (3.1) as the linear function, we immediately see that \(y_t \) must be serially uncorrelated with \(y_{t-1}, \ldots, y_1 \). Thus, a martingale difference sequence must be serially uncorrelated; the converse need not be true. For example, consider the following nonlinear
3.2 Tests of Martingale Difference

We have seen that the martingale difference hypothesis is equivalent to (3.1). Testing this hypothesis is not easy because it would be practically infeasible to test against all measurable functions. A well known approach is to consider a class of functions, indexed by a (nuisance) parameter, that are capable of spanning the space of functions on conditioning variables. This approach is pioneered by Bierens (1982, 1984, 1990) and is based on the exponential function, yet it leads to a test that is not asymptotically pivotal; see also Bierens and Ploberger (1997). Kuan and Lee (2004) integrate out the the nuisance parameter in the exponential function and obtain a new set of testing functions. Their tests have a standard limiting distribution, but they check only a necessary condition of the martingale difference hypothesis. Park and Whang (2005) base their test on the indicator function. There are also various tests based on nonparametric approximations; see, e.g., Hong (1999).
4 Tests of Serial Independence

Testing serial independence is even more challenging because it is required to evaluate all possible relations between the variable of interest and its lagged variables (or variables in the conditioning set). In practice, diagnostic tests of serial independence typically focus on certain aspects of the data, such as serial correlations or ARCH-type dependence (i.e., squared correlations). For example, McLeod and Li (1983) suggest testing whether the first \(m \) autocorrelations of \(y_t^2 \) are zero using a \(Q \) test. That is, one computes (2.5) or its variant where \(\hat{\rho}(i) \) are the sample autocorrelations of \(y_t^2 \):

\[
\hat{\rho}(i) = \frac{1}{T} \sum_{t=1}^{T-i} (y_t^2 - m_2)(y_{t+i}^2 - m_2)
\]

with \(m_2 \) the sample mean of \(y_t^2 \). Under stronger conditions, the asymptotic null distribution of the resulting \(Q \) test remains \(\chi^2(m) \). Compared with other tests of serial uncorrelatedness, this test checks another necessary condition of independence. In this section, we shall introduce some commonly used tests of i.i.d. condition which is sufficient for serial independence.

4.1 The Variance Ratio Test

The variance-ratio test of Cochrane (1988) is a convenient diagnostic test of the i.i.d. hypothesis. Consider random variables \(y_t \). If these variables are i.i.d., \(\eta_t = \sum_{i=0}^{t} y_i \) form a random walk. Thus, the variance-ratio test is also used in applications to check the random walk hypothesis.

Suppose that \(y_t \) have mean zero and variance \(\sigma^2 \), with \(t = 0, 1, \ldots, kT \) for some \(k \) and \(T \). Let \(\hat{\sigma}^2 \) be the sample variance of \(y_t \) and \(\hat{\sigma}_k^2 \) an estimator of \(\text{var}(y_t + \cdots + y_{t-k+1}) \) which is \(k\sigma^2 \) under the null hypothesis. As a result, \(\hat{\sigma}_k^2/k \) and \(\hat{\sigma}^2 \) should be close to each other under the null. The variance ratio test is simply based on a normalized version of \(\hat{\sigma}_k^2/(k\hat{\sigma}^2) \). Define the sample average of \(y_1, \ldots, y_{kT} \) as

\[
\bar{y} = \frac{1}{kT} \sum_{t=1}^{kT} (\eta_t - \eta_{t-1}) = \frac{1}{kT}(\eta_{kT} - \eta_0).
\]

The standard variance estimator of \(\sigma^2 = \text{var}(\eta_t - \eta_{t-1}) \) is

\[
\hat{\sigma}^2 = \frac{1}{kT} \sum_{t=1}^{kT} (\eta_t - \eta_{t-1} - \bar{y})^2.
\]
4.1 The Variance Ratio Test

Under the i.i.d. null hypothesis, it can be shown that \(\sqrt{kT} (\hat{\sigma}^2 - \sigma^2) \xrightarrow{D} \mathcal{N}(0, 2\sigma^4)\). Consider the following estimator of \(\sigma_k^2 = \text{var}(\eta_t - \eta_{t-k})\):

\[
\hat{\sigma}_k^2 = \frac{1}{T} \sum_{t=1}^{T} (\eta_{kt} - \eta_{kt-k} - k\bar{y})^2 = \frac{1}{T} \sum_{t=1}^{T} [k(\bar{y}_t - \bar{y})]^2,
\]

where \(\bar{y}_t = \frac{\sum_{k=t-k+1}^{kt} y_i}{k}\). Note that there are \(k\) observations for each \(t\). Under the i.i.d. hypothesis, \(\sigma_k^2 = k\sigma^2\), so that \(\sqrt{kT} (\hat{\sigma}_k^2 - k\sigma^2) \xrightarrow{D} \mathcal{N}(0, 2k^2\sigma^4)\).

While \(\hat{\sigma}^2\) is both consistent and asymptotically efficient for \(\sigma^2\) under the null hypothesis, \(\hat{\sigma}_k^2/k\) is consistent but not asymptotically efficient. Writing

\[
\frac{1}{\sqrt{k}} \sqrt{kT} (\hat{\sigma}_k^2 - k\sigma^2) = \sqrt{kT} \left(\frac{\hat{\sigma}_k^2}{k} - \sigma^2 \right)
\]

\[
= \sqrt{kT} \left(\frac{\hat{\sigma}_k^2}{k} - \sigma^2 \right) + \sqrt{kT} (\sigma^2 - \sigma^2),
\]

the two terms on the right-hand side must be asymptotically uncorrelated by Hausman (1978).\(^2\) The fact that the left-hand side of (4.1) is distributed as \(\mathcal{N}(0, 2k\sigma^4)\) thus implies

\[
\sqrt{kT} \left(\frac{\hat{\sigma}_k^2}{k} - \sigma^2 \right) \xrightarrow{D} \mathcal{N}(0, 2(k-1)\sigma^4).
\]

It follows that

\[
\sqrt{kT} \left(\frac{\hat{\sigma}_k^2}{k\hat{\sigma}^2} - 1 \right) \xrightarrow{D} \mathcal{N}(0, 2(k-1)).
\]

Denoting the ratio \(\hat{\sigma}_k^2/(k\hat{\sigma}^2)\) as \(\text{VR}(k)\), we obtain the variance ratio test:

\[
\sqrt{kT} [\text{VR}(k) - 1]/\sqrt{2(k-1)} \xrightarrow{D} \mathcal{N}(0, 1),
\]

under the null hypothesis that the data are i.i.d. It is clear that this tests depends on \(k\).

In practice, one may employ other estimators for the variance ratio test. For example, \(\sigma_k^2\) may be estimated by

\[
\tilde{\sigma}_k^2 = \frac{1}{kT} \sum_{t=k}^{kT} (\eta_t - \eta_{t-k} - k\bar{y})^2.
\]

\(^2\)Let \(\hat{\theta}_e\) be a consistent and asymptotically efficient estimator of the parameter \(\theta\) and \(\hat{\theta}_c\) a consistent estimator but not asymptotically efficient. Writing \(\hat{\theta}_e = \hat{\theta}_e - \hat{\theta}_c + \hat{\theta}_c\), Hausman (1978) showed that \(\hat{\theta}_e\) is asymptotically uncorrelated with \(\hat{\theta}_c - \hat{\theta}_e\). For if not, there would exist a linear combination of \(\hat{\theta}_e\) and \(\hat{\theta}_c - \hat{\theta}_e\) that is asymptotically more efficient than \(\hat{\theta}_e\).
One may also correct the bias of variance estimators and compute

$$\hat{\sigma}^2 = \frac{1}{kT - 1} \sum_{t=1}^{kT} (\eta_t - \eta_{t-1} - \bar{y})^2,$$

$$\hat{\sigma}_k^2 = \frac{1}{M} \sum_{t=k}^{kT} (\eta_t - \eta_{t-k} - k\bar{y})^2,$$

where $M = (kT - k + 1)(1 - 1/T)$. See Taylor (2005) for the test with a different variance estimator; Campbell, Lo, and MacKinlay (1997) provide detailed discussion of this test.

4.2 The BDS Test

The BDS test of serial independence also checks whether a sequence of random variables are i.i.d. Let $Y^n_t = (y_t, y_{t+1}, \ldots, y_{t+n-1})$. Define the correlation integral with the dimension n and distance ϵ as:

$$C(n, \epsilon) = \lim_{T \to \infty} \left(\frac{T - n}{2} \right)^{-1} \sum_{\forall s < t} I_\epsilon(Y^n_t, Y^n_s),$$

where $I_\epsilon(Y^n_t, Y^n_s) = 1$ if the maximal norm $\|Y^n_t - Y^n_s\| < \epsilon$ and 0 otherwise. We may also define

$$I_\epsilon(Y^n_t, Y^n_s) = \prod_{i=0}^{n-1} 1_{\{|y_{t+i} - y_{s+i}| < \epsilon\}},$$

where 1_A is the indicator function of the event A. The correlation integral is a measure of the proportion that any pairs of n-vectors $(Y^n_t$ and Y^n_s) are within a certain distance ϵ.

If y_t are indeed i.i.d., Y^n_t should exhibit no pattern in the n-dimensional space, so that $C(n, \epsilon) = C(1, \epsilon)^n$. The BDS test is designed to check whether the sample counterparts of $C(n, \epsilon)$ and $C(1, \epsilon)^n$ are sufficiently close. Specifically, the BDS statistic reads

$$B_T(n, \epsilon) = \sqrt{T - n + 1} (C_T(n, \epsilon) - C_T(1, \epsilon)^n) / \hat{\sigma}(n, \epsilon),$$

where

$$C_T(n, \epsilon) = \left(\frac{T - n}{2} \right)^{-1} \sum_{\forall s < t} I_\epsilon(Y^n_t, Y^n_s),$$

and $\hat{\sigma}^2(n, \epsilon)$ is a consistent estimator of the asymptotic variance of $\sqrt{T - n + 1} C_T(n, \epsilon)$; see Brock et al. (1996) for details. It has been shown that the asymptotic null distribution of the BDS test is $\mathcal{N}(0, 1)$.
The performance of the BDS test depends on the choice of n and ϵ. There is, however, no criterion to determine these two parameters. In practice, one may consider several values of n and set ϵ as a proportion to the sample standard deviation s_T of the data, i.e., $\epsilon = \delta s_T$ for some δ. Common choices of δ are 0.75, 1, and 1.5. An advantage of the BDS test is that, owing to the indicator function in the statistic, it is robust to random variables that do not possess high-order moments. The BDS test usually needs a large sample to ensure proper performance. Moreover, it has been found that the BDS test has low power against certain forms of nonlinearity such as self-exciting threshold AR processes (Rothman, 1992) and neglected asymmetry in volatility (Hsieh, 1991; Brooks and Henry, 2000; Chen and Kuan, 2002); see also Hsieh (1989, 1993) and Brooks and Heravi (1999).

5 Tests of Time Reversibility

A different type of diagnostic test focuses on the property of time reversibility. A strictly stationary process $\{y_t\}$ is said to be time reversible if its finite-dimensional distributions are all invariant to the reversal of time indices. That is,

$$F_{t_1, t_2, \ldots, t_n}(c_1, c_2, \ldots, c_n) = F_{t_n, t_{n-1}, \ldots, t_1}(c_1, c_2, \ldots, c_n).$$

When this condition does not hold, $\{y_t\}$ is said to be time irreversible. Clearly, independent sequences and stationary Gaussian ARMA processes are time reversible. Rejecting the null hypothesis of time reversibility thus implies that the data can not be serially independent. As such, the test of time reversibility can also be interpreted as a test of serial independence.

Time irreversibility indicates some time series characteristics that can not be described by the autocorrelation function. When $\{y_t\}$ is time reversible, it can be shown that for any k, the marginal distribution of $y_t - y_{t-k}$ must be symmetric about the origin. To see this, let $A(x) = \{(a, b) : b - a \leq x\}$ and $B(x) = \{(a, b) : b - a \geq -x\}$. Then,

$$\int_{B(x)} dF_{t,t-k}(a,b) = 1 - \int_{A(-x)} dF_{t,t-k}(a,b),$$

As time reversibility implies $F_{t,t-k}(a,b) = F_{t,t-k}(b,a)$, we have

$$\int_{B(x)} dF_{t,t-k}(a,b) = \int_{B(x)} dF_{t,t-k}(b,a) = \int_{A(x)} dF_{t,t-k}(b,a) = \int_{A(x)} dF_{t,t-k}(a,b).$$

© Chung-Ming Kuan, 2008, 2009
This shows that
\[\int_{A(x)} dF_{t,k}(a,b) = 1 - \int_{A(-x)} dF_{t,k}(a,b), \]
so that \(y_t - y_{t-k} \) has a symmetric distribution for each \(k \). See also Cox (1981) and Chen, Chou, and Kuan (2000).

If this symmetry fails for some \(k \), there is some asymmetric dependence between \(y_t \) and \(y_{t-k} \), in the sense that the effect of \(y_{t-k} \) on \(y_t \) is different from that of \(y_t \) on \(y_{t-k} \). In view of this symmetry property, we may infer that nonlinear time series are time irreversible in general. Moreover, linear and stationary processes with non-Gaussian innovations are also typically time irreversible. Compared with existing tests of serial independence, a test of time reversibility has a different focus on time series properties and thus serves as a useful diagnostic test.

Existing tests of time reversibility aim at checking symmetry of \(y_t - y_{t-k} \) for each \(k \). A necessary condition of distribution symmetry is its third central moment being zero. One may then test time reversibility by evaluating whether the sample third moment is sufficiently close to zero. Observe that by stationarity,
\[
\mathbb{E}(y_t - y_{t-k})^3 = \mathbb{E}(y_t^3) - 3 \mathbb{E}(y_t^2 y_{t-k}) + 3 \mathbb{E}(y_t y_{t-k}^2) - \mathbb{E}(y_{t-k}^3)
\]
\[
= -3 \mathbb{E}(y_t^2 y_{t-k}) + 3 \mathbb{E}(y_t y_{t-k}^2),
\]
where the two terms on the right-hand side are referred to as the bi-covariances. Ramsey and Rothman (1996) base their test of time reversibility on the sample bi-covariances. Note that both the third-moment test and bi-covariance test require the data to possess at least finite 6th moment. Unfortunately, most financial time series do not satisfy this moment condition. On the other hand, Chen, Chou and Kuan (2000) consider a different testing approach that is robust to the failure of moment conditions.

It is well known that a distribution is symmetric if, and only if, the imaginary part of its characteristic function is zero. Hence, time reversibility of \(\{y_t\} \) implies that
\[
h_k(\omega) := \mathbb{E}\left[\sin(\omega(y_t - y_{t-k}))\right] = 0, \quad \text{for all } \omega \in \mathbb{R}^+.
\] (5.1)
Note that (5.1) include infinitely moment conditions indexed by \(\omega \). Let \(g \) be a positive function such that \(\int g(\omega) \, d\omega < \infty \). By changing the orders of integration, (5.1) implies that
\[
\int_{\mathbb{R}^+} h_k(\omega) g(\omega) \, d\omega = \int_{\mathbb{R}} \left(\int_{\mathbb{R}^+} \sin(\omega(y_t - y_{t-k})) g(\omega) \, d\omega \right) dF = 0,
\]
© Chung-Ming Kuan, 2008, 2009
where F is the distribution function of y_t. This condition is equivalent to
\[\mathbb{E}[\psi_g(y_t - y_{t-k})] = 0, \tag{5.2} \]
where
\[\psi_g(y_t - y_{t-k}) = \int_{\mathbb{R}^+} \sin(\omega(y_t - y_{t-k})) g(\omega) \, d\omega. \]

To test (5.2), Chen, Chou, and Kuan (2000) suggest basing a test on the sample average of $\psi_g(y_t - y_{t-k})$:
\[C_{g,k} = \sqrt{T_k} \bar{\psi}_{g,k} / \bar{\sigma}_{g,k}, \tag{5.3} \]
where $T_k = T - k$ with T the sample size, $\bar{\psi}_{g,k} = \sum_{t=k+1}^{T} \psi_g(y_t - y_{t-k}) / T_k$, and $\bar{\sigma}_{g,k}^2$ is a consistent estimator of the asymptotic variance of $\sqrt{T_k} \bar{\psi}_{g,k}$. A suitable central limit theorem then ensures that $C_{g,k}$ is asymptotically distributed as $\mathcal{N}(0,1)$ under the null hypothesis (5.2).

A novel feature of this test is that, because $\psi'_g(\cdot)$ is bounded between 1 and -1, no moment condition is needed when the central limit theorem is invoked. Yet a major drawback of $C_{g,k}$ is that the null hypothesis (5.2) is only a necessary condition of (5.1). Indeed, h_k may be integrated to zero by some g function even when h_k is not identically zero. For such a g function, the resulting $C_{g,k}$ test does not have power against asymmetry of $y_t - y_{t-k}$. Choosing a proper g function is therefore crucial for implementing this test. Chen, Chou, and Kuan (2000) observed that for absolutely continuous distributions, $h_k(\omega)$ is a damped sine wave and eventually decays to zero as $\omega \to \infty$; see Figure 1 for h_k of various “centered” exponential distributions. This suggests choosing g as a function that takes large values for small ω but small values for large ω. A density function of a random variable on \mathbb{R}^+ is a potential choice.

Chen, Chou, and Kuan (2000) set g as the density of the exponential distribution ($g = \exp$) with the parameter $\beta > 0$, i.e., $g(\omega) = \exp(-\omega/\beta)/\beta$. This choice of g leads to the following analytic expression for ψ_g:
\[\psi_{\text{exp}}(y_t - y_{t-k}) = \frac{\beta(y_t - y_{t-k})}{1 + \beta^2(y_t - y_{t-k})^2}. \tag{5.4} \]
The closed form (5.4) renders the computation of $C_{\text{exp},k}$ test quite easy. One simply plugs the data into (5.4) and calculates their sample average and a consistent estimator for the

© Chung-Ming Kuan, 2008, 2009
standard error. The test statistic is now readily computed as (5.3). It has been shown that the $C_{\text{exp},k}$ test performs strikingly well in finite samples and is very robust to the data without proper moments. The third-moment-based test and the bi-covariance test, on the other hand, have little power when the data suffer from moment failure.

Chen and Kuan (2002) also demonstrated that the $C_{\text{exp},k}$ test is very powerful against asymmetric dependence in data. In particular, it is shown that existing tests, such as Q-type tests and the BDS test, fail to distinguish between EGARCH and GARCH models when they are applied to examine the standardized model residuals. Yet, the $C_{\text{exp},k}$ test is much more sensitive to the difference between symmetry and asymmetry in volatility.

Remarks:

1. One may consider testing a condition equivalent to (5.1). For example, a Cramér-von Mises type condition is based on
\[
\int_{\mathbb{R}^+} h_k(\omega)^2 g(\omega) \, d\omega,
\]
which is zero if, and only if, (5.1) holds. This condition, however, does not permit changing the orders of integration. The resulting test is more difficult to implement and usually has a data-dependent distribution.

2. The $C_{\text{exp},k}$ test is flexible in practice. By varying the value of β, $C_{\text{exp},k}$ is able to check departures from (5.2) in different ways. When a small β is chosen, the resulting test

Figure 1: $h(\omega)$ of centered exponential distributions with $\beta = 0.5$ (line 0), $\beta + 1$ (line 1) and $\beta = 2$ (line 2).
focuses more on \(h_k(\omega) \) with smaller \(\omega \). On the other hand, more \(h_k(\omega) \) can be taken into account by setting \(\beta \) large. How to choose an optimal \(\beta \) remains an unsolved problem, however.

3. Chen and Kuan (2002) noted that when model residuals are plugged into \(\psi_g \), the resulting standard error in the test (5.3) is more difficult to estimate, due to presence of “estimation effect.” A convenient way is to compute a bootstrapped standard error.
References

© Chung-Ming Kuan, 2008, 2009

