公共選擇

- Social/public choice: process of social/collective decision-making
- Preference aggrgation mechanism:
 - 1. Social decision rule: collective ranking R of all alternatives A- Aggregation of individual preference $\{R_i\}$
 - $I \subseteq \mathcal{D} \subseteq \mathcal{D} \subseteq \mathcal{D} \subseteq \mathcal{D} \subseteq \mathcal{D}$
 - -<u>Indv Ranking</u> $\{R_i\}$ in, <u>Social Ranking</u> R out.
 - (Eg) beauty contest, ice skating
 - 2. Social choice function (SCF): single choice
 <u>Indv Ranking</u> {R_i} in, <u>Social Choice</u> a ∈ A out.
 (Eg) political election, travel destination choice
- Saari [1988] story: choice of drink in department meeting

15 voters	1st	2nd	3rd
6	Milk	Juice	Beer
5	Beer	Juice	Milk
4	Juice	Beer	Milk

- "Milk" chosen initially as most favored (M6 : B5 : J4)
- "Beer" served in meeting for lack of Milk
- But people found that "Juice" (10) is preferred to "Beer" (5)
- Further: "Milk" least favored by pairwise comparision (J9:M6, B9:M6)
- Unanimity rule (一致決)
 - Wicksell [1896]: consistent with Pareto criterion
 ▷ Bill passed must make everyone better off!

- 2. Problems:
 - (Theory) Social ranking not "complete"! Agreement rarely reached!
 - (Reality) Distribution/jealousy issue not considered.
 - \triangleright Some may prefer non-Paretian situation.
 - (Reality) Everyone has veto power, transaction costs high
- 3. Unanimity with compensation: buying votes is illegal?
- Majority voting (多數決)
 - 1. Relative majority (相對多數): $\eta\%$ ($\geq 50\%$)
 - Miminal total social costs [Buchanan-Tullock 1962]:

$$\min_{n} D + E$$

- External costs (外部成本) E: damages imposed on minority
- Decision costs (交易成本) D: costs for reaching decisions

- 2. Condorcet winner:
 - Binary agenda (pairwise comparision) for 3 or more options.
 - Winner against all other candidates.

- 3. Plurality rule: [Hindriks-Myles, 2006, MIT press, p.319]
 - Simultaneous majority voting for 3 or more candidates.
 - Condorcet winner may not be selected:

(9 voters)	1st	2nd	3rd
2	А	В	С
3	В	А	С
4	С	А	В

 \triangleright C is the Plurality winner

 \triangleright A is the Condorcet winner.

– Strategic behavior¹

- 4. May's Theorem: [Hindriks-Myles, 2006, MIT press, p.306] With only 2 options, only majority rule can satisfy:
 - (a) Anonymity: symmetry among all voters (treated equally).
 - (b) Neutrality: symmetry among all candidates.
 - (c) Decisiveness: a winner will always be picked.
 - (d) Positive responsiveness: more votes, more likely to win. \Box

	Ranking	1st	2nd	3rd
5. Voting paradox [Condorcet 1785]:	Voter 1	А	В	С
5. Voting paradox [Condorcet 1785].	Voter 2	В	С	А
	Voter 3	С	А	В

– Voting cycles:

 $A \succ_{1,3} B \succ_{1,2} C \succ_{2,3} A$

- \triangleright Outcome subject to "agenda manipulation"
- Single-peaked preferences (單峰偏好) [Black]: Figure 1
 ▷ Applicable only to 1-dim

 $^{^{1}}$ For example, people may vote for 2nd choice, if they feel their top choice has no chance to win.

Figure 1: 1-dim preference: $A \succ B \succ C \succ A$

- Single-crossing preferences (單次交叉) [Hindriks-Myles, 2006, MIT, pp.310]

* <u>Def</u>: On a 1-dim line, for 2 voters a < b, and 2 options x < y: if

$$U^{a}(y) > U^{a}(x) \Rightarrow U^{b}(y) > U^{b}(x)$$

and

$$U^b(x) > U^b(y) \Rightarrow U^a(x) > U^a(y)$$

* If voter preferences satisfy single-crossing, then there is no cycle.

* Condorcet winner is preferred option of the median voter M^2 .

- Cycle probability 1-2%; not detectable when it arises!

-2-dim voting cycle Figure 2

 $A \succ_{1,3} C \succ_{2,3} B \succ_{1,2} A$

(eg) 3 people dividing \$1: no Condorcet winner!

Round	А	В	С
#1	1/3	1/3	1/3
#2	1/2	1/2	0
#3	2/3	0	1/3
#4	0	1/2	1/2

6. Independence from Irrelevant Alternatives (IIA) may be violated

	#voters / ranking	1st	2nd	3rd
(Example)	9	А	В	С
- (Example)	4	В	С	А
	6	С	В	А

- With all 3 candidates: $(A9 : B4 : C6) \Rightarrow A$ elected

- If C drops out: $(A9 : B10) \Rightarrow B$ elected

- Need IIA to avoid sabotage (攪局) !³

7. Outcome may be Pareto inferior!

²Because, for any 2 options x < y, if M prefers x, then all voters to his left will also prefer x. If M prefers y, then all voters to his right must also prefer y. \Box

 $^{^3\}mathrm{For}$ example: Taipei city mayor election 1998, Presidential election 2000.

Figure 2: 2-dim preference: $A \succ C \succ B \succ A$

Ranking	1st	2nd	3rd	4th	5th	6th	7th
Voter 1	А	В	С	D	Е	F	G
Voter 2	С	D	А	F	G	В	Ε
Voter 3	D	А	G	В	С	Е	F

 $\triangleright \text{ Possible outcome: } A \to D \to C \to B \to G \to F \to E$ $\triangleright E \text{ is Pareto inferior to } (A, B, C, D) !$

8. Voter preference intensity not considered:
▷ Logrolling (選票互換): vote trading/exchange

- (Yes) Voter intensity revealed: compromise means efficiency!

(Project)	А	В	С	NetValue	M.V.	logrolling
Hospital	200	-50	-55	95	n	y (1,2)
Library	-40	150	-30	80	n	y(1,2), (2,3)
Park	-120	-60	400	220	n	y (2,3)

- (No) Special-interest gains may outweight general losses!

(Project)	А	В	С	NetValue	M.V.	logrolling
Hospital	200	-110	-105	-15	n	y (1,2)
Library	-40	150	-120	-10	n	y(1,2), (2,3)
Park	-270	-140	400	-10	n	y(2,3)

- 9. 64% mojority rule [Caplin-Nalibuff, Econometrica 1988]
 - In k-dim elections, incumbent can garantee only:

$$\sigma_k = \left(\frac{k}{k+1}\right)^k$$

 \triangleright For example: $\sigma_1 = 1/2, \sigma_2 = 4/9$

– In real-life elections, a challenger will get at least:

$$\sigma_{\infty} = \lim_{k \to \infty} \left[1 - \left(\frac{k}{k+1} \right)^k \right] = 1 - \frac{1}{e} \approx 64\% \quad \Box$$

10. Median Voter Theorem (中値選民定理) [Holcombe pp.175-76; Hyman p.165]

– M.V. outcome reflects preference of the median voter:

 $\triangleright X_2$ chosen by majority

- Outcome usually inefficient!

- Borda count (包達計數法)
 - 1. Counting pocedure: choose one with lowest count \Rightarrow no cycles

#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	2	1	3
1 Chair	2	3	1
Rank / Score	1(32)	2(33)	3(61)

May set rank values to reflect relative weights (eg, 1,2,3,10,...)
Similar to pairwise comparision: win (+1), lose (-1), tie (0) [Copeland rule]

- 2. Problems:
 - Strategic manipulation:

(eg) 10 Micros now claim [Chair as 2nd, Keynes as 3rd]

#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	3	1	2
1 Chair	2	3	1
Rank / Score	2(42)	1(33)	3(51)

- IIA violated: different outcomes w/w.o. chair

#voters	Keynes	Becker
10 Macro	1	2
10 Micro	2	1
1 Chair	1	2
Rank / Score	1(31)	2(32)

- Arrow's Impossibility Theorem [1951] (不可能定理):
 - 1. Axiomatic approach
 - 2. No social decision rule can guarantee satisfaction of the following:
 - Universality (全域性): Voters may have any preference patterns.
 - Consistency (一致性): social preference is transitive, no cycle.
 - Pareto axiom
 - IIA (Independence of Irrelevant Alternatives)
 - Non-dictatorship
 - 3. Use of cardinal social welfare functions: measurement problem.
 - 4. Satherswaite Theorem: strategy-proofness required (instead of IIA).