公共選擇

－Social／public choice：process of social／collective decision－making
－Preference aggrgation mechanism：
1．Social decision rule：collective ranking R of all alternatives A
－Aggregation of individual preference $\left\{R_{i}\right\}$
－Indv Ranking $\left\{R_{i}\right\}$ in，Social Ranking R out．
（Eg）beauty contest，ice skating
2．Social choice function（SCF）：single choice
－Indv Ranking $\left\{R_{i}\right\}$ in，Social Choice $a \in A$ out．
（Eg）political election，travel destination choice
－Saari［1988］story：choice of drink in department meeting

15 voters	1st	2nd	3rd
6	Milk	Juice	Beer
5	Beer	Juice	Milk
4	Juice	Beer	Milk

－＂Milk＂chosen initially as most favored（M6：B5：J4）
－＂Beer＂served in meeting for lack of Milk
－But people found that＂Juice＂（10）is preferred to＂Beer＂（5）
－Further：＂Milk＂least favored by pairwise comparision （J9：M6，B9：M6）
－Unanimity rule（一致決）
1．Wicksell［1896］：consistent with Pareto criterion
\triangleright Bill passed must make everyone better off！

2．Problems：
－（Theory）Social ranking not＂complete＂！Agreement rarely reached！
－（Reality）Distribution／jealousy issue not considered．
\triangleright Some may prefer non－Paretian situation．
－（Reality）Everyone has veto power，transaction costs high
3．Unanimity with compensation：buying votes is illegal？
－Majority voting（多數決）
1．Relative majority（相對多數）：$\eta \%$（ $\geq 50 \%$ ）
－Miminal total social costs［Buchanan－Tullock 1962］：

$$
\min _{\eta} D+E
$$

- External costs（外部成本）E ：damages imposed on minority
- Decision costs（交易成本）D：costs for reaching decisions

2．Condorcet winner：
－Binary agenda（pairwise comparision）for 3 or more options．
－Winner against all other candidates．

3．Plurality rule：［Hindriks－Myles，2006，MIT press，p．319］
－Simultaneous majority voting for 3 or more candidates．
－Condorcet winner may not be selected：

（9 voters）	1 st	2 nd	3 rd
2	A	B	C
3	B	A	C
4	C	A	B

$\triangleright \mathrm{C}$ is the Plurality winner
$\triangleright \mathrm{A}$ is the Condorcet winner．
－Strategic behavior ${ }^{1}$
4．May＇s Theorem：［Hindriks－Myles，2006，MIT press，p．306］ With only 2 options，only majority rule can satisfy：
（a）Anonymity：symmetry among all voters（treated equally）．
（b）Neutrality：symmetry among all candidates．
（c）Decisiveness：a winner will always be picked．
（d）Positive responsiveness：more votes，more likely to win．

5．Voting paradox［Condorcet 1785］：

Ranking	1st	2nd	3rd
Voter 1	A	B	C
Voter 2	B	C	A
Voter 3	C	A	B

－Voting cycles：

$$
A \succ_{1,3} B \succ_{1,2} C \succ_{2,3} A
$$

\triangleright Outcome subject to＂agenda manipulation＂
－Single－peaked preferences（單峰偏好）［Black］：Figure 1 \triangleright Applicable only to 1－dim

[^0]

Figure 1：1－dim preference：$A \succ B \succ C \succ A$
－Single－crossing preferences（單次交叉）［Hindriks－Myles，2006，MIT， pp．310］

＊Def：On a 1 －dim line，for 2 voters $a<b$ ，and 2 options $x<y$ ： if

$$
U^{a}(y)>U^{a}(x) \Rightarrow U^{b}(y)>U^{b}(x)
$$

and

$$
U^{b}(x)>U^{b}(y) \Rightarrow U^{a}(x)>U^{a}(y)
$$

＊If voter preferences satisfy single－crossing，then there is no cycle．

* Condorcet winner is preferred option of the median voter $M .{ }^{2}$
- Cycle probability 1-2\%; not detectable when it arises!
- 2-dim voting cycle Figure 2

$$
A \succ_{1,3} C \succ_{2,3} B \succ_{1,2} A
$$

(eg) 3 people dividing $\$ 1$: no Condorcet winner!

Round	A	B	C
$\# 1$	$1 / 3$	$1 / 3$	$1 / 3$
$\# 2$	$1 / 2$	$1 / 2$	0
$\# 3$	$2 / 3$	0	$1 / 3$
$\# 4$	0	$1 / 2$	$1 / 2$
\ldots			

6. Independence from Irrelevant Alternatives (IIA) may be violated

\#voters / ranking	1st	2nd	3rd
9	A	B	C
4	B	C	A
6	C	B	A

- With all 3 candidates: (A9: B4: C6) $\Rightarrow A$ elected
- If C drops out: (A9: B 10$) \Rightarrow B$ elected
- Need IIA to avoid sabotage (攪局) ! ${ }^{3}$

7. Outcome may be Pareto inferior!

[^1]

Figure 2：2－dim preference：$A \succ C \succ B \succ A$

Ranking	1st	2nd	3rd	4th	5th	6 th	7 th
Voter 1	A	B	C	D	E	F	G
Voter 2	C	D	A	F	G	B	E
Voter 3	D	A	G	B	C	E	F

\triangleright Possible outcome：$A \rightarrow D \rightarrow C \rightarrow B \rightarrow G \rightarrow F \rightarrow E$
$\triangleright E$ is Pareto inferior to (A, B, C, D) ！
8．Voter preference intensity not considered：
\triangleright Logrolling（選票互換）：vote trading／exchange
－（Yes）Voter intensity revealed：compromise means efficiency！

（Project）	A	B	C	NetValue	M．V．	logrolling
Hospital	200	-50	-55	95	n	y $(1,2)$
Library	-40	150	-30	80	n	$\mathrm{y}(1,2),(2,3)$
Park	-120	-60	400	220	n	$\mathrm{y}(2,3)$

－（No）Special－interest gains may outweight general losses！

（Project）	A	B	C	NetValue	M．V．	logrolling
Hospital	200	-110	-105	-15	n	$y(1,2)$
Library	-40	150	-120	-10	n	$y(1,2),(2,3)$
Park	-270	-140	400	-10	n	$y(2,3)$

9．64\％mojority rule［Caplin－Nalibuff，Econometrica 1988］
－In k－dim elections，incumbent can garantee only：

$$
\sigma_{k}=\left(\frac{k}{k+1}\right)^{k}
$$

$>$ For example：$\sigma_{1}=1 / 2, \sigma_{2}=4 / 9$
－In real－life elections，a challenger will get at least：

$$
\sigma_{\infty}=\lim _{k \rightarrow \infty}\left[1-\left(\frac{k}{k+1}\right)^{k}\right]=1-\frac{1}{e} \approx 64 \%
$$

10．Median Voter Theorem（中值選民定理）［Holcombe pp．175－76；Hyman p．165］
－M．V．outcome reflects preference of the median voter：

$\triangleright X_{2}$ chosen by majority
－Outcome usually inefficient！
－Borda count（包達計數法）
1．Counting pocedure：choose one with lowest count \Rightarrow no cycles

\＃voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	2	1	3
1 Chair	2	3	1
Rank／Score	$1(32)$	$2(33)$	$3(61)$

\triangleright May set rank values to reflect relative weights（eg， $1,2,3,10, \ldots$ ）
\triangleright Similar to pairwise comparision：win $(+1)$ ，lose (-1) ，tie（0）［Copeland rule］

2．Problems：
－Strategic manipulation：
（eg） 10 Micros now claim［Chair as 2nd，Keynes as 3rd］

\＃voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	3	1	2
1 Chair	2	3	1
Rank／Score	$2(42)$	$1(33)$	$3(51)$

－IIA violated：different outcomes w／w．o．chair

\＃voters	Keynes	Becker
10 Macro	1	2
10 Micro	2	1
1 Chair	1	2
Rank／Score	$1(31)$	$2(32)$

－Arrow＇s Impossibility Theorem［1951］（不可能定理）：
1．Axiomatic approach
2．No social decision rule can guarantee satisfaction of the following：

- Universality（全域性）：Voters may have any preference patterns．
- Consistency（一致性）：social preference is transitive，no cycle．
－Pareto axiom
－IIA（Independence of Irrelevant Alternatives）
－Non－dictatorship
3．Use of cardinal social welfare functions：measurement problem．
4．Satherswaite Theorem：strategy－proofness required（instead of IIA）．

[^0]: ${ }^{1}$ For example，people may vote for 2 nd choice，if they feel their top choice has no chance to win．

[^1]: ${ }^{2}$ Because, for any 2 options $x<y$, if M prefers x, then all voters to his left will also prefer x. If M prefers y, then all voters to his right must also prefer y. \square
 ${ }^{3}$ For example: Taipei city mayor election 1998, Presidential election 2000.

