Social Choice — Finite Sets

1 Individual Preferences: Assumptions

- 1. A finite set N of individuals: i = 1, 2, ..., n, with $n \ge 2$
- 2. A finite set X of alternatives: $|X| \ge 3$
- 3. Individual preference $R^i \in \Psi$: a weak order on X $\Box \Psi \equiv$ Set of all possible weak orders on X (complete, reflexive, transitive)
- 4. Preference profile $\rho = (R^1, \dots, R^n) \in \Psi^n$: n-tuple of weak orders. $\Box \Psi^n \equiv \text{Set of all possible preference profiles.}$
- 5. Restricted preference profile: $\rho|_S = (R^1|_S, \cdots, R^n|_S), S \subseteq X$
- 6. Collective decision rule (CDR) f(ρ), denoted R, is a mapping: Ψⁿ → ℜ
 □ ℜ ≡ Set of all *complete* binary relations.
 - \triangleright f is a preference aggregation rule, yielding a social ranking.
 - \triangleright Also called social welfare function (SWF) or constitution [Green/Laffont 1979].
- 7. Some sets of voters:
 - $R(x, y; \rho) \equiv \{i \in N \mid {}_x R^i{}_y\}$
 - $P(x, y; \rho) \equiv \{i \in N \mid {}_{x}P^{i}{}_{y}\}$
 - $I(x,y;\rho) \equiv \{i \in N \mid {}_xI^i{}_y\}$

Note: $R(x, y; \rho) \neq R(y, x; \rho)$, and $P(x, y; \rho) \neq P(y, x; \rho)$

2 Collective Decision Rules

- 1. Some examples:
 - Constant rule: $f(\rho) = f(\rho'), \ \forall \rho, \rho' \in \Psi^n$
 - Pareto/unanimity rule: ${}_{x}P_{y}$ iff ${}_{x}P^{i}{}_{y}, \forall i \in N$
 - Majority rule: $_{x}P_{y}$ iff $|P(x,y;\rho)| > \frac{n}{2}; \ _{x}R_{y}$ iff $|R(x,y;\rho)| \ge \frac{n}{2}$
 - Plurality rule: $_xP_y$ iff $|P(x,y;\rho)| > |P(y,x;\rho)|$; $_xR_y$ iff $|R(x,y;\rho)| \ge |R(y,x;\rho)|$
 - Border rule: $_xP_y$ iff $\sum_i r_i(x) < \sum_i r_i(y)$; $r_i(\cdot) \equiv$ assigned rank number
- 2. Properties of CDR $f(\rho)$:
 - Universal Domain (UD): f has full Ψ^n as its domain.

- Non-dictatorial (ND): $\not\exists i \in N$ s.t. $\forall \rho \in \Psi^n, \forall x, y \in X : {_xP^i}_y \Rightarrow {_xP_y}$
- Weakly Paretian (WP): $\forall \rho \in \Psi^n, \forall x, y \in X : {_xP^i}_y, \forall i \in N \Rightarrow {_xP_y}$
- Independence of irrelevant alternatives (IIA): $\forall \rho, \rho' \in \Psi^n, \forall x, y \in X$:

$$\rho|_{\{x,y\}} = \rho'|_{\{x,y\}} \quad \Rightarrow \quad f(\rho)|_{\{x,y\}} = f(\rho')|_{\{x,y\}}$$

- 3. Some examples:
 - Constant rule: ND, IIA, but not WP.
 - Dictatorship: WP, IIA, but not ND.
 - Pareto rule: ND, WP, IIA, but not COMP, not TRAN (only Q-TRAN).
 - Borda rule:¹ ND, WP, but not IIA.
 - Majority rule: ND, WP, IIA, but not ACYC (hence not TRAN).

3 Rationality of Collective Decision Rules

Def 1: A CDR $f(\rho)$ is said to be ACYC/Q-TRAN/TRAN if it is so for any profile $\rho \in \Psi^n$.

Def 2 (Decisiveness) Coalition $L \subseteq N$ is:

• semi-decisive over (x, y): ${}_x \tilde{D}^L{}_y$ if

$$\forall \rho: (\forall i \in L, {_xP^i}_y) \& (\forall j \notin L, {_yP^j}_x) \Rightarrow {_xP_y}$$

• decisive over (x, y): ${}_{x}D^{L}{}_{y}$ if

$$\forall \rho: \forall i \in L, \, _{x}P^{i}{}_{y} \Rightarrow _{x}P_{y}$$

• decisive if L is decisive over any pair $(x, y) \in X^2$

Lmm: If f is Q-TRAN, WP, and IIA, then for any coalition $L \in N$:

(1) $\exists x, y \in X, \ _x \tilde{D}^L{}_y \Rightarrow \forall z_{(\neq x,y)} \in X : \ _x D^L{}_z \text{ and } y D^L{}_z$ (2) $\exists x, y \in X, \ _x \tilde{D}^L{}_y \Rightarrow \forall r, s \in X : \ _r D^L{}_s \blacksquare$

Thm (Arrow 1951) For $|X| \ge 3$ and $n \ge 2$:

If f is UD, TRAN, WP, and IIA, then it must be dictatorial.

Def 3: Veto power

- Agent $i \in N$ has a veto for (x, y) if $\forall \rho \in \Psi^n, \ _x P^i{}_y \Rightarrow \sim _y P_x$
- Agent $i \in N$ has a veto if i has a veto for all (x, y).
- f is oligarchic if $\exists L (\subseteq N)$ that is decisive, and every $i \in L$ has a veto.

Thm (Gibbard 1973) If f is UD, Q-TRAN, WP, and IIA, then it is oligarchic.

¹Or any point voting system.

Def 4: Winning/decisive coalition set $\mathcal{L}(f) \equiv \{L \subseteq N \mid L \text{ is decisive under rule } f\} \subseteq 2^N$ \triangleright If $L_1, L_2 \in \mathcal{L}(f)$, then $L_1 \cap L_2 \neq \emptyset$. [Otherwise conflict may result.] \triangleright If f is WP, then $N \in \mathcal{L}(f)$.

Def 5: Winning coalition set $\mathcal{L}(f)$ is:

- monotonic: $L \in \mathcal{L}(f)$ and $L \subseteq L' \Rightarrow L' \in \mathcal{L}(f)$
- proper: $L \in \mathcal{L}(f) \Rightarrow N \setminus L \notin \mathcal{L}(f)$

Lmm: For any f, coalition set $\mathcal{L}(f)$ is monotonic and proper.

Def 6 (Collegial) f is collegial (決策核心制) if

$$\bigcap_{L \in \mathcal{L}(f)} L \neq \emptyset$$

- ▷ Collegium (核心成員) of a collegial f: $K(f) \equiv \bigcap_{L \in \mathcal{L}(f)} L$
- \triangleright The collegium is necessary for any decision, but may not be sufficient.

(eg) Decision rule of the UN Security Council

Thm (Brown 1975) If $|X| \ge n$ and f is ACYC and WP, then it is collegial.

Ex: Decision rule of UN Security Council is collegial, not oligarchic.² \Box

Thm: If |X| > n and f is ACYC, WP, and IIA, then $\exists i \in N$ with a veto over some (x, y).

Def 7: Derived rule $f_{\mathcal{L}}$ for $\mathcal{L} \subseteq 2^N$: ${}_xP^{\mathcal{L}}{}_y \rightleftharpoons \exists L \in \mathcal{L}$ s.t. ${}_xP^i{}_y, \forall i \in L$

 $\triangleright f$ is simple if $f = f_{\mathcal{L}(f)}$.

 $\rhd f$ is more resolute than $f_{\mathcal{L}(f)}$, since $_x P^{\mathcal{L}(f)}_y \Rightarrow _x P_y$.

Def 8: For all $\rho, \rho' \in \Psi^n$ and $x, y, a, b \in X$, a rule f is:

- decisive iff $[P(x, y; \rho) = P(x, y; \rho') \& {}_{x}P_{y}] \Rightarrow {}_{x}P'_{y}$
- neutral iff $[P(x,y;\rho) = P(a,b;\rho') \& P(y,x;\rho) = P(b,a;\rho')] \Rightarrow [_xP_y \rightleftharpoons _aP'_b]$
- monotonic iff $[P(x,y;\rho) \subseteq P(x,y;\rho') \& R(y,x;\rho) \subseteq R(x,y;\rho') \& {}_{x}P_{y}] \Rightarrow {}_{x}P'_{y}$

 \triangleright Neutrality implies that names of agents do not matter.

- **Thm:** f is simple iff f is decisive, neutral, and monotonic.
 - \rhd Plurality rule is not decisive, hence not simple.

Def 9: A simple rule f is a q-rule $(q > \frac{n}{2})$ iff $\mathcal{L}(f) = \{L \subseteq N : |L| \ge q\}$.

- \triangleright Pareto rule is a *q*-rule with q = n.
- \triangleright Majority rule is a q-rule with $q = \frac{n+1}{2}$.

 $^{^{2}}$ It is ACYC, not Q-TRAN.

Def 10: Nakamura number for rule *f*:

$$v(f) \equiv \min\{ |\mathcal{L}'| : \mathcal{L}' \subseteq \mathcal{L}(f), \cap_{L \in \mathcal{L}'} L = \emptyset \}$$

Ex: For majority rule:

• n = 3: v(f) = 3, $\mathcal{L}(f) = \{\underline{\{1,2\}}, \underline{\{1,3\}}, \underline{\{2,3\}}, \{1,2,3\}\}$. • n = 4: v(f) = 4, $\mathcal{L}(f) = \{\underline{\{1,2,3\}}, \underline{\{1,2,4\}}, \underline{\{1,3,4\}}, \underline{\{2,3,4\}}, \{1,2,3,4\}\}$. \Box

Lmm: For any rule f, $v(f) \ge 3.^3$

Lmm: If f is not collegial, then $v(f) \leq n$.

- Thm (Nakamura) A simple rule f is ACYC iff |X| < v(f).
- **Def 11:** A simple rule f is strong iff $\forall L: L \notin \mathcal{L}(f) \Rightarrow N \setminus L \in \mathcal{L}(f)$. \triangleright Majority rule (with n odd, or n even with a tie-breaker) is strong.

Lmm: If f is collegial and strong, then it is dictatorial.

Lmm: If f is non-collegial and strong, then v(f) = 3.

Lmm: If f is a q-rule with $q \le n$, then $v(f) = \frac{n}{n-q}$.

Ex: For majority rule f: v(f) = 3 (if $n \neq 4$) and v(f) = 4 (if n = 4). \Box

Cor: A non-collegial, strong simple rule is ACYC iff |X| < 3.

Cor: A non-collegial q-rule is ACYC iff $|X| < \frac{n}{n-q}$. \triangleright Majority rule with $|X| \ge 3$ (when $n \ne 4$) is not acyclic.

Def 12: Blocking coalition set:

$$\mathcal{B}(f) \equiv \{ L \subseteq N \,|\, N \setminus L \notin \mathcal{L}(f) \}$$

Losing coalition set:

$$\mathcal{S}(f) \equiv 2^N - B(f) = \{L \subseteq N \mid N \setminus L \in \mathcal{L}(f)\}\$$

Non-winning blocking coalitions:

$$\{L \subseteq N \mid L \in B(f), \ L \notin \mathcal{L}(f)\}$$

 \triangleright For strong $f, B(f) = \mathcal{L}(f)$: a coalition either wins or loses.

³Two disjoint coalitions cannot both be decisive.

Ex: q-rule with n = 100 and q = 60:

 $\mathcal{L}(f) = \{L \subseteq N : |L| \ge 60\}$ $\mathcal{B}(f) = \{L \subseteq N : |L| > 40\}$

 $\mathcal{S}(f) = \{L \subseteq N : |L| \le 40\} \square$

Remark (Fundamental Dilemma) Trade-off among ACYC, Equality, and Resoluteness.

- (1) Pareto rule: most EQU, most ACYC, but worst in RES.
- (2) Majority rule: most EQU, most RES, but worst in ACYC.
- (3) Dictatorship: most ACYC, most RES, but worst in EQU.

Def 13 (Core) $C_f(\rho, X) \equiv M(f(\rho), X)$

- Core of a simple rule f is not empty iff |X| < v(f) [Nakamura Thm]
- Theory predicts only in very restricted situations.
- Core is typically empty!

4 Social Decision Functions (SDF)

Def 14 (Social decision function) An SDF $\delta(\rho)$ is a mapping: $\Psi^n \mapsto X$.

- \triangleright SDFs assign to each preference profile ρ an element in X.
- \triangleright Also known as social choice function (SCF) [Green/Laffont 1979].

Def 15: SDF $\delta(\rho)$ is manipulable at $\rho = (R^1, \dots, R^n)$ if there exists $R^{i'} \in \Psi$ such that:

$$[\delta(R^1,\dots,R^{i\prime},\dots,R^n)]P^i[\delta(R^1,\dots,R^i,\dots,R^n)]$$

Def 16: SDF $\delta(\rho)$ is strongly individually incentive compatible (SIIC) if it is not manipulable at any preference profile ρ .

 \triangleright Truthful revelation of preferences is dominant strategy for all *i* and for any ρ :

$$\forall \rho \in \Psi^n, \ \forall R^{i'} \in \Psi: \ _{[\delta(R^1, \cdots, R^i, \cdots, R^n)]} R^i_{[\delta(R^1, \cdots, R^{i'}, \cdots, R^n)]}$$

 \triangleright Also called cheat-proof, strategy-proof, or straightforward. <u>NB</u>: SIIC is weaker then *Group-/coalition-nonmanipulability*.

Def 17: If SDF $\delta(\cdot)$ has range $S \subseteq X$, then it is called SDF with range S.

Def 18: SDF δ with range S is dictatorial if $\exists i \in N$ (the dictator) such that:

$$\forall \rho \in \Psi^n, \forall x \in S : x \neq \delta(\rho) \Rightarrow \delta(\rho) R^i_x$$

 \triangleright There is an agent whose favorite alternative is always the social choice.

Lmm If there exists $i \in N$ such that

 $\delta(R^1, \cdots, R^i, \cdots, R^n) = x, \ \delta(R^1, \cdots, R^{i'}, \cdots, R^n) = y; \ x \neq y$

and if ${}_{x}P^{i}{}_{y}$ and ${}_{x}P^{i}{}_{y}'$, then ρ is manipulable at either $(R^{1}, \dots, R^{i}, \dots, R^{n})$ or $(R^{1}, \dots, R^{i'}, \dots, R^{n})$.

(Pf) Obvious by the definition of manipulability. \Box

Lmm Let δ be SIIC with range $S \subseteq X$. If $T \subseteq S$ and $\rho = (R^1, \dots, R^n)$ is a profile such that

 $\forall i \in N, \forall x, y \in S \text{ with } x \in T, y \notin T : x P^{i}_{y},$

then $\delta(\rho) \in T$.

Thm (Gibbard 1973/Satterthwaite 1975) If $|S| \ge 3$, then any SDF with range S satisfying SIIC and UD is dictatorial.

 \triangleright Allowing more complex strategy space does not help!

Generalization Follow-up research:

(1) Domain restriction [Maskin; Kalai/Muller]

- (2) Imposed Structure: free disposal, neutral agent
- (3) Statistical info about taste distribution [Grandmont]
- (4) Random social lottery [Gibbard]