Individual Choice and Preferences

1 Preference Ordering as a Binary Relation on Finite Sets

Def: *R*-relation ("weakly prefer"): a set $R \subseteq X \otimes X$, ${}_{x}R_{y} \rightleftharpoons (x, y) \in R$ *P*-relation ("strictly prefer"): ${}_{x}P_{y} \equiv [{}_{x}R_{y} \text{ and } \sim {}_{y}R_{x}]$ *I*-relation ("indifference"): ${}_{x}I_{y} \equiv [{}_{x}R_{y} \text{ and } {}_{y}R_{x}]$ $\triangleright {}_{x}P_{y} \Rightarrow \sim {}_{y}R_{x} \Rightarrow \sim {}_{y}P_{x}; {}_{x}P_{y} \Rightarrow \sim {}_{x}I_{y}$ $\triangleright {}_{x}I_{y} \rightleftharpoons {}_{y}I_{x}; {} \sim {}_{x}I_{y} \rightleftharpoons {}_{y}I_{x}$ $\triangleright {}_{x}R_{y} \rightleftharpoons [{}_{x}P_{y} \text{ or } {}_{x}I_{y}]; {}_{x}R_{y} \Rightarrow \sim {}_{y}P_{x}$

2 Properties of Binary Relation R

Def: Reflexive (REFL):
$${}_{x}R_{x}, \forall x \in X$$

Irreflexive (IRR): $\sim {}_{x}R_{x}, \forall x \in X$
Complete (COMP): ${}_{x}R_{y} \text{ or } {}_{y}R_{x}, \forall x, y \in X$
Symmetric (SYM): ${}_{x}R_{y} \rightleftharpoons {}_{y}R_{x}, \forall x, y \in X$
Asymmetric (ASYM): ${}_{x}R_{y} \rightleftharpoons {}_{z} \sim {}_{y}R_{x}, \forall x, y \in X$
Transitive (TRAN): ${}_{x}R_{y}R_{z} \Rightarrow {}_{x}R_{z}, \forall x, y, z \in X$
Quasi-transitive (Q-TRAN): ${}_{x}P_{y}P_{z} \Rightarrow {}_{x}P_{z}, \forall x, y, z \in X$
Acyclic (ACYC): ${}_{x}P_{y}P_{z} \Rightarrow {}_{z}P_{x}, \forall x, y, z \in X$

Def: Equivalence: R that is REFL, SYM, and TRAN. Weak order: R that is REFL, COMP, and TRAN.

Lmm 1: If R is complete, then: $\sim {}_{x}R_{y} \rightleftharpoons {}_{y}P_{x}$.

Lmm 2: If R is transitive, then:

(a) ${}_{x}P_{y}P_{z} \Rightarrow {}_{x}P_{z}$ (ie, R is quasi-transitive) (b) ${}_{x}I_{y}I_{z} \Rightarrow {}_{x}I_{z}$ (c) ${}_{x}R_{y}P_{z} \Rightarrow {}_{x}P_{z}; {}_{x}P_{y}R_{z} \Rightarrow {}_{x}P_{z}$ \triangleright TRAN \Rightarrow Q-TRAN \Rightarrow ACYC. \triangleright Q-TRAN \Rightarrow TRAN. [Ex] ${}_{x}P_{y}, {}_{y}I_{z}, {}_{z}I_{x} \Rightarrow {}_{y}I_{z}I_{x}, \text{ but } {}_{x}P_{y} (\text{not } {}_{y}R_{x})$ \triangleright ACYC \Rightarrow Q-TRAN. [Ex] ${}_{x}P_{y}, {}_{y}P_{z}, {}_{z}I_{x} \Rightarrow {}_{x}P_{y}P_{z}, \text{ but } {}_{x}I_{z}$

3 Rationalizability of Individual Choices

Def: Choice Function $C(\cdot)$, defined on 2^X : $\forall S_{(\neq \emptyset)} \subseteq X$

 $\triangleright C(\cdot)$ is resolute if:

$$|C(S)| = 1, \ \forall S_{(\neq \emptyset)} \subseteq X$$

Def: Maximal set: for any non-empty $S \subseteq X$

$$M(R,S) \equiv \{x \in S \mid {}_{x}R_{y}, \forall y \in S\}$$

Lmm 3: Maximal set $M(R, S) \neq \emptyset$ iff R is REFL, COMP, and ACYC.

 \triangleright ACYC is minimal requirement for non-empty maximal sets.

 \triangleright If R is a weak order, then $M(R, S) \neq \emptyset$; but not vice versa.

Def: Choice function $C(\cdot)$ is rationalizable (RAT) if $\exists R \text{ s.t.}$

$$C(S) = M(R,S), \forall S \subseteq X$$

 $\triangleright R$ that rationalizes $C(\cdot)$ must be REFL, COMP, and ACYC.

Ex: If $C(\{x, y\}) = \{x\}$ and $C(\{x, y, z\}) = \{y\}$, then $C(\cdot)$ is not rationalizable.¹ \triangleright This is IIA pertaining to individual choice.

Def: Base relation R^* for $C(\cdot)$: binary comparison

$$_{x}R^{*}_{y} \rightleftharpoons x \in C(\{x,y\}), \forall x,y \in X$$

Lmm 4 (Uniqueness): $C(\cdot)$ is rationalizable iff $\forall S \subseteq X : C(S) = M(R^*, S)$. \triangleright Rationalizing R^* must be REFL, COMP, ACYC [by Lmm 3]. \triangleright Rationalizing R^* may not be Q-TRAN or TRAN.

Ex: $C(\{x, y, z\}) = \{x\}, C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{y\}, C(\{x, z\}) = \{x, z\}$ $\Rightarrow {}_{x}P^{*}{}_{y}, {}_{y}P^{*}{}_{z}, {}_{x}I^{*}{}_{z}: C(\cdot) \text{ is RAT. But } R^{*} \text{ is not Q-TRAN (only ACYC). } \Box$

4 Properties of Choice Function $C(\cdot)$

Condition BC (Binary Contraction) $C(\cdot)$ such that $\forall S \subseteq X$:

$$x \in C(S) \implies \forall y \in S, \ x \in C(\{x, y\})$$

- $\triangleright C(\cdot)$ satisfies BC iff $C(S) \subseteq M(R^*, S), \forall S \subseteq X$
- $\vartriangleright \underline{\text{Contrapositive:}} \ \forall \, x \in S \text{:} \ [\exists \, y \in S, x \notin C(\{x,y\}) \ \Rightarrow \ x \notin C(S)]$

 \triangleright If $C(\cdot)$ satisfies BC, then its R^* is ACYC.

¹<u>Proof</u>: From the former: $\sim {}_{y}R_{x}$. From the latter: ${}_{y}R_{x}$.

Condition BE (Binary Expansion) $C(\cdot)$ such that $\forall S \subseteq X$:

 $\forall y \in S, x \in C(\{x, y\}) \Rightarrow x \in C(S) \blacksquare$

 $\triangleright C(\cdot)$ satisfies BE iff

$$M(R^*, S) \subseteq C(S), \ \forall S \subseteq X$$

 \triangleright <u>Contrapositive</u>: $\forall x \in S$:

$$x \notin C(S) \Rightarrow \exists y \in S, x \notin C(\{x, y\})$$

 $\triangleright C(\cdot)$ is RAT iff it satisfies BC and BE:

 $C(S) = M(R^*, S), \ \forall S_{(\neq \emptyset)} \subseteq X$

 \triangleright IF $C(\cdot)$ is resolute, then: BC \Rightarrow BE

Condition α (Contraction) (Sen 1970) $C(\cdot)$ such that $\forall S, T \subseteq X$:

 $S \subseteq T \ \Rightarrow \ C(T) \cap S \ \subseteq \ C(S) \quad \blacksquare$

Condition β (Equivalence) $C(\cdot)$ such that $\forall S, T \subseteq X$:

 $S \subseteq T \& C(T) \cap C(S) \neq \emptyset \Rightarrow C(S) \subseteq C(T) \blacksquare$

Condition γ (Expansion) (Sen 1970) $C(\cdot)$ such that $\forall S, T \subseteq X$:

 $C(S) \cap C(T) \subseteq C(S \cup T)$

Lmm 5 (Sen 1970)

- (a) If $C(\cdot)$ satisfies α , then it satisfies BC: $\alpha \Rightarrow$ BC.
- (b) If $C(\cdot)$ satisfies γ , then it satisfies BE: $\gamma \Rightarrow$ BE.

Thm 1: $C(\cdot)$ is rationalizable iff it satisfies α and γ .

Corr 1: $\alpha + \gamma \rightleftharpoons BC + BE \rightleftharpoons C(\cdot)$ is RAT. \triangleright With BE, α and BC are equivalent. \triangleright With BC, γ and BE are equivalent.

Ex (IIA) Political process of 2 agents:

 $\langle \text{Congress} \rangle a \succ b \succ S \ (S \equiv \text{status quo})$

<President $> b \succ S \succ a$

<Decision process> Congress proposes a or b; if President vetos, S remains.

 \implies Choice made with this process is not RAT!

<u>Hint</u>: Condition α is violated: $C(\{a, b, S\}) = \{b\}$, yet $C(\{a, b\}) = \{a\}$. \Box

Lmm 6: If $C(\cdot)$ satisfies α and β , then it satisfies γ , and R^* is transitive.

Thm 2: $C(\cdot)$ is rationalizable by transitive R^* iff it satisfies α and β .

Condition PI (Path Independence) $C(\cdot)$ such that $\forall S, T \subseteq X$:

 $C(S \cup T) = C(C(S) \cup C(T))$

Condition PPI (Partition Path Independence) $C(\cdot)$ such that $\forall S, T \subseteq X$:

 $S \cap T = \emptyset \implies C(S \cup T) = C(C(S) \cup C(T))$

 \triangleright PI \Rightarrow PPI.

Lmm 6a: If $C(\cdot)$ satisfies PPI, then it satisfies BC, and R^* is quasi-transitive.

Thm 2a: $C(\cdot)$ is rationalizable by quasi-transitive R^* iff it is PPI and BE.

Lmm 6b: If $C(\cdot)$ satisfies BC and β , then it satisfies BE, and R^* is transitive.

Thm 2b: $C(\cdot)$ is rationalizable by transitive R^* iff it satisfies BC and β .

Corr 2: If $C(\cdot)$ is resolute, then: $C(\cdot)$ is TRAN RAT \rightleftharpoons it satisfies BC.

Condition AA (Arrow's Axiom) $C(\cdot)$ such that $\forall S \subseteq T$:

$$C(T) \cap S = \emptyset$$
 or $C(T) \cap S = C(S)$

Condition WARP (Weak Axiom of Revealed Preferences) $C(\cdot)$ such that:

 $(\forall S, T \subseteq X, \forall x, y \in S) \quad x \in C(S), \ y \notin C(S), \ \text{then} \ y \in C(T) \Rightarrow x \notin T \blacksquare$

Thm 2c: The following are equivalent:

- (a) $C(\cdot)$ satisfies BC and β .
- (b) $C(\cdot)$ satisfies AA.
- $\bigcirc C(\cdot)$ satisfies WARP.