Individual Choice and Preferences

1 Preference Ordering as a Binary Relation on Finite Sets

Def: R-relation ("weakly prefer"): a set $R \subseteq X \otimes X,{ }_{x} R_{y} \rightleftharpoons(x, y) \in R$
P-relation ("stricly prefer"): ${ }_{x} P_{y} \equiv\left[{ }_{x} R_{y}\right.$ and $\left.\sim{ }_{y} R_{x}\right]$
I-relation ("indifference"): ${ }_{x} I_{y} \equiv\left[{ }_{x} R_{y}\right.$ and $\left.{ }_{y} R_{x}\right]$
$\triangleright{ }_{x} P_{y} \Rightarrow \sim{ }_{y} R_{x} \Rightarrow \sim{ }_{y} P_{x} ; \quad{ }_{x} P_{y} \Rightarrow \sim{ }_{x} I_{y}$
$\triangleright{ }_{x} I_{y} \rightleftharpoons{ }_{y} I_{x} ; \sim{ }_{x} I_{y} \rightleftharpoons \sim{ }_{y} I_{x}$
$\triangleright{ }_{x} R_{y} \rightleftharpoons\left[{ }_{x} P_{y}\right.$ or $\left.{ }_{x} I_{y}\right] ; \quad{ }_{x} R_{y} \Rightarrow \sim{ }_{y} P_{x}$

2 Properties of Binary Relation R

Def: Reflexive (REFL): ${ }_{x} R_{x}, \forall x \in X$
Irreflexive (IRR): $\sim{ }_{x} R_{x}, \forall x \in X$
Complete (COMP): ${ }_{x} R_{y}$ or ${ }_{y} R_{x}, \forall x, y \in X$
Symmetric (SYM): ${ }_{x} R_{y} \rightleftharpoons{ }_{y} R_{x}, \forall x, y \in X$
Asymmetric (ASYM) : ${ }_{x} R_{y} \rightleftharpoons \sim{ }_{y} R_{x}, \forall x, y \in X$
Transitive (TRAN): ${ }_{x} R_{y} R_{z} \Rightarrow{ }_{x} R_{z}, \forall x, y, z \in X$
Quasi-transitive (Q-TRAN): ${ }_{x} P_{y} P_{z} \Rightarrow{ }_{x} P_{z}, \forall x, y, z \in X$
Acyclic (ACYC): ${ }_{x} P_{y} P_{z} \Rightarrow \sim{ }_{z} P_{x}, \forall x, y, z \in X$
Def: Equivalence: R that is REFL, SYM, and TRAN.
Weak order: R that is REFL, COMP, and TRAN.
Lmm 1: If R is complete, then: $\sim{ }_{x} R_{y} \rightleftharpoons{ }_{y} P_{x}$.
Lmm 2: If R is transitive, then:
(a) ${ }_{x} P_{y} P_{z} \Rightarrow{ }_{x} P_{z}$ (ie, R is quasi-transitive)
(b) ${ }_{x} I_{y} I_{z} \Rightarrow{ }_{x} I_{z}$
(c) ${ }_{x} R_{y} P_{z} \Rightarrow{ }_{x} P_{z} ; \quad{ }_{x} P_{y} R_{z} \Rightarrow{ }_{x} P_{z}$
\triangleright TRAN \Rightarrow Q-TRAN \Rightarrow ACYC.
\triangleright Q-TRAN \nRightarrow TRAN. $\quad[\mathrm{Ex}]_{x} P_{y},{ }_{y} I_{z},{ }_{z} I_{x} \Rightarrow{ }_{y} I_{z} I_{x}$, but ${ }_{x} P_{y}\left(\right.$ not ${ }_{y} R_{x}$)
\triangleright ACYC \nRightarrow Q-TRAN. $\quad[\mathrm{Ex}]{ }_{x} P_{y},{ }_{y} P_{z},{ }_{z} I_{x} \Rightarrow{ }_{x} P_{y} P_{z}$, but ${ }_{x} I_{z}$

3 Rationalizability of Individual Choices

Def: Choice Function $C(\cdot)$, defined on $2^{X}: \forall S_{(\neq \emptyset)} \subseteq X$

$$
C(S) \subseteq S, \quad \text { and } \quad C(S) \neq \emptyset
$$

$\triangleright C(\cdot)$ is resolute if:

$$
|C(S)|=1, \forall S_{(\neq \emptyset)} \subseteq X
$$

Def: Maximal set: for any non-empty $S \subseteq X$

$$
M(R, S) \equiv\left\{\left.x \in S\right|_{x} R_{y}, \forall y \in S\right\}
$$

Lmm 3: Maximal set $M(R, S) \neq \emptyset$ iff R is REFL, COMP, and ACYC.
\triangleright ACYC is minimal requirement for non-empty maximal sets.
\triangleright If R is a weak order, then $M(R, S) \neq \emptyset$; but not vice versa.
Def: Choice function $C(\cdot)$ is rationalizable (RAT) if $\exists R$ s.t.

$$
C(S)=M(R, S), \quad \forall S \subseteq X
$$

$\triangleright R$ that rationalizes $C(\cdot)$ must be REFL, COMP, and ACYC.
Ex: If $C(\{x, y\})=\{x\}$ and $C(\{x, y, z\})=\{y\}$, then $C(\cdot)$ is not rationalizable. ${ }^{1}$
\triangleright This is IIA pertaining to individual choice.
Def: Base relation R^{*} for $C(\cdot)$: binary comparison

$$
{ }_{x} R_{y}^{*} \rightleftharpoons x \in C(\{x, y\}), \forall x, y \in X
$$

Lmm 4 (Uniqueness): $C(\cdot)$ is rationalizable iff $\forall S \subseteq X: C(S)=M\left(R^{*}, S\right)$.
\triangleright Rationalizing R^{*} must be REFL, COMP, ACYC [by Lmm 3].
\triangleright Rationalizing R^{*} may not be Q-TRAN or TRAN.
Ex: $C(\{x, y, z\})=\{x\}, C(\{x, y\})=\{x\}, C(\{y, z\})=\{y\}, C(\{x, z\})=\{x, z\}$
$\Rightarrow{ }_{x} P^{*}{ }_{y},{ }_{y} P^{*}{ }_{z},{ }_{x} I^{*}{ }_{z}: C(\cdot)$ is RAT. But R^{*} is not Q-TRAN (only ACYC).

4 Properties of Choice Function $C(\cdot)$

Condition BC (Binary Contraction) $C(\cdot)$ such that $\forall S \subseteq X$:

$$
x \in C(S) \Rightarrow \forall y \in S, x \in C(\{x, y\})
$$

$\triangleright C(\cdot)$ satisfies BC iff $C(S) \subseteq M\left(R^{*}, S\right), \forall S \subseteq X$
\triangleright Contrapositive: $\forall x \in S: \quad[\exists y \in S, x \notin C(\{x, y\}) \Rightarrow x \notin C(S)]$
\triangleright If $C(\cdot)$ satisfies BC , then its R^{*} is ACYC.

[^0]Condition BE (Binary Expansion) $C(\cdot)$ such that $\forall S \subseteq X$:

$$
\forall y \in S, x \in C(\{x, y\}) \Rightarrow x \in C(S)
$$

$\triangleright C(\cdot)$ satisfies BE iff

$$
M\left(R^{*}, S\right) \subseteq C(S), \forall S \subseteq X
$$

\triangleright Contrapositive: $\forall x \in S$:

$$
x \notin C(S) \Rightarrow \exists y \in S, x \notin C(\{x, y\})
$$

$\triangleright C(\cdot)$ is RAT iff it satisfies BC and BE :

$$
C(S)=M\left(R^{*}, S\right), \quad \forall S_{(\neq \emptyset)} \subseteq X
$$

$\triangleright \mathrm{IF} C(\cdot)$ is resolute, then: $\mathrm{BC} \Rightarrow \mathrm{BE}$
Condition α (Contraction) (Sen 1970) $C(\cdot)$ such that $\forall S, T \subseteq X$:

$$
S \subseteq T \Rightarrow C(T) \cap S \subseteq C(S)
$$

Condition β (Equivalence) $C(\cdot)$ such that $\forall S, T \subseteq X$:

$$
S \subseteq T \& C(T) \cap C(S) \neq \emptyset \Rightarrow C(S) \subseteq C(T)
$$

Condition γ (Expansion) (Sen 1970) $C(\cdot)$ such that $\forall S, T \subseteq X$:

$$
C(S) \cap C(T) \subseteq C(S \cup T)
$$

Lmm 5 (Sen 1970)
(a) If $C(\cdot)$ satisfies α, then it satisfies $\mathrm{BC}: \alpha \Rightarrow \mathrm{BC}$.
(b) If $C(\cdot)$ satisfies γ, then it satisfies $\mathrm{BE}: \gamma \Rightarrow \mathrm{BE}$.

Thm 1: $C(\cdot)$ is rationalizable iff it satisfies α and γ.
Corr 1: $\alpha+\gamma \rightleftharpoons \mathrm{BC}+\mathrm{BE} \rightleftharpoons C(\cdot)$ is RAT.
\triangleright With BE, α and BC are equivalent.
\triangleright With BC, γ and BE are equivalent.
Ex (IIA) Political process of 2 agents:
<Congress> $a \succ b \succ S$ (S status quo)
$<$ President> $b \succ S \succ a$
$<$ Decision process $>$ Congress proposes a or b; if President vetos, S remains.
\Longrightarrow Choice made with this process is not RAT!
Hint: Condition α is violated: $C(\{a, b, S\})=\{b\}$, yet $C(\{a, b\})=\{a\}$.

Lmm 6: If $C(\cdot)$ satisfies α and β, then it satisfies γ, and R^{*} is transitive.
Thm 2: $C(\cdot)$ is rationalizable by transitive R^{*} iff it satisfies α and β.
Condition PI (Path Independence) $C(\cdot)$ such that $\forall S, T \subseteq X$:

$$
C(S \cup T)=C(C(S) \cup C(T))
$$

Condition PPI (Partition Path Independence) $C(\cdot)$ such that $\forall S, T \subseteq X$:

$$
S \cap T=\emptyset \Longrightarrow C(S \cup T)=C(C(S) \cup C(T))
$$

$\triangleright \mathrm{PI} \Rightarrow \mathrm{PPI}$.
Lmm 6a: If $C(\cdot)$ satisfies PPI, then it satisfies BC , and R^{*} is quasi-transitive.
Thm 2a: $C(\cdot)$ is rationalizable by quasi-transitive R^{*} iff it is PPI and BE.
Lmm 6b: If $C(\cdot)$ satisfies BC and β, then it satisfies BE , and R^{*} is transitive.
Thm 2b: $C(\cdot)$ is rationalizable by transitive R^{*} iff it satisfies BC and β.
Corr 2: If $C(\cdot)$ is resolute, then: $C(\cdot)$ is TRAN RAT \rightleftharpoons it satisfies BC.
Condition AA (Arrow's Axiom) $C(\cdot)$ such that $\forall S \subseteq T$:

$$
C(T) \cap S=\emptyset \quad \text { or } \quad C(T) \cap S=C(S)
$$

Condition WARP (Weak Axiom of Revealed Preferences) $C(\cdot)$ such that:

$$
(\forall S, T \subseteq X, \forall x, y \in S) \quad x \in C(S), y \notin C(S), \text { then } y \in C(T) \Rightarrow x \notin T
$$

Thm 2c: The following are equivalent:
(a) $C(\cdot)$ satisfies BC and β.
(b) $C(\cdot)$ satisfies AA.
(c) $C(\cdot)$ satisfies WARP.

[^0]: ${ }^{1}$ Proof: From the former: $\sim{ }_{y} R_{x}$. From the latter: ${ }_{y} R_{x} . \not \nsim \square$

