Yusen Sung

Public Choice

1. Public Choice Theory

- Social/public choice: the process of collective decision-making
- Elements:
 - Players/voters/consumers/agents: $i = 1, \dots, N$
 - Candidates/alternatives/options: choice set A
 - Individual preference/ranking over A: R_i
- Preference aggregation mechanism:
 - Social decision rule (SDR): collective ranking R over A

E Beauty contest, sports event

- Social choice function (SCF): a single choice $a \in A$

E Political election, travel destination, movie/restaurant

15 voters	1st	2nd	3rd
6	Milk	Juice	Beer
5	Beer	Juice	Milk
4	Juice	Beer	Milk

• Saari [1988] story: choice of drink in department meeting

– "Milk" chosen initially as most favored:

- "Beer" served in meeting for lack of Milk
- But people found "Juice" (10) is actually preferred to "Beer" (5)
- Further: "Milk" least favored by pairwise comparison

$$J9 : M6$$
$$B9 : M6$$

2. Direct democracy

- 2.1. Unanimity rule (一致決): Wicksell [1896]
 - Consistent with Pareto criterion
 - \triangleright Bills passed will surely make everyone better off
 - Problems:

- Theoretical:

- $\sqrt{\text{Social ranking is not "complete"}}$
- \checkmark Agreement is rarely reached
- Practical:

 $\sqrt{$ Distribution/jealousy issue not considered

 \triangleright Some may prefer *non-Paretian* situation

 $\sqrt{}$ Everyone has **veto power**: transaction costs high

- ▷ Outcome subject to negotiation and strategic behaviors [] 釘子戶
- Unanimity with *compensation/side-payment*

▷ 賄選合法化:「股東會出席通知書」(上有股東戶號,名稱,股數) 收購? 錢多者當選?

2.2. Majority voting (多數決)

- Relative majority: $\eta\%~(\geq~50\%)$ required
- Constitutional choice: [Buchanan-Tullock 1962]¹

$$\min_{\eta} \quad \text{ETSC} \equiv D + E$$

 $\sqrt{\text{External costs}}$ (外部成本) E: damages imposed on minority

 $\sqrt{}$ Decision costs (交易成本) D: costs for reaching decisions

▷ Economic justification of the simple majority rule

¹J.M. Buchanan and G. Tullock, Chapter 6 in *The Calculus of Consent – Logical Foundations of Constitutional Democ*racy, 1962, University of Michigan Press.

- Voting procedure: for more than 2 candidates
 - Pairwise comparison (單挑): binary agenda
 - \triangleright Condorcet winner: winner against any other candidate
 - Plurality rule (一起上, 打群架): simultaneous voting²

? Condorcet winner may not be plurality winner:

(9 voters)	1st	2nd	3rd
2	А	В	С
3	В	А	С
4	С	А	В

 \triangleright C is Plurality winner; A is Condorcet winner

• May's Theorem: with only 2 candidates³

 \triangleright Only majority rule can satisfy the following:

 $\sqrt{\text{Anonymity: symmetry among all voters (treated equally)}}$

 $\sqrt{\text{Neutrality: symmetry among all candidates}}$

 $\sqrt{}$ Decisiveness: a winner will always be picked

 $\sqrt{\text{Positive responsiveness: more votes, more likely to win} \blacksquare$

²Hindriks-Myles, 2006, MIT press, p.319.

³Hindriks-Myles, 2006, MIT press, p.306.

	Ranking	1st	2nd	3rd
• Voting paradox [Conderant 1785]	Voter 1	А	В	С
• Voting paradox [Condorcet 1785].	Voter 2	В	С	А
	Voter 3	С	А	В

- Voting cycles:

$$A \succ_{1,3} B \succ_{1,2} C \succ_{2,3} A$$

 \triangleright Outcome uncertain

 \triangleright Outcome subject to agenda manipulation

- Single-peaked preferences (單峰偏好) [Black]:

 \vartriangleright Single-peakedness insures no cycle

 \rhd Applicable only to 1-dim voting

E 2-dim voting cycle:

- Single-crossing preferences (SC):⁴

D On a 1-dim line, for 2 voters a < b, and 2 options x < y:

 $U^{a}(y) > U^{a}(x) \Rightarrow U^{b}(y) > U^{b}(x)$

⁴Hindriks-Myles, 2006, MIT, pp.310.

and

$$U^b(x) > U^b(y) \Rightarrow U^a(x) > U^a(y) \square$$

* If voter preferences satisfy SC, then there is no cycle.

* Condorcet winner is preferred option of the median voter M.⁵

- Cycle probability: 1-2%

 \triangleright Not detectable when it arises!

E 3 people dividing \$1: no Condorcet winner!

Round	А	В	С
1	1/3	1/3	1/3
2	1/2	1/2	0
3	2/3	0	1/3
4	0	1/2	1/2
•••			

E Bundled voting: no Condorcet winner!

Voter value	А	В	С
1	500	-100	-100
2	-100	500	-100
3	-100	-100	500

 \triangleright Cycle:⁶

$$(n, n, n) \rightarrow_{1,2,3} (y, y, y) \rightarrow_{1,2} (y, y, n) \rightarrow_{2,3} (n, y, n) \rightarrow_{1,3} (n, n, n)$$

⁵Because, for any 2 options x < y, if M prefers x, then all voters to his left will also prefer x. If M prefers y, then all voters to his right must also prefer y. \Box

 $^{^{6}}$ Any proposal changing a "y" to "n" will pass with two votes. But then (n,n,n) will be defeated by a proposal replacing any two "n" with two "y".

• Independence from Irrelevant Alternatives (IIA) may be violated

	#voters / ranking	1st	2nd	3rd
F Example	9	А	В	С
E Example.	4	В	С	А
	6	С	В	А

- With all 3 candidates: $(A9 : B4 : C6) \Rightarrow A$ elected

- If C drops out: $(A9 : B10) \Rightarrow B$ elected

- Need IIA to avoid sabotage (攪局)⁷ and strategic voting (棄保策略)⁸

• Pareto principle may be violated:

Ranking	1st	2nd	3rd	4th	5th	6th	7th
Voter 1	А	В	С	D	Е	F	G
Voter 2	С	D	А	F	G	В	Е
Voter 3	D	А	G	В	С	Е	F

 \triangleright Possible agenda/outcome:

$$A \to D \to C \to B \to G \to F \to E$$

 $\triangleright E$ is Pareto inferior to (A, B, C, D) for <u>all</u> voters:

 $A \succ_i E, \forall i, \text{ but } E \succ A$

⁷真實例子: 1994 台北市長選舉 (陳水扁 v. 趙少康 v. 黃大洲), 2000 總統選舉 (陳水扁 v. 連戰 v. 宋楚瑜), 及 2012 總統選舉 (蔡英 文 v. 馬英九 v. 宋楚瑜)。

⁸People may vote for 2nd choice, if they feel their top choice has no chance to win.

- Voter preference intensity not considered:
 - ▷ Logrolling (選票互換): vote trading/exchange
 - (Yes) Voter intensity revealed: compromise means efficiency!

(Project)	1	2	3	NetValue	M.V.	logrolling
Hospital	200	-50	-55	95	n	y (1,2), (1,3)
Library	-40	150	-30	80	n	y(1,2), (2,3)
Park	-120	-60	400	220	n	y(2,3), (1,3)

- (No) Special-interest gains may outweigh general losses!

(Project)	1	2	3	NetValue	M.V.	logrolling
Hospital	200	-110	-105	-15	n	y(1,2), (1,3)
Library	-40	150	-120	-10	n	y(1,2), (2,3)
Park	-180	-140	250	-70	n	y(2,3), (1,3)

• 64% majority rule [Caplin-Nalibuff, *Econometrica* 1988]

- In k-dim elections, incumbent can guarantee only: Figure 1

$$\sigma_k = \left(\frac{k}{k+1}\right)^k$$

E $\sigma_1 = 1/2, \, \sigma_2 = 4/9$

– In real-life elections, a challenger will get at least:

$$\sigma_{\infty} = \lim_{k \to \infty} \left[1 - \left(\frac{k}{k+1} \right)^k \right] = 1 - \frac{1}{e} \approx 64\% \quad \Box$$

• Median Voter Theorem (中值選民定理)⁹

 $-X_2$ is Condorcet winner (by pairwise comparison)

– Voting outcome is the demand of the ${\sf medium}$ voter

- Democracy reflects preference of ${\sf medium}{-}{\sf wealth}$ citizens

- Voting outcome usually inefficient

 $^{^9\}mathrm{Holcombe}$ pp.175–76; Hyman p.165.

2.3. Borda count (包達計數法)

#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	2	1	3
1 Chair	2	3	1
Rank/Score	$1(32)^{*}$	2(33)	3(61)

• Counting procedure: choose one with lowest count

\triangleright No cycles

- \triangleright May set rank values to reflect relative weights (eg, 1,2,3,10,...)
- Strategic manipulation:

E 10 Micros now claim "Chair as 2nd, Keynes as 3rd"

#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	3	1	2
1 Chair	2	3	1
Rank/Score	2(42)	$1(33)^{*}$	3(51)

• IIA violated:

#voters	Keynes	Becker
10 Macro	1	2
10 Micro	2	1
1 Chair	1	2
Rank/Score	$1(31)^{*}$	2(32)

2.4. Approval voting (同意決)

- Can vote for any number of alternatives, each vote counts as 1.¹⁰
- Voter flexibility.
- Outcome indeterminacy:

#voters / ranking	1st	2nd	3rd
6	х	\mathbf{Z}	у
5	У	Z	Х
4	\mathbf{Z}	у	х

 $- \ x$ wins: if every one votes only for 1st choice (x6 : y5 : z4)

-y wins: if group 3 votes for top 2 choices (x6 : y9 : z4)

-z wins: if everyone votes for top 2 choices (x6 : y9 : z15)

 \triangleright Condorcet winner may not be picked.

2.5. Runoff voting (兩階段決選)

- Top 2 winners in Round 1 will enter Round 2^{11}
- Condorcet winner may not win.
- Positive Responsiveness may be violated.

¹⁰Hindriks-Myles, 2006, MIT press, p.320.

¹¹Hindriks-Myles, 2006, MIT press, p.321.

Count	1st	2nd	3rd
6	a	b	С
5	с	a	b
4	b	С	a
2	b	a	с

2.6. Elimination (刪除法)

- Everyone votes for the candidate you dislike most.
 The candidate who receives least votes get elected.
- May have cycle.
- IIA violated.

Count	1st	2nd	3rd	4th
9	А	В	С	D
4	В	С	D	А
6	С	D	А	В
5	D	А	В	С

-4 candidates: (A4 : B6 : C5 : D9) \Rightarrow A elected.

– If B withdraws: (A10 : C5 : D9) \Rightarrow C elected.

2.7. Indeterminacy of Collective Choice

Collective choice depends on voting mechanism:

E 7 voters, 4 alternatives:

V1	V2	V3	V4	V5	V6	V7
А	А	А	В	В	С	С
В	В	В	С	С	D	D
С	С	\mathbf{C}	D	D	А	А
D	D	D	А	А	В	В

- Plurality rule: $A^*(3) : B(2) : C(2) : D(0)$
- Borda count: $A(17) : B(16) : C^*(15) : D(22)$
- Approval (2 votes): $A(3) : B^*(5) : C(4) : D(2)$
- Pairwise comparison: cycle, no Condorcet winner

 $A \succ_{5:2} B \succ_{5:2} C \succ_{7:0} D \succ_{4:3} A$

2.8. Arrow's Impossibility Theorem [1951] (不可能定理)

- 1. Axiomatic approach
- 2. No social decision rule can satisfy the following:
 - Universality (全域性): no restriction on voter preferences
 - Consistency (一致性): social ranking is *transitive* (i.e., *no cycle*)
 - Pareto axiom: social ranking obeys *unanimous* preference
 - IIA (independence of irrelevant alternatives)
 - Non-dictatorship
- 3. Use of cardinal social welfare functions: measurement problem
- 4. Satherswaite Theorem: strategy-proofness (instead of IIA) is required

2.9. About IIA

• Example: consumer ice cream choice

(vanilla, choco, strawberry) v. (vanilla, strawberry)

 \triangleright Not reasonable; IIA seems desirable

- Minimax strategy: minimize maximal possible regret [Savage 1951]
 - Regret: loss/damage of choosing a wrong action/choice
 - Applicable cases:
 - * Should I bring umbrella? ["Yes", if being wet is disaster]
 - * Should we believe in God? [Pascal: "Yes"]
 - * Should we try to contact aliens? [Hawking: "No"]
 - * Nuclear power plant, cancer insurance, committing a crime

– Minimax strategy may violate IIA

E 3 possible states (l, m, r), 3 options (A, B, C)

Payoff	А	В	С	Regret	А	В	С	Regret	А	В
l	1	2	3	l	2	1	0	l	1	0
m	2	3	1	m	1	0	2	m	1	0
r	3	1	2	r	0	2	1	r	0	2

 $\triangleright \text{ Given choice set } (A, B, C): A \sim B$ $\triangleright \text{ Given choice set } (A, B): A \succ B$

- Is IIA essential? Consumer choice re-visited
 - Consistent underlying consumer food preference:

beef \succ chicken

– Observed/explicit consumer choice in restaurants:

 $(\underline{chicken}, beef)$ v. $(chicken, \underline{beef}, seafood)$

- Possible explanation: information

Available "seafood" option signals good quality of the restaurant

- Rational consumer choices/behaviors may actually violate IIA

2.10. (Application) Congress Voting on Own Pay Raise

Payoff	Bill "pass"	Bill "fail"
Vote "yes"	1	-1
Vote "no"	2	0

Congress pay-raise voting:

2.11. (Application) Tie-breaking Power

[Farquharson 1969, p.50]

 \vartriangleright Vote by majority rule, voter 1 can break tie.

Voter	1st	2nd	3rd
1	А	С	В
2	В	А	С
3	С	В	А

Figure 2

Voting Outcome:

	(3=A)					(3=B)				(3=C)			
1/2	А	В	С	1/	2	А	В	С		1/2	А	В	С
А	А	А	А	A		А	В	A*		А	А	A*	С
В	А	В	B*	В		В	В	В		В	B*	В	С
С	А	C*	С	С	;	C*	В	С		С	С	С	С

Elimination of dominated strategies (Round 1):

Elimination of dominated strategies (Round 2):

Equilibrium outcome: B (1 for A, 2 for B, 3 for B), 1 gets worst!

Figure 2: Tie-breaking power may hurt you!

3. Representative Democracy

1. Rational:

 $\sqrt{\text{Transaction costs low (fewer people)}}$

 $\sqrt{}$ Gains from specialization

- 2. Iron triangle (鐵三角)
 - Elected politicians (民選政客):
 - Hotelling's spatial model (EJ 1929):
 - \triangleright 2 candidates:

\triangleright 4 candidates:

 \vartriangleright No equilibrium for 3-candidate election

- Voting paradox
- Government by jury [Varian-Bergstrom]
 - ▷ Congressman/judge efforts are PG, no production incentive
 - \triangleright Rational ignorance of voters: votes not intelligent

- Non-voting:

 \checkmark Abstention due to high costs

 $\sqrt{\text{Abstention from alienation}}$ (疏離)

 $\sqrt{\text{Abstention from indifference}}$ (無差異)

(1) Alienation:		
		candidates
voter		V
(2) Indifference:		
	candidates	
V	oter	

- Bureaucrats (事務官僚): [Niskanen 1971]
 - Bureaucrats: maximize own budget/power, not SW
 * SW-max:

$$Q^*$$
: \max_Q SW \equiv TB(Q) - TC(Q)

* Bureaucrat:

$$\bar{Q}$$
: $\max_{Q} Q$ s.t. $\operatorname{TB}(Q) \ge \operatorname{TC}(Q)$

 \vartriangleright Bureaucrats tend to exaggerate TB to get higher Q – Justification:

 $\sqrt{}$ Legislature has no detailed expertise/knowledge

 $\sqrt{}$ Bureaucrat office tenure exceeds elected officials

- Special interests (利益團體): formed based on:
 - \checkmark Wealth: rich v. poor
 - \checkmark Income source: capitalist v. worker; producer v. consumer
 - $\sqrt{}$ Region: industry v. agriculture v. tourism areas
 - $\sqrt{}$ Demographics: sex, race, religion, age