Public Choice

1. Public Choice Theory

- Social/public choice: the process of collective decision-making
- Elements:
- Players/voters/consumers/agents: $i=1, \cdots, N$
- Candidates/alternatives/options: choice set A
- Individual preference/ranking over $A: \quad R_{i}$
- Preference aggregation mechanism:
- Social decision rule (SDR): collective ranking R over A

E Beauty contest, sports event

- Social choice function (SCF): a single choice $a \in A$

E Political election, travel destination, movie/restaurant

- Saari [1988] story: choice of drink in department meeting

15 voters	1st	2nd	3rd
6	Milk	Juice	Beer
5	Beer	Juice	Milk
4	Juice	Beer	Milk

- "Milk" chosen initially as most favored:

$$
M 6: B 5: J 4
$$

- "Beer" served in meeting for lack of Milk
- But people found "Juice" (10) is actually preferred to "Beer" (5)
- Further:"Milk" least favored by pairwise comparison

$$
\begin{aligned}
& J 9: M 6 \\
& B 9: M 6
\end{aligned}
$$

2．Direct democracy

2．1．Unanimity rule（一致決）：Wicksell［1896］

－Consistent with Pareto criterion
\triangleright Bills passed will surely make everyone better off
－Problems：
－Theoretical：
$\sqrt{ }$ Social ranking is not＂complete＂
$\sqrt{ }$ Agreement is rarely reached
－Practical：
$\sqrt{ }$ Distribution／jealousy issue not considered \triangleright Some may prefer non－Paretian situation
$\sqrt{ }$ Everyone has veto power：transaction costs high \triangleright Outcome subject to negotiation and strategic behaviors E 釘子戶
－Unanimity with compensation／side－payment
－賄選合法化：「股東會出席通知書」（上有股東戶號，名稱，股數）收購 ？錢多者當選？

2．2．Majority voting（多數決）

－Relative majority：$\eta \%$（ $\geq 50 \%$ ）required
－Constitutional choice：［Buchanan－Tullock 1962］${ }^{1}$

$$
\min _{\eta} \quad \mathrm{ETSC} \equiv D+E
$$

$\sqrt{ }$ External costs（外部成本）E ：damages imposed on minority
$\sqrt{ }$ Decision costs（交易成本）D ：costs for reaching decisions

\triangleright Economic justification of the simple majority rule

[^0]－Voting procedure：for more than 2 candidates
－Pairwise comparison（單挑）：binary agenda
\triangleright Condorcet winner：winner against any other candidate
－Plurality rule（一起上，打群架）：simultaneous voting ${ }^{2}$
？Condorcet winner may not be plurality winner：

（9 voters）	1 st	2 nd	3 rd
2	A	B	C
3	B	A	C
4	C	A	B

$\triangleright \mathrm{C}$ is Plurality winner；A is Condorcet winner
－May＇s Theorem：with only 2 candidates ${ }^{3}$
\triangleright Only majority rule can satisfy the following：
$\sqrt{ }$ Anonymity：symmetry among all voters（treated equally）
$\sqrt{ }$ Neutrality：symmetry among all candidates
$\sqrt{ }$ Decisiveness：a winner will always be picked
$\sqrt{ }$ Positive responsiveness：more votes，more likely to win

[^1]－Voting paradox［Condorcet 1785］：

Ranking	1st	2nd	3rd
Voter 1	A	B	C
Voter 2	B	C	A
Voter 3	C	A	B

－Voting cycles：

$$
A \succ_{1,3} B \succ_{1,2} C \succ_{2,3} A
$$

\triangleright Outcome uncertain
\triangleright Outcome subject to agenda manipulation
－Single－peaked preferences（單峰偏好）［Black］：

\triangleright Single－peakedness insures no cycle
\triangleright Applicable only to 1－dim voting
(E 2-dim voting cycle:

$$
A \succ_{1,3} C \succ_{2,3} B \succ_{1,2} A
$$

y (defense)

- Single-crossing preferences (SC): ${ }^{4}$

D On a 1-dim line, for 2 voters $a<b$, and 2 options $x<y$:

$$
U^{a}(y)>U^{a}(x) \Rightarrow U^{b}(y)>U^{b}(x)
$$

[^2]and
$$
U^{b}(x)>U^{b}(y) \Rightarrow U^{a}(x)>U^{a}(y)
$$

* If voter preferences satisfy SC, then there is no cycle.
* Condorcet winner is preferred option of the median voter $M .{ }^{5}$
- Cycle probability: 1-2\%
\triangleright Not detectable when it arises!
E 3 people dividing $\$ 1$: no Condorcet winner!

Round	A	B	C
1	$1 / 3$	$1 / 3$	$1 / 3$
2	$1 / 2$	$1 / 2$	0
3	$2 / 3$	0	$1 / 3$
4	0	$1 / 2$	$1 / 2$
\ldots	\ldots	\ldots	\ldots

E Bundled voting: no Condorcet winner!

Voter value	A	B	C
1	500	-100	-100
2	-100	500	-100
3	-100	-100	500

\triangleright Cycle: ${ }^{6}$
$(n, n, n) \rightarrow_{1,2,3}(y, y, y) \rightarrow_{1,2}(y, y, n) \rightarrow_{2,3}(n, y, n) \rightarrow_{1,3}(n, n, n)$

[^3]－Independence from Irrelevant Alternatives（IIA）may be violated

E Example：

\＃voters $/$ ranking	1st	2nd	3rd
9	A	B	C
4	B	C	A
6	C	B	A

－With all 3 candidates：（A9：B4：C6）$\Rightarrow A$ elected
－If C drops out：$(\mathrm{A} 9: \mathrm{B} 10) \Rightarrow B$ elected
－Need IIA to avoid sabotage（攪局）${ }^{7}$ and strategic voting（棄保策略）${ }^{8}$
－Pareto principle may be violated：

Ranking	1st	2nd	3rd	4th	5th	6th	7th
Voter 1	A	B	C	D	E	F	G
Voter 2	C	D	A	F	G	B	E
Voter 3	D	A	G	B	C	E	F

\triangleright Possible agenda／outcome：

$$
A \rightarrow D \rightarrow C \rightarrow B \rightarrow G \rightarrow F \rightarrow E
$$

$\triangleright E$ is Pareto inferior to (A, B, C, D) for all voters：

$$
A \succ_{i} E, \forall i \text {, but } E \succ A
$$

[^4]－Voter preference intensity not considered：
\triangleright Logrolling（選票互換）：vote trading／exchange
－（Yes）Voter intensity revealed：compromise means efficiency！

（Project）	1	2	3	NetValue	M．V．	logrolling
Hospital	200	-50	-55	95	n	$\mathrm{y}(1,2),(1,3)$
Library	-40	150	-30	80	n	$\mathrm{y}(1,2),(2,3)$
Park	-120	-60	400	220	n	$\mathrm{y}(2,3),(1,3)$

－（No）Special－interest gains may outweigh general losses！

（Project）	1	2	3	NetValue	M．V．	logrolling
Hospital	200	-110	-105	-15	n	$\mathrm{y}(1,2),(1,3)$
Library	-40	150	-120	-10	n	$\mathrm{y}(1,2),(2,3)$
Park	-180	-140	250	-70	n	$\mathrm{y}(2,3),(1,3)$

－64\％majority rule［Caplin－Nalibuff，Econometrica 1988］
－In k－dim elections，incumbent can guarantee only：Figure 1

$$
\sigma_{k}=\left(\frac{k}{k+1}\right)^{k}
$$

E $\sigma_{1}=1 / 2, \sigma_{2}=4 / 9$
－In real－life elections，a challenger will get at least：

$$
\sigma_{\infty}=\lim _{k \rightarrow \infty}\left[1-\left(\frac{k}{k+1}\right)^{k}\right]=1-\frac{1}{e} \approx 64 \%
$$

Hotelling Spatial Model: 1-dimensional Voting

2-dimensional Voting

Figure 1: Justification for $2 / 3$ majority rule
－Median Voter Theorem（中値選民定理）${ }^{9}$

－X_{2} is Condorcet winner（by pairwise comparison）
－Voting outcome is the demand of the medium voter
－Democracy reflects preference of medium－wealth citizens
－Voting outcome usually inefficient

[^5]
2．3．Borda count（包達計數法）

－Counting procedure：choose one with lowest count

\＃voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	2	1	3
1 Chair	2	3	1
Rank／Score	$1(32)^{*}$	$2(33)$	$3(61)$

\triangleright No cycles
\triangleright May set rank values to reflect relative weights（eg，1，2，3，10，．．．）
－Strategic manipulation：
E 10 Micros now claim＂Chair as 2nd，Keynes as 3rd＂

\＃voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	3	1	2
1 Chair	2	3	1
Rank／Score	$2(42)$	$1(33)^{*}$	$3(51)$

－IIA violated：

\＃voters	Keynes	Becker
10 Macro	1	2
10 Micro	2	1
1 Chair	1	2
Rank／Score	$1(31)^{*}$	$2(32)$

2．4．Approval voting（同意決）

－Can vote for any number of alternatives，each vote counts as $1 .{ }^{10}$
－Voter flexibility．
－Outcome indeterminacy：

\＃voters／ranking	1st	2nd	3rd
6	x	z	y
5	y	z	x
4	z	y	x

－ x wins：if everyone votes only for 1st choice（x6：y5：z4）
－y wins：if group 3 votes for top 2 choices（x6：y9：z4）
－z wins：if everyone votes for top 2 choices（x6：y9：z15）
\triangleright Condorcet winner may not be picked．

2．5．Runoff voting（兩階段決選）

－Top 2 winners in Round 1 will enter Round $2 .{ }^{11}$
－Condorcet winner may not win．
－Positive Responsiveness may be violated．

[^6]| Count | 1st | 2 nd | 3 rd |
| :---: | :---: | :---: | :---: |
| 6 | a | b | c |
| 5 | c | a | b |
| 4 | b | c | a |
| 2 | b | a | c |

2．6．Elimination（删除法）

－Everyone votes for the candidate you dislike most．
\triangleright The candidate who receives least votes get elected．
－May have cycle．
－IIA violated．

Count	1st	2nd	3rd	4th
9	A	B	C	D
4	B	C	D	A
6	C	D	A	B
5	D	A	B	C

-4 candidates：（A4：B6：C5：D9）$\Rightarrow A$ elected．
－If B withdraws：（A10：C5：D9）$\Rightarrow C$ elected．

2.7. Indeterminacy of Collective Choice

Collective choice depends on voting mechanism:
E 7 voters, 4 alternatives:

V1	V2	V3	V4	V5	V6	V7
A	A	A	B	B	C	C
B	B	B	C	C	D	D
C	C	C	D	D	A	A
D	D	D	A	A	B	B

- Plurality rule: $\mathrm{A}^{*}(3): \mathrm{B}(2): \mathrm{C}(2): \mathrm{D}(0)$
- Borda count: $\mathrm{A}(17): \mathrm{B}(16): \mathrm{C}^{*}(15): \mathrm{D}(22)$
- Approval (2 votes): A(3): B* (5) : C(4): D(2)
- Pairwise comparison: cycle, no Condorcet winner

$$
A \succ_{5: 2} B \succ_{5: 2} C \succ_{7: 0} D \succ_{4: 3} A
$$

2．8．Arrow＇s Impossibility Theorem［1951］（不可能定理）

1．Axiomatic approach

2．No social decision rule can satisfy the following：

- Universality（全域性）：no restriction on voter preferences
- Consistency（一致性）：social ranking is transitive（i．e．，no cycle）
－Pareto axiom：social ranking obeys unanimous preference
－IIA（independence of irrelevant alternatives）
－Non－dictatorship

3．Use of cardinal social welfare functions：measurement problem

4．Satherswaite Theorem：strategy－proofness（instead of IIA）is required

2.9. About IIA

- Example: consumer ice cream choice
(vanilla, choco, strawberry) v. (vanilla, strawberry)
\triangleright Not reasonable; IIA seems desirable
- Minimax strategy: minimize maximal possible regret [Savage 1951]
- Regret: loss/damage of choosing a wrong action/choice
- Applicable cases:
* Should I bring umbrella? ["Yes", if being wet is disaster]
* Should we believe in God? [Pascal: "Yes"]
* Should we try to contact aliens? [Hawking: "No"]
* Nuclear power plant, cancer insurance, committing a crime
- Minimax strategy may violate IIA

E 3 possible states $(l, m, r), 3$ options (A, B, C)

Payoff	A	B	C
l	1	2	3
m	2	3	1
r	3	1	2

Regret	A	B	C
l	2	1	0
m	1	0	2
r	0	2	1

Regret	A	B
l	1	0
m	1	0
r	0	2

\triangleright Given choice set $(A, B, C): \quad A \sim B$
\triangleright Given choice set $(A, B): \quad A \succ B$

- Is IIA essential? - Consumer choice re-visited
- Consistent underlying consumer food preference:
beef \succ chicken
- Observed/explicit consumer choice in restaurants:
(chicken, beef) v. (chicken, beef, seafood)
- Possible explanation: information

Available "seafood" option signals good quality of the restaurant

- Rational consumer choices/behaviors may actually violate IIA

2.10. (Application) Congress Voting on Own Pay Raise

Payoff	Bill "pass"	Bill "fail"
Vote "yes"	1	-1
Vote "no"	2	0

Congress pay-raise voting:

2.11. (Application) Tie-breaking Power

[Farquharson 1969, p.50]
\triangleright Vote by majority rule, voter 1 can break tie.

Voter	1st	2nd	3rd
1	A	C	B
2	B	A	C
3	C	B	A

Figure 2

Voting Outcome:

	(3=A)				($3=B$)				(3-C)		
1/2	A	B	C	1/2	A	B	C	1/2	A	B	C
A	A	A	A	A	A	B	A*	A	A	A*	C
B	A	B	B*	B	B	B	B	B	B*	B	C
C	A	C*	C	C	C*	B	C	C	C	C	C

Elimination of dominated strategies (Round 1):

(3=A)				(3=B)				(3=C)			
1/2	A	B	C	1/2	A	B	C	1/2	A	B	c
A	A	A	A	A	A	B	A*	A	A	A*	C
B	A	B		B	B	B	B	B	B*	B	c
C	A	C*	C	C	C*	B	C	C	C	C	C

Elimination of dominated strategies (Round 2):

$(3=\mathrm{A})$		
$1 / 2$	A	B
A	A	A

	$(3=B)$	
$1 / 2$	A	B
A	A	B

	$(3=C)$	
$1 / 2$	A	B
A	A	A* *

Equilibrium outcome: B (1 for A, 2 for B, 3 for B), 1 gets worst!

Figure 2: Tie-breaking power may hurt you!

3．Representative Democracy

1．Rational：
$\sqrt{ }$ Transaction costs low（fewer people）
$\sqrt{ }$ Gains from specialization

2．Iron triangle（鐵三角）
－Elected politicians（民選政客）：
－Hotelling＇s spatial model（EJ 1929）：
$\triangleright 2$ candidates：

$\triangleright 4$ candidates：

\triangleright No equilibrium for 3－candidate election
－Voting paradox
－Government by jury［Varian－Bergstrom］
\triangleright Congressman／judge efforts are PG，no production incentive \triangleright Rational ignorance of voters：votes not intelligent

－Non－voting：

$\sqrt{ }$ Abstention due to high costs
$\sqrt{ }$ Abstention from alienation（疏離）
$\sqrt{ }$ Abstention from indifference（無差異）
（1）Alienation：

（2）Indifference：

－Bureaucrats（事務官僚）：［Niskanen 1971］
－Bureaucrats：maximize own budget／power，not SW
＊SW－max：

$$
Q^{*}: \quad \max _{Q} \mathrm{SW} \equiv \mathrm{~TB}(Q)-\mathrm{TC}(Q)
$$

＊Bureaucrat：

$$
\bar{Q}: \max _{Q} Q \quad \text { s.t. } \quad \mathrm{TB}(Q) \geq \mathrm{TC}(Q)
$$

\triangleright Bureaucrats tend to exaggerate TB to get higher Q
－Justification：
$\sqrt{ }$ Legislature has no detailed expertise／knowledge
$\sqrt{ }$ Bureaucrat office tenure exceeds elected officials

－Special interests（利益團體）：formed based on：
$\sqrt{ }$ Wealth：rich v．poor
$\sqrt{ }$ Income source：capitalist v．worker；producer v．consumer $\sqrt{ }$ Region：industry v ．agriculture v ．tourism areas
$\sqrt{ }$ Demographics：sex，race，religion，age

[^0]: ${ }^{1}$ J．M．Buchanan and G．Tullock，Chapter 6 in The Calculus of Consent－Logical Foundations of Constitutional Democ－ racy，1962，University of Michigan Press．

[^1]: ${ }^{2}$ Hindriks－Myles，2006，MIT press，p．319．
 ${ }^{3}$ Hindriks－Myles，2006，MIT press，p． 306 ．

[^2]: ${ }^{4}$ Hindriks-Myles, 2006, MIT, pp. 310 .

[^3]: ${ }^{5}$ Because, for any 2 options $x<y$, if M prefers x, then all voters to his left will also prefer x. If M prefers y, then all voters to his right must also prefer y. \square
 ${ }^{6}$ Any proposal changing a " y " to " n " will pass with two votes. But then ($\mathrm{n}, \mathrm{n}, \mathrm{n}$) will be defeated by a proposal replacing any two " n " with two " y ".

[^4]: 7真實例子：1994台北市長選舉（陳水扁 v．趙少康 v．黃大洲），2000 總統選舉（陳水扁 v．連戰 v．宋楚瑜），及 2012 總統選舉（蔡英文 v ．馬英九 v ．宋楚瑜）。
 ${ }^{8}$ People may vote for 2 nd choice，if they feel their top choice has no chance to win．

[^5]: ${ }^{9}$ Holcombe pp．175－76；Hyman p． 165.

[^6]: ${ }^{10}$ Hindriks－Myles，2006，MIT press，p． 320.
 ${ }^{11}$ Hindriks－Myles，2006，MIT press，p． 321 ．

