公共財需求之實證估計

1 Median Voter Approach: Demand-side Model

• Bergstrom-Goodman [AER 1973]

1.1 Assumptions

- A1 Public good y:
 - Price q for all communities (supply of y is horizontal)
- A2 Consumer i:
 - Wealth: w_i
 - Local tax rate: $\tau_i(w_i)$
 - Tax price of public good y: $\tau_i q$
- A3 Consumer utility-max:

$$\max_{x_i, y} \quad U_i(x_i, y) \quad \text{s.t.} \quad x_i + [\tau_i q]y = w_i$$

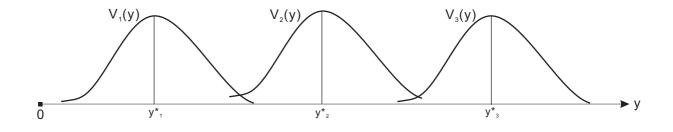
or simply:

$$\max_{y} V_i(y) \equiv U_i(w_i - \tau_i qy, y)$$

 $\triangleright U_i(x_i, y)$ is strictly quasi-concave in (x, y)

- $\triangleright V_i(y)$ is strictly quasi-concave in y
- $\triangleright y_i^* \equiv i$'s <u>unique</u> optimal choice (i.e., ideal amount of y)
- A4 Community public good level is determined by majority voting
- A5 Voting outcome \hat{y}^* is demand of the median wealth resident

- 1.2 Identifying voting outcome: majority voting in [A4]
 - Duncan Black Theorem: $V_i(y)$ is single-peaked in y
 - \triangleright No voting cycle
 - \triangleright There exists a *unique Condorcet winner*
 - Bowen Equilibrium: winner is median \hat{y}^* of all y_i^*
 - Median Voter: voter m who has the median demand $y_m^* = \hat{y}^*$



1.3 Identifying the median voter: justifying [A5]

• By [A3], individual demand is:

$$x(\tau, w), y(\tau, w)$$

Since τ may depend on w, we can write:

$$x(\tau(w), w), y(\tau(w), w)$$

• Total differentiation:

$$\frac{dy(\tau(w),w)}{dw} = \frac{\partial y}{\partial \tau} \cdot \frac{d\tau}{dw} + \frac{\partial y}{\partial w}$$

Using <u>elasticity</u>:

$$\frac{dy/y}{dw/w} = \frac{\partial y/y}{\partial \tau/\tau} \cdot \frac{d\tau/\tau}{dw/w} + \frac{\partial y/y}{\partial w/w} \equiv \delta \cdot \xi + \varepsilon$$
(1)

where:

- $$\begin{split} \delta &\equiv (\partial y/y)/(\partial \tau/\tau) = price \ elasticity \ of \ demand \ y \\ \varepsilon &\equiv (\partial y/y)/(\partial w/w) = wealth \ elasticity \ of \ demand \ y \\ \xi &\equiv (\partial \tau/\tau)/(\partial w/w) = wealth \ elasticity \ of \ local \ tax \ rate \end{split}$$
- In general:

$$\frac{dy/y}{dw/w} = \delta\xi + \varepsilon \gtrless 0$$

- For normal and ordinary y:

$$\delta < 0, \ \varepsilon > 0$$

– In a regular progressive local tax system:

$$\xi > 0$$

- Possible cases:
 - (δξ + ε) is positive for all w > 0: Fig. 1(top)
 Then y is monotonically increasing in w
 More y is demanded by wealthier voters
 ▷ Median (ŷ) of y is desired by voter with median w (ŵ).¹
 - 2. $(\delta \xi + \varepsilon)$ is negative for all w > 0:

Then y is monotonically decreasing in w

¹Public goods of this nature include security, concert, museum, and environmental quality.

Less y is demanded by wealthier voters

 \triangleright Still, median (\hat{y}) of y is desired by voter with median w^2 .

3. If $(\delta \xi + \varepsilon)$ is first negative, then positive: Fig. 1(bottom) [] In this case, [A5] may not hold.³

1.4 Data Collection

- Each community is an observation point:
 - PG quantity: community PG expenditures
 - PG price: tax price $\hat{\tau}$ of the median-wealth resident
- Individual tax price τ_i :
 - Local PG is financed by local property tax (mainly house and land taxes)
 - Property tax depends on property value:

$$\tau_i = \frac{H_i}{\sum_j H_j}$$

where: H_i is value of resident *i*'s realty

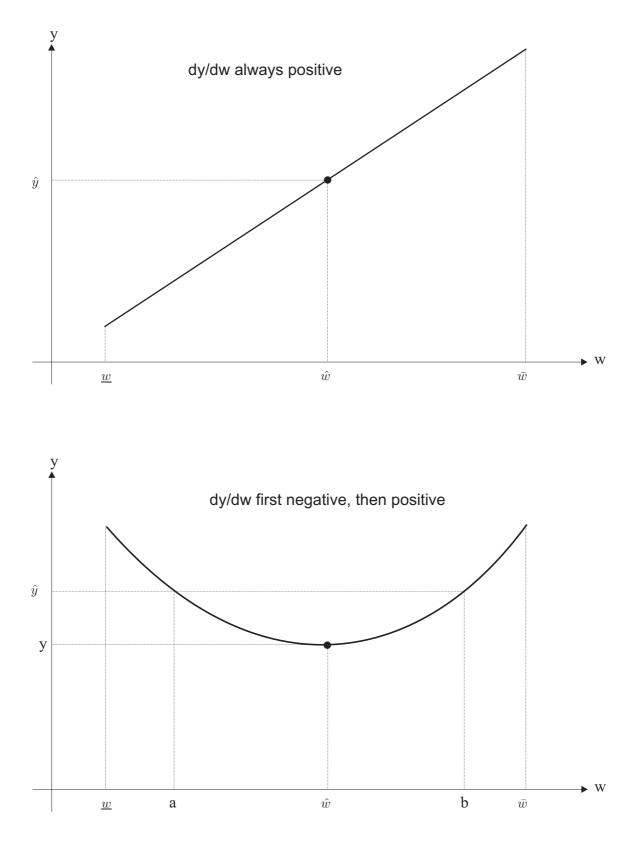
• Congestion effect of local PG:

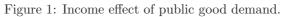
$$z = y \cdot N^{\gamma}, \ \gamma \le 0 \tag{2}$$

where: z is PG level actually enjoyed by each resident

²An example is mediocre local park.

³Now voting outcome will be \hat{y} (still median of all y), but this is not demand of the median income voter. Half the voters have income in ab, with the other half in ($\underline{w}a \cup b\overline{w}$).





- $-\gamma = 0: z = y$, pure PG
- $-\gamma \in (0, -1)$: impure PG with congestion
- $-\gamma < -1$: serious crowding

1.5 Estimation Procedure

• Log-linear demand function:

$$z = cp^{\delta}w^{\varepsilon}e^{\beta x} \tag{3}$$

where:

- z = actual level of PG enjoyed
- p = price of z
- w =individual wealth
- x =other socio-economic variables
- Transforming <u>unobserved</u> (z, p) into <u>observable</u> (y, τ_i) :
 - By consumer budget:

$$w = x + \tau y = x + [\tau N^{-\gamma}]z$$

 \triangleright price of z is:

$$p = \tau N^{-\gamma}$$

- Combining (2)(3):

 $\log z = \log y + \gamma \log N = c' + \delta \log p + \varepsilon \log w + \beta x; \ c' \equiv \log c$ or:

$$\log y = c' - \gamma \log N + \delta \log(\tau N^{-\gamma}) + \varepsilon \log w + \beta x$$
$$= c' - \gamma [1 + \delta] \log N + \delta \log \tau + \varepsilon \log w + \beta x$$

where:

 $\delta = \partial \log y / \partial \log \tau$ is price elasticity of demand y

 $\varepsilon = \partial \log y / \partial \log w$ is income elasticity of demand y

– Can obtain estimates of $(\delta,\varepsilon,\gamma)$

1.6 Estimation Results

- \bullet Data: 826 US cities with population between (10K, 150K) in 1960
- With $\hat{\xi} \approx 1 \text{--} 1.3$:

$0\zeta + \varepsilon > 0$			
	Total PG	Policing	Parks
income elasticity $\hat{\varepsilon}$	0.64	0.71	1.32
price elasticity $\hat{\delta}$	-0.23	-0.25	-0.19
congestion $\hat{\gamma}$	-1.09	-1.07	-1.44

 $\hat{\delta}\hat{\xi} + \hat{\varepsilon} > 0$

2 Median Voter Approach: Supply-side Model

- Borcherding-Deacon [AER 1972]
- Assumptions:
 - [A1] Local government are chosen by residents using majority rule. As such, government policies will reflect preferences of the median voter.⁴
 - [A2] Median voters in all communities have similar perferences.
 - [A3] Local public goods/services are supplied with minimal costs.⁵
 - [A4] Local PG is shared by all local residents. Its production costs also fall equally on all residents. So all residents have same PG tax price.
- The Model
 - Cobb-Douglas production technology:

$$X = aL^{\beta}K^{1-\beta}, \quad 0 < \beta < 1 \tag{4}$$

where:

 $X \equiv \text{local PG level}$ $L \equiv \text{labor input in PG production}$

 $K \equiv \text{capital input}$

 $^{^4}$ Namely, local government seeks to maximize median voter's welfare. $^5 \rm Or,$ local PG is produced with efficiency.

– Output-max with fixed costs E:⁶

$$\max_{L,K} X = aL^{\beta}K^{1-\beta} \quad \text{s.t.} \quad rK + wL \le E$$
(5)

where:

 $r \equiv$ unit price of capital K

 $w \equiv$ unit price of labor L

- Solution (L^*, K^*) to (5):

$$L^* = \frac{\beta E}{w}; \quad K^* = \frac{[1-\beta]E}{r}$$

- Substitute (L^*, K^*) into (4):

$$X = a \left[\frac{\beta}{w}\right]^{\beta} \left[\frac{1-\beta}{r}\right]^{1-\beta} E \tag{6}$$

 \triangleright By CRTS of C-D technology: X doubles when E doubles.⁷

- Inverting (6), we have:

$$E = \frac{1}{a} \left[\frac{w}{\beta} \right]^{\beta} \left[\frac{r}{1-\beta} \right]^{1-\beta} X$$

 $\triangleright X$ has constant marginal production cost:

$$c = \frac{1}{a} \left[\frac{w}{\beta} \right]^{\beta} \left[\frac{r}{1-\beta} \right]^{1-\beta}$$
(7)

- Assuming: r is constant across communities, but w may vary.

- Can simplify (7):

$$c \equiv a' w^{\beta}; \quad a' \equiv \frac{1}{a\beta^{\beta}} \left[\frac{r}{1-\beta} \right]^{1-\beta}$$
 (8)

 $^{6}\mathrm{Alternatively,}$ we can consider the following cost-min problem:

$$\min_{L,K} rK + wL \quad \text{s.t.} \quad aL^{\beta}K^{1-\beta} \geq \bar{X}$$

⁷That is, X(E) is a homogeneous function of degree 1.

- Congestion consideration:

$$q = \frac{X}{N^{\alpha}} \tag{9}$$

where:

 $q\equiv$ local PG level actually consumed

 $N \equiv \text{community population}$

 $\alpha \equiv \text{congestion parameter}$

- PG nature:
 - (1) $\alpha = 0$: X is pure PG
 - (2) $\alpha = 1$: X is pure private good
 - (3) $\alpha \in (0, 1)$: impure PG
- Tax price calculation:
 - PG level X
 - Production cost cX:
 - \triangleright Individual share is:

$$\frac{cX}{N}$$

- Actual enjoyment level: q
- Price t of q:

$$t = \frac{cX}{Nq} = cN^{\alpha-1} \tag{10}$$

• Estimation procedure:

- Log-linear demand:

$$q = A t^{\eta} y^{\delta} \tag{11}$$

where: $y \equiv$ individual income

- By (11), we know:

$$\eta = \frac{\partial \log q}{\partial \log t}; \ \delta = \frac{\partial \log q}{\partial \log y}$$

where:

- $\eta =$ price elasticity of PG demand
- $\delta =$ income elasticity of PG demand
- Substituting (9)(10) into (11), and using (8):

$$X = N^{\alpha} A[cN^{\alpha-1}]^{\eta} y^{\delta}$$

= $N^{\alpha} A[a'w^{\beta}N^{\alpha-1}]^{\eta} y^{\delta}$
= $A'w^{\beta\eta} N^{\eta(\alpha-1)+\alpha} y^{\eta}; \quad A' \equiv Aa'^{\eta}$ (12)

- Let
$$e \equiv E/N = cX/N$$
:⁸

$$e = \frac{cX}{N} = A'' w^{\beta(\eta+1)} N^{(\alpha-1)(\eta+1)} y^{\eta}; \quad A'' \equiv a' A'$$
(13)

- Put (13) in log form:

$$\ln e = A''' + [\eta + 1] \ln(w^{\beta}) + [(\alpha - 1)(\eta + 1)] \ln N + \delta \ln y; \quad A''' \equiv \ln A''$$
(14)

- Data collection: for each community
 - * Calculate e from community E and N

* Calculate (w^{β}) from community wage rate⁹

⁸Public expenditure per capita.

 $^{{}^{9}\}beta$ is obtained from other research.

- Estimation results:
 - \ast Data: 44 US states in 1962
 - * 8 PGs
 - * Can obtain η and δ from coefficient estimates of $\ln(w^{\beta})$ and $\ln y$. Then we can have α from estimates of $[(\alpha - 1)(\eta - 1)]$ (coefficient of $\ln N$).

3 Median Voter Method in Tiebout Equilibrium

- Tiebout equilibrium:
 - Homogeneous residents in all communities
 - Estimation procedure: random selection in each community
- The problem:
 - Communities are in Tiebout equilibrium
 - PG demand estimated using median voter method
 - Are the estimates unbiased?
- The model: [Goldstein-Pauly, JPuE 1981]
 - A metropolitan area consisting of many communities
 - Income distribution of all residents is unimodal, with mean y_M
 - PG demand of resident i:

$$x_i = \alpha + \beta y_i + \varepsilon_i$$

<u>where</u>: x_i is PG demand, y_i is income

– Random term:

$$\varepsilon_i \sim \text{ i.i.d. } N(0, \sigma^2)$$

- Distribution of PG demand by all residents with same income y:

$$x \sim \text{ i.i.d. } N(\alpha + \beta y, \sigma^2)$$

 \triangleright Resident distribution of 3 income levels: y_2, \hat{y}, y_1 Fig. 2

$$y_2 = \hat{y} - \delta, \ y_1 = \hat{y} + \delta, \ y_2 < \hat{y} < y_1 < y_M$$

- Tiebout equilibrium in the metropolis:
 - All residents in a community have same PG demand
 - Consider a community with some PG level x:

$$\hat{x} = E[\alpha + \beta \hat{y} + \varepsilon] = \alpha + \beta \hat{y}$$

- Community income distribution: Fig. 3
 - * There are f_0 residents with income \hat{y}
 - * There are f_1 residents with income $y_1 > \hat{y}$
 - * There are f_2 residents with income $y_2 < \hat{y}$
 - \triangleright Median community income $y' > \hat{y}$ (because $f_1 > f_2$)
- Similarly, for income $\bar{y} > y_M$ and community supplying PG

$$\bar{x} = \alpha + \beta \bar{y}$$

 \triangleright Median community income

$$y'' < \bar{y}$$

• Estimation bias: Fig. 4

- Actual demand curve: thick line L \triangleright Slope β , with 2 points on L:

$$(\hat{x},\hat{y}), (\bar{x},\bar{y})$$

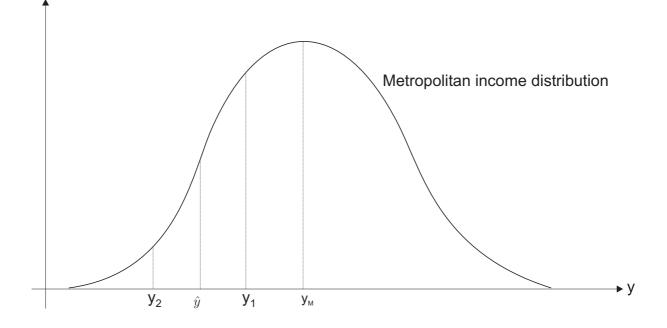


Figure 2: Metropolitan income distribution

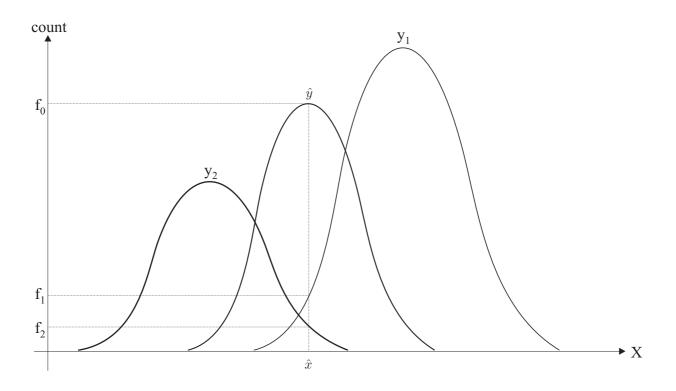


Figure 3: Community PG demand distribution

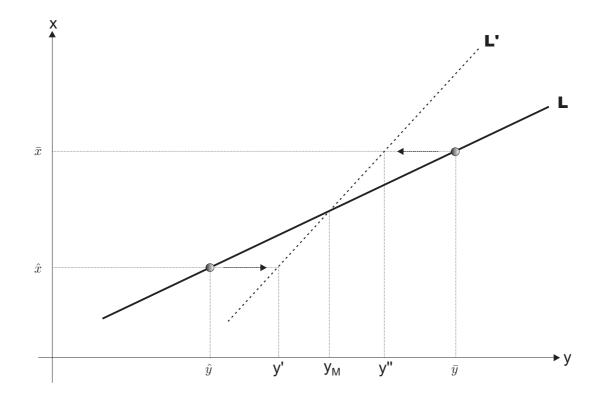


Figure 4: Demand estimation bias

– Estimation using MVM:

- \vartriangleright Median income is y' in community \hat{x}
- \triangleright Median income is y'' in community \bar{x}
- \vartriangleright Estimated demand is thin dashed line L' with 2 points:

$$(\hat{x}, y'), \ (\bar{x}, y'')$$

 \Rightarrow Slope greater than β

4 Survey Approach

- Bergstrom et al. [Econometrica 1982]
- Data: 2001 questionaires after 1978 election
 - Asking: people's opinion on government public school spending
 - Answer: "more/less/same"
- Preliminary design:
 - PG demand function:

$$g_i = D(x_i)/\epsilon_i \tag{15}$$

where:

 $g_i \equiv i$'s ideal PG expenditures

 $x_i \equiv i$'s socio-economic variables

 $D(x_i) \equiv \text{deterministic part of demand}$

 $\epsilon_i \equiv \text{random term}$

- Let $a_i \equiv PG$ expenditure level where *i* resides.
 - * If $g_i > a_i$, then *i* will answer "more"
 - * If $g_i = a_i$, then *i* will answer "same"
 - * If $g_i < a_i$, then *i* will answer "less"
- Estimate $D(x_i)$ with logit/probit
- Problem:
 - $\operatorname{Prob}(g_i = a_i) = 0$ if ϵ_i is continuously distributed
 - In dataset: 58% "same", 25% "more", 17% "less"

- Modification:
 - Assume: people do not care about minor difference¹⁰
 - * "more" if $g_i > \delta a_i$
 - * "less" if $g_i < a_i/\delta$
 - * "same" if

$$g_i \in \left[\frac{a_i}{\delta}, \ \delta a_i\right]$$

- Substitute into (15) and take log:
 - * "more" if:

$$\ln \epsilon_i < \ln D(x_i) - \ln a_i - \ln \delta$$

* "less" if:

$$\ln \epsilon_i > \ln D(x_i) - \ln a_i + \ln \delta$$

* "same" if:

$$\ln \epsilon_i \in \left[\ln D(x_i) - \ln a_i - \ln \delta, \ln D(x_i) - \ln a_i + \ln \delta\right]$$

– Assume:

* ϵ_i follows logistic (with mean 1, SD $\sigma)$

 \triangleright

$$\varepsilon_i \equiv \frac{\ln \epsilon_i}{\sigma}$$

follows standard logistic (mean 1, SD 1)

- * $F(\cdot) \equiv \text{CDF of } \varepsilon_i$
- * $\ln D(x_i)$ is linear:

$$\ln D(x_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_K x_{iK}$$
(16)

 $^{^{10}\}mathrm{I.e.},$ in difference relation is not transitive.

- Response condition:
 - * "more" if:

$$\varepsilon_i < \left[\sum_{j=1}^K \frac{\beta_j x_{ij}}{\sigma} - \frac{\ln a_i}{\sigma} + \frac{\beta_0 - \ln \delta}{\sigma}\right]$$

 \ast "less" if:

$$\varepsilon_i > \left[\sum_{j=1}^K \frac{\beta_j x_{ij}}{\sigma} - \frac{\ln a_i}{\sigma} + \frac{\beta_0 + \ln \delta}{\sigma}\right]$$

- * "same" otherwise
- Estimation Model:
 - Response probability:
 - * "more":

$$\pi_m^i = F\left(\sum_{j=1}^K \left[\frac{\beta_j}{\sigma} x_{ij}\right] - \frac{\ln a_i}{\sigma} + \frac{\beta_0 - \ln \delta}{\sigma}\right)$$

* "less":

$$\pi_e^i = 1 - F\left(\sum_{j=1}^K \left[\frac{\beta_j}{\sigma} x_{ij}\right] - \frac{\ln a_i}{\sigma} + \frac{\beta_0 + \ln \delta}{\sigma}\right)$$

* "same":

$$\pi_0^i \equiv 1 - \pi_m^i - \pi_e^i$$

- MLE: maximize likelihood function
 - 1. Obtain $\hat{\sigma}$ from $\ln a_i$'s coefficient $1/\hat{\sigma}$.
 - 2. Recover $\hat{\beta}_j$ from x_{ij} 's coefficient $\hat{\beta}_j/\hat{\sigma}$.
 - 3. Solve for $\hat{\beta}_0$ and $\hat{\delta}$ using intercepts $(\beta_0 \ln \delta)/\sigma$ and $(\beta_0 + \ln \delta)/\sigma)$ of π_m^i and π_e^i .

- Estimation procedure:
 - * Variables x_{ij} : tax price and post-tax income y_i of i
 - * Consumer demand for PG:

$$\ln g_i = \beta_0 + \beta_1 \ln t_i + \beta_2 \ln y_i + \sum_{j=3}^K \beta_j x_{ij} - \varepsilon_i \qquad (17)$$

where:

- g_i = public expenditure level desired by i
- $y_i = \text{post-tax}$ income of i
- $t_i = MC$ of \$1 extra PG spending to i
- * Equation:

$$\ln \frac{g_i}{P_e} = \beta_0 + \beta_1 \ln \frac{t_i P_e}{P_0} + \beta_2 \ln \frac{y_i}{P_0} + \sum_{j=3}^K \beta_j x_{ij} - \varepsilon_i$$
(18)

where:

 $P_e = \text{local PG price where } i \text{ resides}$

 P_0 = average price level where *i* resides

 $g_i/P_e = \text{local PG level}$

 $y_i/P_0 =$ normalized post-tax income of i

 $t_i P_e$ = normalized marginal tax burden on *i* of local PG

* Simplifying:

$$\ln g_{i} = \beta_{0} + \beta_{1} \ln t_{i} + \beta_{2} \ln y_{i} + [1 + \beta_{1}] \ln P_{e} - [\beta_{1} + \beta_{2}] \ln P_{0} + \sum_{j=3}^{K} \beta_{j} x_{ij} - \varepsilon_{i}$$
(19)

5 Binary PG: Bohm [JPuE 1984]

- Interval method: 2 subject groups
 - Group 1: under-report WTP (average α)
 - Group 2: over-report WTP (average β)
 - True WTP interval:

 $[\alpha, \beta]$

- PG provision rule: PG cost C
 - · $C < \alpha$: PG provided
 - · $C > \beta$: no PG
 - · $\alpha < C < \beta$: indeterminate
- Good design: interval $[\alpha, \beta]$ is small
- Bohm (1969) experiment:
 - Survey: 200 Stockholm residents in 4 groups
 - PG in question: Cable TV service
 - Payment scheme:
 - * Group 1: pay full declared WTP
 - * Group 2: pay fixed % of declared WTP
 - * Group 3: pay a flat rate (independent of declared WTP)
 - * Group 4: no payment required
 - Reporting incentives:
 - * Groups 1 & 2: under-report (lower bound)

- * Groups 3 & 4: over-report (upper bound)
- Results: not much difference between groups
- Real-world application: Bohm (1982)
 - -279 local governments of Sweden
 - WTP for some future public service
 - Payment scheme:
 - * Group 1: pay fixed % of declared WTP
 - * Group 2: payment depends on declared WTP
 - US\$100 if WTP > 100
 - No service and no payment otherwise
 - Results:
 - * Interval size is only 7.5% of LB α
 - \ast PG provided as a result