資訊不對稱與機制設計

1 Analysis Framework

－n agents：

$$
u_{i}\left(x, \theta_{i}\right)
$$

$-x(\in X)$ is a social outcome
－$\theta_{i}\left(\in \Theta_{i}\right)$ is agent type，private info
－Agent type profile：

$$
\theta \equiv\left(\theta_{1}, \cdots, \theta_{n}\right)
$$

－Social choice／goal function：

$$
f(\theta) \in X
$$

－Mechanism／game design：

$$
\Gamma\left(S_{1}, \cdots, S_{n}, g(\cdot)\right)
$$

- Player strategy:

$$
s \equiv\left(s_{1}, \cdots, s_{n}\right), \quad s_{i}\left(\theta_{i}\right) \in S_{i}
$$

- Outcome function:

$$
g(s) \in X
$$

$-\Gamma$ implements f if there exists am equilibrium strategy

$$
\left(s_{1}^{*}\left(\theta_{1}\right), \cdots, s_{n}^{*}\left(\theta_{n}\right)\right)
$$

such that, for any θ :

$$
g\left(s_{1}^{*}\left(\theta_{1}\right), \cdots, s_{n}^{*}\left(\theta_{n}\right)\right)=f(\theta)
$$

- Revelation principle:

Any f that is implementable can be implemented by a "direct revelation" mechanism.

- Equilibrium concepts:
- Dominant-strategy mechanism:

Clarke [1971], Groves-Loeb [1975]

- Nash mechanism:

Groves-Ledyard [1977]

- SPE mechanism:

Moore-Repullo [1988]

1. Dominant-strategy Mechanism

1.1. Consumer Mechanism [Clarke, PC 1971]

- The Model
-2 goods:
$x \equiv$ private good
$y \equiv$ public good
- Consumer i : income

$$
w_{i}
$$

- Quasi-linear utility function:

$$
U_{i}\left(x_{i}, y\right)=x_{i}+f_{i}(y), \quad f_{i}^{\prime}>0, \quad f_{i}^{\prime \prime}<0
$$

- PG production cost:

$$
C(y)
$$

- Govt goal: maximize Benthamite social welfare

$$
\begin{gathered}
\max _{y} W \equiv \sum_{i} U_{i}\left(x_{i}, y\right)=\sum_{i} x_{i}+\sum_{i} f_{i}(y) \\
=\left[\sum w_{i}-C(y)\right]+\sum_{i} f_{i}(y) \\
\max _{y} \sum_{i} f_{i}(y)-C(y)
\end{gathered}
$$

-
- Info asym: govt does not know $f_{i}(y)$
\triangleright Design a mechanism so consumers will truthfully reveal $f_{i}(y)$
- Clarke mechanism/tax: 2 stages

S1 (PG rule) Each consumer i reports his/her $f_{i}(y)$ as $M_{i}(y)$
Govt then takes $M_{i}(y)$ as real $f_{i}(y)$ and chooses y accordingly:

$$
\max _{y} \sum_{i} M_{i}(y)-C(y)
$$

$\triangleright y(M)$, where $M \equiv\left(M_{1}, \ldots, M_{n}\right)$
S2 (Cost-sharing) Each consumer i pays tax:

$$
T_{i}(M)=C(y(M))-\sum_{j \neq i} M_{j}(y(M))-R_{i}\left(M_{-i}\right)
$$

where $M_{-i} \equiv\left(M_{1}, \ldots, M_{i-1}, M_{i+1}, \ldots, M_{n}\right)$.

- Consumer incentive:
- i 's utility after reporting $M_{i}(y)$:

$$
\begin{aligned}
U_{i}^{*} & =\left[w_{i}-T_{i}(M)\right]+f_{i}(y(M)) \\
& =w_{i}-\left[C(y(M))-\sum_{j \neq i} M_{j}(y(M))-R_{i}\left(M_{-i}\right)\right]+f_{i}(y(M))
\end{aligned}
$$

- Consumer reporting strategy:

$$
\max _{M_{i}(y)} f_{i}(y(M))+\sum_{j \neq i} M_{j}(y(M))-C(y(M))
$$

- Dominant strategy: truthful revelation

$$
M_{i}(y)=f_{i}(y)
$$

- Government budget
- Cannot guarantee govt budget balance
- To insure surplus: let θ_{i} be i 's cost share ${ }^{1}$

$$
R_{i}\left(M_{-i}\right) \equiv \min _{y}\left[1-\theta_{i}\right] C(y)-\sum_{j \neq i} M_{j}(y)
$$

then:

$$
T_{i}(M) \geq \theta_{i} C(y(M)), \forall i
$$

hence;

$$
T(M)=\sum_{i} T_{i}(M) \geq \sum_{i}\left[\theta_{i} C(y(M))\right]=C(y(M))
$$

- Surplus cannot be returned to consumers
\triangleright Must be discarded, or given to another economy

[^0]
1.2. Producer Mechanism [Groves-Loeb, JPuE 1975]

- Firm i : profit-maximizing

$$
\pi_{i}(K) \equiv \max _{L_{i}} H_{i}\left(L_{i}, K\right)
$$

where:
$H_{i}=$ profit function
$L_{i}=$ labor input
$K=$ public service

- Assume: $\pi_{i}(K)$ is
- differentiable
- mono-increasing
- strictly concave
- Government:
- provide K at unit price p
- not knowing $\pi_{i}(K)$
- Groves-Loeb 2-stage mechanism:

S1 (PG rule) Firm i reports its $\pi_{i}(K)$ as $M_{i}(K)$
\triangleright Govt then treats $M_{i}(K)$ as real $\pi_{i}(K)$ and chooses K :

$$
\max _{K} \sum_{i} M_{i}(K)-p K
$$

$\Rightarrow K(M)$, with

$$
M \equiv\left(M_{1}, \ldots, M_{n}\right)
$$

S2 (Cost-sharing) Each firm pays tax:

$$
T_{i}(M) \equiv p K(M)-\sum_{j \neq i} M_{j}(K(M))+R_{i}\left(M_{-i}\right)
$$

with:

$$
M_{-i} \equiv\left(M_{1}, \ldots, M_{i-1}, M_{i+1}, \ldots, M_{n}\right)
$$

- Firm's goal: choose $M_{i}(y)$ to max:

$$
\begin{gathered}
\pi_{i}(K(M))-T_{i}(M) \\
=\pi_{i}(K(M))+\sum_{j \neq i} M_{j}(K(M))-p K(M)-R_{i}\left(M_{-i}\right)
\end{gathered}
$$

$>$ Dominant strategy: truthful revelation

$$
M_{i}(K)=\pi_{i}(K)
$$

- Government budget surplus: ${ }^{2}$

$$
\begin{gathered}
\sum_{i} T_{i}(M)-p K(M) \\
=\sum_{i} R_{i}\left(M_{-i}\right)-(n-1)\left[\sum_{i} M_{i}(K(M))-p K(M)\right]
\end{gathered}
$$

${ }^{2}$ In some special cases, govt budget balance can be obtained. For example, firms may have quadratic $\pi_{i}(K)$:

$$
\pi_{i}(K)=\alpha_{i} K-\frac{K^{2}}{2}
$$

and govt does not know α_{i}. After firms report their α_{i} as a_{i}, govt will maximize total profit $\left[\sum \pi_{i}(K)-p K\right]$ and choose

$$
K(a)=\frac{\sum a_{i}-p}{n} ; p<\sum_{i} a_{i}
$$

With firm tax set as

$$
T_{i}(a)=p K(a)-\sum_{j \neq i}\left[a_{j} K-\frac{K^{2}}{2}\right]+R_{i}\left(a_{-i}\right), \quad R_{i}\left(a_{-i}\right) \equiv \frac{\left[\sum_{j \neq i} a_{j}-p\right]^{2}}{2 n}+\frac{\sum_{j \neq k ; j, k \neq i} a_{j} a_{k}}{2 n[n-2]}-\frac{p^{2}}{2 n^{2}}
$$

firms will tell the truth, and govt will have balanced budget.

2. Nash Mechanism

1. Optimal government: Groves-Ledyard [Econometrica 1977]

	Clarke mechanism	G / L mechanism
1. Reporting	Utility function	Individual demand
2. Truth-telling	Dominant strategy	Nash equilibrium
3. Govt budget	Surplus	Balance
4. Preference	Quasi-linear	Any convex preference
5. Equilibrium	Partial equilibrium	General equilibrium
	(demand or supply)	(both D and S)

2. Original G/L Mechanism:

- 2-stage design:

S1 After receiving individual $m_{i}(y)$, govt chooses PG by:

$$
\begin{equation*}
\max _{y} \sum_{i} m_{i}(y)-P y \tag{1}
\end{equation*}
$$

$\triangleright y=y(M)$, where

$$
M=\left(m_{1}, m_{2}, \cdots, m_{n}\right)
$$

S2 Consumer i has to pay tax:

$$
T_{i}(M)=\alpha_{i} P y-\sum_{j \neq i}\left[m_{j}(y)-\alpha_{j} P y\right]+R_{i}\left(M_{-i}\right)
$$

where

$$
M_{-i}=\left(m_{1}, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{n}\right)
$$

and

$$
\sum_{i} \alpha_{i}=1
$$

- Interpretation of $T_{i}(M)$:
$-\alpha_{i} P y: i$'s fixed proportional cost share
$-\left[m_{j}(y)-\alpha_{j} P y\right]: j$'s net consumer surplus
- $R_{i}\left(M_{-i}\right): i$'s lump-sum income transfer (indep. of $\left.m_{i}(y)\right)$
- Unique Nash equilibrium:
- Honest reporting of WTP function, Pareto optimality
? cannot achieve balanced budget

3. Improved G/L Mechanism:

- 3-stage design:

S1 Each consumer reports a real number: ${ }^{3}$

$$
m_{i}(\in \mathcal{R}) \gtreqless 0
$$

S2 PG level will be

$$
y(M)=\sum_{i} m_{i}
$$

53 Given $M=\left(m_{1}, \cdots, m_{n}\right)$ and $y^{*}(=y(M))$, consumer i pays:

$$
T_{i}(M)=\alpha_{i} P y^{*}+\frac{r}{2}\left[\frac{n-1}{n}\left(m_{i}-\mu_{-i}\right)^{2}-\sigma_{-i}^{2}\right]
$$

where:

$$
\mu_{-i} \equiv \frac{\sum_{j \neq i} m_{j}}{n-1} ; \quad \sigma_{-i}^{2} \equiv \frac{\sum_{j \neq i} \sum_{k \neq i}\left(m_{j}-m_{k}\right)^{2}}{2[n-1][n-2]}
$$

and α_{i} and r can be any number such that $\sum_{i} \alpha_{i}=1$

[^1]- Interpretation of $T_{i}(M)$:
- T_{i} goes up if his/her m_{i} diverges from others' average μ_{-i}
- T_{i} smaller when others' m_{j} quite different (variance $\sigma_{-i}^{2} \uparrow$)
- Nash:
- Consumer goal: given $\left(m_{1}, \ldots, m_{i-1}, m_{i+1}, \ldots, m_{n}\right)$

$$
\max _{m_{i}} U_{i}=x_{i}+f_{i}\left(y^{*}\right)=\left[w_{i}-T_{i}(M)\right]+f_{i}\left(\sum_{j} m_{j}\right)
$$

foc:

$$
f_{i}^{\prime}\left(\sum_{j} m_{j}\right)=T_{i}^{\prime}(M)=\alpha_{i} p+r\left[m_{i}-\frac{\sum_{j} m_{j}}{n}\right]
$$

\triangleright Summing up, we have the Samuelson foc:

$$
\sum_{i} f_{i}^{\prime}\left(y^{*}\right)=\sum_{i}\left[\alpha_{i} p\right]=p
$$

- Uniqueness of Nash:
* As $f(\cdot)$ is strictly concave, y^{*} is unique
* Unique individual m_{i} :

$$
m_{i}=\frac{f_{i}^{\prime}\left(y^{*}\right)-\alpha_{i} p}{r}+\frac{y^{*}}{n}
$$

- Balanced budget:

$$
\sum_{i} T_{i}(M)=p y^{*}
$$

4. Other Nash mechanism: Hurwicz [1979], Walker [1981]

3. SPE Mechanism

3.1. Monotoncity

- Monotoncity: necessary condition for Nash implementability ${ }^{4}$
- Monotoncity (Maskin 1997): ${ }^{5}$ Consider a social choice function $f(\cdot)$. Let $L_{i}^{\theta}(x)$ be lower contour (worse) set of x for consumer i under any profile $\theta . f$ is monotonic if, for any other possible θ^{\prime},

$$
L_{i}^{\theta}(f(\theta)) \subseteq L_{i}^{\theta^{\prime}}(f(\theta)), \forall i \Rightarrow f\left(\theta^{\prime}\right)=f(\theta)
$$

3.2. Example

- Moore-Repullo [Econometrica 1988]
- 2 consumers: Fig. 1
- Same utility type: Cobb-Douglas $(C)^{6}$ v. Leontiff $(L)^{7}$
- Social goal: choose $f(C)$ or $f(L)$ accordingly
- Conflict: 1 prefers $f(C), 2$ prefers $f(L)$
- Type (C or L) unknown to govt:
$\triangleright 1$ will claim $C, 2$ will claim L

[^2]

Figure 1: SPE implementation

Figure 2: Game tree [Moore-Repullo 1988]

- f is not monotonic, because:

$$
L_{1}^{C}(f(C)) \subset L_{1}^{L}(f(C)), L_{2}^{C}(f(C)) \subset L_{2}^{L}(f(C))
$$

but:

$$
f(C) \neq f(L)
$$

$\triangleright f$ is not Nash-implementable

- SPE-implementation: 3-stage design

S1 First 1 declares their common type $\theta(=C$ or $L)$.
If 1 admits $\theta=L$, we go for $f(L)$. [EoG]
Otherwise, we go to Stage 2.
S2 Now 2 will confirm/reject 1's announced θ.
If 2 agrees with 1 on type $\theta=C$, we go for $f(C)$. [EoG]
Otherwise, there is conflict. We enter Stage 3.
S3 Finally, it is up to 1 to choose between x and y.

- Unique SPE: Fig. 2
- 1 will tell truth in Stage 1
-2 will confirm in Stage 2 if necessary

3.3. The PG Problem

- 2 consumers $(i=1,2)$:
- Prefernce/type: private info θ_{i}
- Utility from PG d :

$$
u_{i}\left(d, \theta_{i}\right)
$$

- Government goal: with true $\left(\theta_{1}, \theta_{2}\right)$
- Desired PG level:

$$
d\left(\theta_{1}, \theta_{2}\right)
$$

- Tax on 1:

$$
t_{1}\left(\theta_{1}, \theta_{2}\right)>0
$$

- Subsidy for $2:^{8}$

$$
t_{2}\left(\theta_{1}, \theta_{2}\right)>0
$$

- Social choice function f :

$$
f\left(\theta_{1}, \theta_{2}\right)=\left(d\left(\theta_{1}, \theta_{2}\right), t_{1}\left(\theta_{1}, \theta_{2}\right), t_{2}\left(\theta_{1}, \theta_{2}\right)\right)
$$

and hence:

$$
\begin{aligned}
& U_{1}=u_{1}\left(d, \theta_{1}\right)-t_{1} \\
& U_{2}=u_{2}\left(d, \theta_{2}\right)+t_{2}
\end{aligned}
$$

[^3]- Moore-Repullo 3-stage design: inquire θ_{i} one-by-one

S1 Consumer 1 announces his type θ_{1}

S2 We next check with consumer 2.

- If she agrees, we accept θ_{1}. [EoG]
- Otherwise, we ask 2 to disclose 1's true type. Let it be ϕ_{1}.

S3 Again it is up to 1 to choose between X and Y :

$$
\begin{aligned}
& X=\left(x, t_{x}+\Delta, t_{x}-\Delta\right) \\
& Y=\left(y, t_{y}+\Delta, t_{y}+\Delta\right)
\end{aligned}
$$

$\underline{\text { where: }} \Delta$ is a very large positive number, and $\left(x, y, t_{x}, t_{y}\right)$ satisfy:

$$
\begin{aligned}
u_{1}\left(x, \theta_{1}\right)-t_{x} & >u_{1}\left(y, \theta_{1}\right)-t_{y} \\
u_{1}\left(x, \phi_{1}\right)-t_{x} & <u_{1}\left(y, \phi_{1}\right)-t_{y}
\end{aligned}
$$

- SPE: use backward induction

S3 This stage is reached only when 1 says θ_{1} and 2 says ϕ_{1}.
Here 1 will choose X if he was honest (with true type θ_{1}).
Otherwise 1 will prefer Y (with true type ϕ_{1}).

S2 Player 2 will act as she should:

- Confirm if 1 told the truth in S1. ${ }^{9}$
$-\underline{\text { Challenge }}$ if 1 lied in S1. ${ }^{10}$

S1 1 should tell truth, instead of lying, since:

$$
u_{1}\left(d, \theta_{1}\right)-t_{1}>u_{1}\left(y, \theta_{1}\right)-t_{y}-\Delta
$$

\triangleright Equilibrium path: 1 tells truth, then 2 confirms.

$$
\begin{aligned}
& { }^{9} \text { Player } 2 \text { is better off confirming (than to challenge and get } X \text { in S3) if } \theta_{1} \text { is true: } \\
& \qquad u_{2}\left(d, \theta_{2}\right)+t_{2}>u_{2}\left(x, \theta_{2}\right)+t_{x}-\Delta
\end{aligned}
$$

[^4]
4. Binary Choice

4.1. Pivot Mechanism: Tideman-Tullock [JPE 1976]

1. Choice between two options:

- Indivisible PG: "yes" or "no"
- Project choice:

$$
\alpha \mathrm{v} . \beta
$$

2. The context: choice between two options (α v. β)

- Preference intensity considered (cf. majority voting)
- Value/WTP of α (against β) for agent i :

$$
v_{i} \gtreqless 0
$$

\triangleright private info

- Social goal: choose $\alpha \underline{\text { iff }}$

$$
\sum_{i} v_{i} \geq 0
$$

- Self-reporting incentives: mis-representation of v_{i}

3. T / T mechanism:

- Each agent i reports his/her valuation of α (against β) as \hat{v}_{i}.
- Let \hat{V} be the sum of individual \hat{v}_{i} :

$$
\hat{V} \equiv \sum_{i} \hat{v}_{i}
$$

- We choose:
$-\alpha$: if $\hat{V} \geq 0$
$-\beta$: if $\hat{V}<0$
- Payment rule: only pivotal consumers have to pay ${ }^{11}$
- If $\hat{v}_{i}>\hat{V}>0$, then i must pay

$$
\hat{v}_{i}-\hat{V} \quad(>0)
$$

- If $0>\hat{V}>\hat{v}_{i}$, then i must pay

$$
\hat{V}-\hat{v}_{i} \quad(>0)
$$

E Consider 5 consumers, who claim their valuation for α as:

$$
v_{1}=12, v_{2}=11, v_{3}=8, v_{4}=1, v_{5}=-22
$$

So the reported total is $\hat{V}=10$, and the choice would be α.
Now, only 1 and 2 are required to pay ($\$ 2$ and $\$ 1$, respectively).
4. Dominant-strategy equilibrium: honest reporting ($\hat{v}_{i}=v_{i}$)
(a) Suppose an agent i prefers α (that is, $v_{i}>0$), and let

$$
\hat{V}_{-i} \equiv \sum_{j \neq i} \hat{v}_{j}
$$

(b) Consider her best reporting strategy in 4 cases below:

- $\hat{V}_{-i}>0$
- $\hat{V}_{-i}=0$

[^5]- $\hat{V}_{-i} \in\left(-v_{i}, 0\right)$
- $\hat{V}_{-i}<-v_{i}<0$
\triangleright Lying will not do you any good, and can only hurt you.

5. Problems with T / T mechanism:

- People may collude and get whatever they like, without paying anything. ${ }^{12}$
- Govt budget deficit: with large population, no one has to pay.
- Waste of resources: payment collected must be trashed (or donated to charity).

[^6]
4.2. Cost-sharing Mechanism: Jackson-Moulin [JET 1992]

1. The context:

- Indivisible PG: provision cost C
- n consumers: PG benefit b_{i} is private info

2. The implementation problem:

- Choice efficiency: providing PG if

$$
C \leq B \equiv \sum_{i} b_{i}
$$

- Proper cost sharing: $c_{i}(i=1, \cdots, n)$ with

$$
\sum_{i} c_{i} \geq C
$$

- Individual rationality (participation):

$$
b_{i} \geq c_{i}, \forall i
$$

3. The 2-stage 2-agent mechanism: $i=1,2$

S1 Both declare their estimated total PG value

$$
b_{1}+b_{2}
$$

as V_{1} and V_{2}, respectively. Assume $V_{1} \geq V_{2}$.

- If $V_{1} \geq C$, we proceed to $S 2 .{ }^{13}$
- Otherwise $C>V_{1} \geq V_{2}$, we stop. [EoG] ${ }^{14}$

[^7]S2 Now each reports her individual value b_{i} as β_{i}.

- If $\beta_{1}+\beta_{2}>V_{1}$: PG provided, and they each have to pay:

$$
c_{1}=\frac{\beta_{1} C}{V_{1}}, \quad c_{2}=\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}
$$

- If $\beta_{1}+\beta_{2}<V_{1}$: no PG , and 1 has to compensate 2 :

$$
\left[V_{1}-\beta_{1}\right]-\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}
$$

- If $\beta_{1}+\beta_{2}=V_{1}: 1$ may choose one of the above.

4. Unique undominated Nash: honest reporting

$$
\begin{aligned}
& (S 1) \quad V_{1}=V_{2}=b_{1}+b_{2} \\
& (S 2) \quad \beta_{1}=b_{1}, \beta_{2}=b_{2}
\end{aligned}
$$

Proof: using backward induction:
S2 Given V_{1} (in S1) and β_{1} (in S2), player 2 faces three possible cases:

- $b_{2}>V_{1}-\beta_{1}$:

If 2 tells truth $\left(\beta_{2}=b_{2}\right)$, she gets PG and utility:

$$
b_{2}-\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}
$$

If instead she lies (under-reports) β_{2}, she may lose PG and get lower utility:

$$
\left[V_{1}-\beta_{1}\right]-\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}
$$

- $b_{2}<V_{1}-\beta_{1}$:

Now 2 is better telling truth (hence no PG) than exaggerating
β_{2} (to obtain PG):

$$
b_{2}-\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}<\left[V_{1}-\beta_{1}\right]-\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}
$$

- $b_{2}=V_{1}-\beta_{1}$:

Now telling truth or not yields same utility for 2:

$$
b_{2}-\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}=\left[V_{1}-\beta_{1}\right]-\frac{\left[V_{1}-\beta_{1}\right] C}{V_{1}}
$$

Therefore, being honest ($\beta_{2}=b_{2}$) is her weakly dominant strategy.
Furthermore, if $b_{1}+b_{2} \geq C$, then given V_{1} and $\beta_{2}=b_{2}, 1$ should choose:

$$
\beta_{1}=\max \left\{V_{1}-b_{2}, 0\right\}
$$

to minimize his cost. ${ }^{15}$
S1 Back to stage 1, knowing that $\beta_{1}=b_{1}$ and $\beta_{2}=b_{2}$ in S2, player 1's goal is to set maximal V_{1} (te reduce costs in S 2), subject to $V_{1} \leq b_{1}+b_{2}$ (for having PG). Hence it must be:

$$
V_{1}=b_{1}+b_{2}
$$

[^8]As such, the players' utility levels are:

$$
\begin{gathered}
U_{1}=b_{1}-\frac{\left[V_{1}-b_{2}\right] C}{V_{1}}=b_{1}+\frac{C}{V_{1}} b_{2}-C\left(\geq 0 \text { if } V_{1} \leq C\right) \\
U_{2}=b_{2}-\frac{b_{2} C}{V_{1}}\left(\geq 0 \text { if } V_{1} \geq C\right)
\end{gathered}
$$

[^0]: ${ }^{1}$ Therefore, $\sum_{i} \theta_{i}=1$. If PG cost is to be shared equally, then $\theta_{i}=1 / n$.

[^1]: ${ }^{3}$ It can be interpreted as i 's extra demand (increment/decrement) for PG, given others' total demand.

[^2]: ${ }^{4}$ As for the sufficient condition, we further need "no veto power".
 ${ }^{5}$ Sketch of proof: Suppose \exists Nash implementation with $s^{*}=s(\theta)$ as a Nash strategy:

 $$
 g\left(s_{1}^{*}, \cdots, s_{n}^{*}\right)=f(\theta), \quad \forall \theta
 $$

 Then by "revealed preference", s_{i}^{*} is also i 's equilibrium strategy for θ^{\prime}, because better sets

 $$
 B_{i}^{\theta}(f(\theta)) \supset B_{i}^{\theta^{\prime}}(f(\theta)), \forall i
 $$

 Hence must also let $g\left(s_{1}^{*}, \cdots, s_{n}^{*}\right)=f\left(\theta^{\prime}\right) \square$
 ${ }^{6}$ The goods are complements.
 ${ }^{7}$ The goods are substitutes.

[^3]: ${ }^{8} \mathrm{We}$ can set $t_{1}=t_{2}$ for balanced govt budget. But in general, govt may allow any positive $\left(t_{1}, t_{2}\right)$ combination.

[^4]: ${ }^{10}$ By challenging, she will get Y in S 3 , much better than being silent:

 $$
 u_{2}\left(d, \theta_{2}\right)+t_{2}<u_{2}\left(y, \theta_{2}\right)+t_{y}+\Delta
 $$

[^5]: ${ }^{11} \mathrm{~A}$ person is called pivotal because, without his/her reported value \hat{v}_{i}, the outcome will be reversed. I.e., $\sum_{j \neq i} \hat{v}_{j}$ and \hat{V} have opposite sign. Therefore, a pivotal person should pay for the loss he/she imposes on other people.

[^6]: ${ }^{12}$ This surely will not happen when there are two agents. So T / T design is quite suitable for couples to make movie or restaurant decisions.

[^7]: ${ }^{13}$ Now at least one of them considers the PG worthwhile.
 ${ }^{14}$ They both think the PG has too little value.

[^8]: ${ }^{15}$ Because PG will only exist when $\beta_{1}+\beta_{2}>V_{1}, \beta_{1}$ should be at least $V_{1}-b_{2}$. Meanwhile, to minimize his cost

 $$
 c_{1}=\frac{\beta_{1} C}{V_{1}}
 $$

 1's optimal choice is:

 $$
 \beta_{1}=V_{1}-b_{2}
 $$

