私人捐獻賽局

1 Contribution Motivation

1.1 Cornes-Sandler Anomaly

- Severe free-riding (cf. moderate in experiments)
- Neutrality/crowing-out
 - \triangleright Experiment: Eckel et al. [JPuE 2005/v89, pp. 1543–1560]¹
- Large-population effect
 ▷ White [1989], Steiberg [1989]

1.2 Other Possible Explanations

- *Fair share* [Margolis 1982]:
 ▷ G-utility v. S-utility
- Principle of *rational commitments* (or Kantian behavior):²

$$\max_{x,g} \quad U(x,ng) \quad \text{s.t.} \quad x+pg=I$$

Samuelson foc:

$$n \cdot \mathrm{MRS}^{G,x} = p$$

- Principle of *reciprocity* [Sugden 1984]
 ▷ "I should also contribute q̄ if all other do so."
- Sentiment [Hollander 1990]: social approval

¹Framing effects: crowding-out depends on player's perception about source of the funding.

²So called "Kantian categorical imperative". See, for example, Laffont [1975], Collard [1978], and Harsanyi [1980].

1.3 Impure Altruism: Warm Glow Theory

- Altruism v. egoism:
 - Pure egoistic:

$$U_i(x_i, g_i)$$

– Pure altruistic:

$$U_i(x_i, G)$$

– Impure altruism: Andreoni [JPE 1989, EJ 1990]

$$U_i(x_i, g_i, G)$$

- Implications of impure altruism:
 - 1. Neutrality result does not hold:
 - \triangleright May have higher G using transfer:

- 2. RKT will break down: kids will steal from head.³
 - \triangleright Parent: $U_p(X_p, X_k, t)$, more egoistic
 - \triangleright Kid: $U_k(X_k)$, more altruistic

 $^{^{3}}$ Ironically, now the head is more egoistic, while kids are more altruistic.

1.4 Environmental Offset

- Kotchen, M.J. (*Economic Journal*, 2009, V119, pp. 883–899)
 ▷ Contribution compensation for harmful private consumption
- Pure altruistic preference:

$$U_i(x_i, G)$$

Consumer budget:

$$x_i + g_i = I_i$$

• Private consumption x_i diminishes PG:

$$G = G_{-i} + g_i - \beta x_i$$

 $\triangleright g_i \equiv$ direct contribution by *i*

- $\triangleright y_i = g_i \beta x_i \equiv \text{net contribution by } i$
- Equilibrium:
 - Mean contribution does not converge to zero as population grows large

2 Non-additive Public Goods

- 2.1 Social Composition Functions: Hirshleifer [PC 1983]
 - Summation rule:

$$G = \sum_{i} g_i$$

• Best-shot:

$$G = \max\{g_1, \cdots, g_n\}$$

• Weakest-link:

$$G = \min\{g_1, \cdots, g_n\}$$

2.1.1 Summation Rule

• Optimality condition:

$$\sum_{j} \mathrm{MRS}_{j}^{G, x_{j}} = \mathrm{MC}_{i}(g_{i}), \ \forall i$$

• Nash interior condition:

$$\mathrm{MRS}_i^{G,x_i} = \mathrm{MC}_i(g_i), \ \forall i$$

2.1.2 Best-shot

 \bullet Optimality condition: with the low cost player k

$$\sum_{i} \operatorname{MRS}_{i}^{G,x_{i}} = \operatorname{MC}_{k}(G^{B}); \text{ and } \operatorname{TC}_{k}(G^{B}) \leq \operatorname{TC}_{j}(G^{B}), \forall j \neq k$$

and

$$g_j = 0, \ \forall j \neq k$$

 \bullet Nash interior condition: with the low cost player k

$$\mathrm{MRS}_k^{G,x_k} = \mathrm{MC}_k(N^B)$$

and

$$g_j = 0, \ \forall j \neq k$$

2.1.3 Weakest-link

• Optimality condition:

$$\sum_{i} \operatorname{MRS}_{i}^{G,x_{i}} = \sum_{i} \operatorname{MC}_{i}(G^{W})$$

• Nash interior condition: $\exists k$

$$MRS_{k}^{G,x_{k}} = MC_{k}(N^{W})$$
$$MRS_{j}^{G,x_{j}} > MC_{j}(N^{W}), \quad \forall j \neq k$$

2.2 Generalization

- Cornes [QJE 1993]
- Constant elasticity of substitution (CES) production function:

$$Q = \alpha \left[\frac{\sum_{i=1}^{n} q_i^{\lambda}}{n}\right]^{1/\lambda}$$

– Summation:

$$\alpha = n, \ \lambda = 1$$

- WL:

$$\alpha = 1, \ \lambda \to -\infty$$

– BS:

$$\alpha = 1, \ \lambda \to +\infty$$

– Average: $\alpha = \lambda = 1$, hence:

$$Q = \frac{\sum_i q_i}{n}$$

• Weaker-link:
$$\lambda \to +0$$

$$Q = \left(\prod_{i=1}^{n} q_i\right)^{1/n}$$

 \triangleright

$$\frac{\partial Q}{\partial q_i} = \frac{Q}{nq_i} \uparrow$$
 with lower q_i

2.3 Group Contest/Tournament: Group-specific Public-good Prize2.3.1 Baik [EL 1993]

- N groups: each with m_i risk-neutral members
- Effort of member k in group-i:

$$x_i^k$$

• Total group i effort:

$$X_i = \sum_{j=1}^{m_i} x_i^j$$

• Prize-winning probability:

$$p_i(X_1,\ldots,X_N)$$

with:

$$\frac{\partial p_i}{\partial X_i} \ge 0, \quad \frac{\partial^2 p_i}{\partial X_i^2} \le 0; \quad \frac{\partial p_i}{\partial X_j} \le 0, \quad \frac{\partial^2 p_i}{\partial X_j^2} \ge 0$$

• Member-specific prize value: $v_i^k \ (> 0)$

$$\mathrm{EU}_i^k = v_i^k p_i(X_1, \dots, X_N) - x_i^k$$

• Assuming, for each group i:

$$v_i^1 \geq v_i^2 \geq \cdots \geq v_i^{m_i} (>0)$$

• player-k-best response:

$$\tilde{X}_i^k \equiv \operatorname{argmax}_{X_i} v_i^k p_i(X_i | X_{-i}) - X_i \quad \text{s.t.} \quad X_i \ge 0$$

 \triangleright

$$\tilde{X}_i^1 \geq \tilde{X}_i^2 \geq \cdots \geq \tilde{X}_i^{m_i}, \ \forall i$$

• Equilibrium:

$$(X_1^*,\cdots,X_N^*)$$

– Only member 1 will put out effort: $X_i^* = x_i^1 = \tilde{X}_i^1$

$$v_i^1 \cdot \frac{\partial p_i}{\partial X_i} (x_i^1, X_{-i}^*) = 1$$

– Other members $(j \neq 1)$ will free ride $(x_i^j = 0)$:

$$v_i^j \cdot \frac{\partial p_i}{\partial X_i} (x_i^1, X_{-i}^*) < 1$$

2.3.2 Plurality rule

- Baik-Shogren $[1998]^4$
- Winning probability:

 $p_1(X_1, X_2) = F(X_1 - X_2), \quad p_2(X_1, X_2) = 1 - F(X_1 - X_2)$

with:

$$F(0) = 1/2, \ F(-d) = 1 - F(d)$$
$$0 < F(d) < 1, \ \forall d \in \mathcal{R}$$
$$F'(\cdot) > 0, \ F''(0) = 0, \ F''(d)d < 0$$

⁴K.H. Baik and J.F. Shogren, "A Behavioral Basis for Best-Shot Public-Good Contest," in Advances in Applied Microeconomics (Volume 7), JAI Press, pp. 169–78, 1998.

2.3.3 Two-stage Game

- Baik-Lee [1998]⁵
- Two stages:

S1 Inter-group contest:

$$p_i = \frac{X_i}{\sum_j X_j}$$

S2 Intra-group competition: for share α_i of the prize

2.3.4 All-pay Auction

- Baik-Kim-Na [JPuE, 2001/v82, PP. 415-429]
- Winning probability:

$$p_i(X_1, X_2) = \begin{cases} 1, & \text{if } X_i > X_j \\ 1/2, & \text{if } X_i = X_j \\ 0, & \text{if } X_i < X_j \end{cases}$$

⁵K.H. Baik and S. Lee, "Group Rent Seeking with Sharing," in Advances in Applied Microeconomics (Volume 7), JAI Press, pp. 75–85, 1998.

3 Binary/Discrete/Threshold Public Goods

- 3.1 Continuous/variable Contributions
 - 1. The case of Oral Roberts
 - 2. Bagnoli-McKee [EI 1991]
 - Binary PG: price/cost C
 - N players: income w_i , WTP for PG V_i , contribution c_i
 - Assume:

$$C > w_i > V_i, \forall i$$

• Game rule:

 $-\sum_i c_i > C$: PG provided, player *i* gets payoff:

$$\pi_i = V_i + [w_i - c_i]$$

 $-\sum_i c_i < C$: no PG, c_i is refunded, *i* gets payoff:

$$\pi_i = w_i$$

• Nash equilibrium: 3 cases

$$-\sum_{i} c_{i} > C: (c_{1}, \dots, c_{N}) \text{ cannot be Nash.}^{6}$$
$$-\sum_{i} c_{i} = C: \text{ stable Nash with } c_{i} \leq V_{i}, \forall i$$
$$-\sum_{i} c_{i} < C: \text{ Nash (but not trembling-hand perfect) if}$$

$$V_i + \sum_{j \neq i} c_j < C, \quad \forall i$$

⁶Player i would want to lower c_i , given other players' contributions.

3.2 Binary Contributions

3.2.1 Palfrey-Rosenthal [JPuE 1984]

- 1. Analysis goal:
 - Two designs: NoRefund (\aleph) v. Refund (\Re)
 - Two possible reasons for not contributing: Greed v. Fear
- 2. The Model:
 - M players
 - Binary PG: provided if $w (\leq M)$ players contribute
 - Cost c for contributors, 0 for non-contributors
 - Player gets utility 1 with PG, 0 without
 - 3 groups of players:
 - (a) Contributors: $|G^1| = m^1$
 - (b) Non-contributors: $|G^2| = m^2$
 - (c) Randomizers (contribute with probability q): $|G^3| = m^3$
 - $-\bar{m}^3 \equiv$ number of players actually contribute in G^3
 - $-\bar{m}_{-i}^3 \equiv$ number of contributors excluding *i* in G^3
 - $-\bar{m} \equiv \text{number of total contributors}$

3. NoRefund (\aleph)

- Pure-strategy Nash $(m^3 = 0)$:
 - (a) w = 1: *M* equilibria $(m^1 = 1, m^2 = M 1)$
- (b) $w \ge 2$:

i. $m^1 = 0, m^2 = M$: no one controbutes, no PG

ii.
$$m^1 = w, m^2 = M - w$$
: exactly w contributors, PG provided

• Mixed-strategy Nash $(m^3 > 0)$: equilibrium conditions are

 $-G^1$: EU is greater with contributing

$$P(\bar{m}^3 \ge w - m^1) - c \ge P(\bar{m}^3 \ge w - m^1 + 1)$$

so $c \le P(\bar{m}^3 = w - m^1)$, or:

$$c \leq \left(\begin{array}{c} M - m^{1} - m^{2} \\ w - m^{1} \end{array} \right) q^{w - m^{1}} [1 - q]^{M - w - m^{2}}$$
(1)

where P(X) is the probability of event X.

 $-G^2$: EU is greater without contributing

$$P(\bar{m}^3 \ge w - m^1) \ge P(\bar{m}^3 \ge w - m^1 - 1) - c$$

so $c \ge P(\bar{m}^3 = w - m^1 - 1)$, or: $c \ge \begin{pmatrix} M - m^1 - m^2 \\ w - m^1 - 1 \end{pmatrix} q^{w - m^1 - 1} [1 - q]^{M - w - m^2 + 1}$ (2)

 $-G^3$: equal EU either way

$$P(\bar{m}_{-i}^3 \ge w - m^1 - 1) - c = P(\bar{m}_{-i}^3 \ge w - m^1)$$

so $c = P(\bar{m}_{-i}^3 = w - m^1 - 1)$, or: $c = \begin{pmatrix} M - m^1 - m^2 - 1 \\ w - m^1 - 1 \end{pmatrix} q^{w - m^1 - 1} [1 - q]^{M - w - m^2}$ (3)

For mixed strategy Nash (m¹, m², m³, q):
(a) if (m¹ = 0): (m², m³, q) must satisfy (2, 3)

(b) if $(m^2 = 0)$: (m^1, m^3, q) must satisfy (1, 3)

(c) if
$$(m^1 = m^2 = 0, m^3 = M)$$
: q only have to satisfy (3)

- (d) otherwise: all 3 eqs (1, 2, 3) must hold
- Admissible (m^1, m^2, m^3, q) , given (M, w, c), satisfies:
 - (1) $m^1 \leq w 1$: or else there must be PG, hence no need to mix
 - (2) $m^2 \leq M w$: or else there must be no PG, hence no need to mix

-c(q), by Eq.(3), must be uni-modal, and peaks at $c_{\max} = c(\hat{q})$:

- iff condition for existence of mixed-strategy Nash, given any ad-

missible (m^1, m^2, w, M) :

$$c \leq \begin{cases} c(\hat{q}), \text{ if } m^{1} = 0\\ c(\bar{q}), \text{ if } m^{1} > 0 \end{cases}$$

$$* \text{ If } m^{2} > 0, \text{ then by Eqs.}(2)(3): q \geq \hat{q}_{o}$$

$$* \text{ If } m^{1} > 0, \text{ then by Eqs.}(1)(3):$$

$$q \geq \tilde{q} \equiv \frac{w - m^{1}}{M - m^{1} - m^{2}} > \hat{q}$$

$$* \text{ If } m^{1} > 0 \text{ and } m^{2} > 0: q \geq \tilde{q} \text{ (as } \hat{q} \text{ is not binding)}$$

$$- \text{ Nash } (m^{1}, m^{2}, m^{3}, q) \text{ can hence be obtained, for any chosen } (m^{1}, m^{2}).^{7}$$

$$E \text{ Assume } (M = 4, w = 2, c = 0.096):$$

$$* \text{ Pure Nash: } (m^{1} = 0, m^{2} = 4) \text{ and } (m^{1} = m^{2} = 2)$$

$$* \text{ Mixed Nash:}$$

$$(1) m^{1} = m^{2} = 0: \text{ two solutions}$$

$$q = 0.800, E(\bar{m}) = 3.2 > w$$

$$q = 0.034, E(\bar{m}) = 0.14 < w$$

$$(2) m^{1} = 0, m^{2} = 1: q = 0.9494, E(\bar{m}) = 2.85 > w$$

$$(3) m^{1} = 1, m^{2} = 0: q = 0.69, E(\bar{m}) = 3.07 > w$$

$$(4) m^{1} = m^{2} = 1: q = 0.904, E(\bar{m}) = 2.81 > w$$

$$* \text{ NB: It is possible that everyone contributes } (m^{2} = 0), \text{ and}$$

PG is over-provided $(\bar{m} > w)$.

⁷When $m^1 > 0$ or $m^2 > 0$, we have no more than one solution. Otherwise $(m^1 = m^2 = 0)$, we have at most two solutions.

- Eventually, when M is very large, only pure Nash exists.⁸

- 4. Refund (\Re)
 - Pure-strategy Nash $(m^3 = 0)$:
 - $-w \leq 2$: same as in (\aleph)
 - -w > 2: besides those in \aleph , we have $(0 < m^1 \le w 2, m^2 = M m^1)$

- <u>NB</u>: Now we have more Nash than in ℵ, but only $(m^1 = w, m^2 = M - w)$ is strong.⁹ In contrast, all Nash in ℵ are strong._o

- Mixed-strategy Nash $(m^3 > 0)$:
 - Define:

$$C(N,n,q) \equiv \binom{N}{n} q^n [1-q]^{N-n}$$

– Equilibrium condition for mixed Nash:

 $* G^1$: now cost c is incured only when PG is provided

$$P(\bar{m}^3 \ge w - m^1)[1 - c] + P(\bar{m}^3 < w - m^1) \cdot 0$$

$$\ge P(\bar{m}^3 \ge w - m^1 + 1) \cdot 1 + P(\bar{m}^3 < w - m^1 + 1) \cdot 0$$

so:

$$c \leq \frac{P(\bar{m}^3 = w - m^1)}{P(\bar{m}^3 \geq w - m^1)}$$

⁸The proof goes as follows: First begin with an admissible (m_0^1, m_0^2, w_0, M_0) , define a sequence:

 $\{(m_n^1, m_n^2, w_n, M_n)\}_{n=1}^{\infty}; \ m_n^1 \equiv nm_0^1, \ m_n^2 \equiv nm_0^2, \ w_n \equiv nw_0, \ M_n \equiv nM_0$

and let c_{\max}^n be the corresponding c_{\max} of (m_n^1, m_n^2, w_n, M_n) . Then by limiting property of binomial distribution, we know:

$$\lim_{n \to \infty} c_{\max}^n = 0$$

Therefore, $\lim_{n\to\infty} q^n = 0$, any mixed Nash is actually pure Nash.

⁹ "Strong" means that a player will get get strictly lower utility if he/she deviates from Nash strategy.

$$= \frac{C(M - m^{1} - m^{2}, w - m^{1}, q)}{\sum_{t=w-m^{1}}^{M - m^{1} - m^{2}} C(M - m^{1} - m^{2}, t, q)}$$
(4)
* G^{2} :

$$P(\bar{m}^3 \ge w - m^1) \cdot 1 \ge P(\bar{m}^3 \ge w - m^1 - 1)[1 - c]$$

or:

$$c \geq \frac{P(\bar{m}^{3} = w - m^{1} - 1)}{P(\bar{m}^{3} \geq w - m^{1} - 1)}$$
$$= \frac{C(M - m^{1} - m^{2}, w - m^{1} - 1, q)}{\sum_{t=w-m^{1}-1}^{M-m^{1}-m^{2}}C(M - m^{1} - m^{2}, t, q)}$$
(5)

 $* G^3:$

$$P(\bar{m}_{-i}^3 \ge w - m^1 - 1)[1 - c] = P(\bar{m}_{-i}^3 \ge w - m^1) \cdot 1$$

or:

$$c = \frac{P(\bar{m}_{-i}^3 = w - m^1 - 1)}{P(\bar{m}_{-i}^3 \ge w - m^1 - 1)}$$
$$= \frac{C(M - m^1 - m^2 - 1, w - m^1 - 1, q)}{\sum_{t=w-m^1-1}^{M-m^1-m^2-1} C(M - m^1 - m^2 - 1, t, q)}$$
(6)

- Note that eqs(4)(5) are not binding. Then by eq.(6):
 - * c is continuously differentiable in $q \in (0,1)$

$$c(0) = 1, \ c'(q) < 0, \ \lim_{q \to 1} c(q) = 0$$

* c(q) has inverse function Q(c):

$$Q(1) = 0, \quad Q'(c) < 0, \quad \lim_{c \to 0} Q(c) = 1$$

 \ast Unique Q for any $c~(\in (0,1))$ and admissible (m^1,m^2,w,M)

- Comparision:

- * PG more likely in \Re than in \aleph when c is high.¹⁰
- * For any admissible (m^1, m^2, w, M) and $c \leq c_{\max}(m^1, m^2, w, M)$, by comparing eq.(3)(6), we know Q(c) in \Re is strictly greater than q(c) in \aleph .¹¹
- E Take again (M = 4, w = 2, c = 0.096), now \Re has same pure Nash as \aleph , but mixed nash are:

(a)
$$m^1 = m^2 = 0$$
: $Q = 0.802$

- (b) $m^1 = 0, m^2 = 1$: Q = 0.9496
- (c) $m^1 = 1$: same as in \aleph
- $\triangleright Q > q$ (but very close)

¹⁰PG is possible only when $c \leq c_{\max}$ in \aleph .

¹¹When $m^1 = m^2 = 0$, Q(c) must be greater than the two solutions in \aleph .

3.2.2 Palfrey-Rosenthal [JPuE 1988]

1. Perfect-info game: contribution cost $c \in (0, 1)$, PG utility 1

A	Contribute	Not
Contribute	(1-c, 1-c)	$(1-c, 1)^*$
Not	$(1, 1-c)^*$	(0, 0)

- 2 pure Nash: either one contributes
- 1 mixed Nash: both contribute with probability p = 1 c

2. Bayesian game:

- "Warm glow" utility d_i ≥ 0 (i = A, B): private info
 ▷ CDF F(·) is common knowledge
- Normal form:

A	Contribute	Not
Contribute	$(1-c+d_A, 1-c+d_B)$	$(1-c+d_A, 1)$
Not	$(1, 1-c+d_B)$	(0,0)

• Player *i*'s strategy:

- If $d_i > c$: should contribute

– If $d_i < c - 1$: should not contribute

$$- \exists d^* \in [c-1, c]$$
: contribute iff $d_i > d^*$

• Equilibrium:

- For either player i, probability(j will contribute) is:

$$q^* = 1 - F(d^*)$$

– At threshold $d_i = d^*$, same utility from contributing or not:

$$1 - c + d^* = q^*$$

– Can solve for equilibrium (d^*, q^*) from the above two eqs.¹²

3. N-player games:

- Dummy s_i : = 1 for contributing, = 0 for not contributing
- Warm-glow EU:

$$U_i(m_i, s_i) = \begin{cases} V(m_i, 1) + d_i, & \text{if } s_i = 1 \\ V(m_i, 0), & \text{if } s_i = 0 \end{cases}$$

 $^{^{12}(}d^*, q^*)$ must exist if F is continuous.

where: $V(m_i, s_i) \equiv EU_i$ if there are m_i other contributors.

• Can solve for equilibrium (d^*, q^*) with the two eqs:

$$q^* = 1 - F(d^*)$$
$$\sum_{j=0}^{N-1} \pi_j V(j,1) + d^* = \sum_{j=0}^{N-1} \pi_j V(j,0)$$

where

$$\pi_j \equiv \binom{N-1}{j} [q^*]^j [1-q^*]^{N-1-j}$$

is probability that j of the other N-1 players will contribute.

- 4. Possible games: w contributors required for PG provision
 - Chicken: players have both "greed" and "fear"¹³

	$m_i < w - 1$	$m_i = w - 1$	$m_i > w - 1$
$V(m_i, 1)$	-c	[1 - c]	[1 - c]
$V(m_i, 0)$	0	0	[1]

• NoFear: *cost refund* if PG is not provided

	$m_i < w - 1$	$m_i = w - 1$	$m_i > w - 1$
$V(m_i, 1)$	0	[1 - c]	[1 - c]
$V(m_i, 0)$	0	0	[1]

• NoGreed: cost sharing, everyone must incur c if PG is provided

	$m_i < w - 1$	$m_i = w - 1$	$m_i > w - 1$
$V(m_i, 1)$	-c	[1 - c]	[1 - c]
$V(m_i, 0)$	0	0	[1 - c]

 $^{13}\mathrm{Parentheses}$ in table indicate cases that PG is provided.

[1 - c]

- \bullet Control: with both refund and cost sharing

0

	D •	1•1	•	
	F/0111	libr	111m	strategy:
-	Lyan	II ~ I	I CALLE	

 $V(m_i, 0)$

(Chicken)	d^*	=	$\sum_{j=0}^{N-1} \pi_j c - \pi_{w-1} = c - \pi_{w-1}$
(NoFear)	d^*	=	$\sum_{j=w-1}^{N-1} \pi_j c - \pi_{w-1}$
(NoGreed)	d^*	=	$\sum_{j=0}^{w-1} \pi_j c - \pi_{w-1}$
(Control)	d^*	=	$\pi_{w-1}[1-c]$

0

• Comparision: given N, w, c, and $F(\cdot)$

$$q^*_{\text{Chicken}} \leq q^*_{\text{NoFear}} \leq q^*_{\text{Control}}$$

 $q^*_{\text{Chicken}} \leq q^*_{\text{NoGreed}} \leq q^*_{\text{Control}}$

 \triangleright People are more likely to contribute without greed or fear.

4 Contribution-based Group Formation

- Gunnthorsdottir et al. [JPuE, 2010/v94, pp. 987–994]
- *Within-group* public good contribution:
 - Group members: $i = 1, \dots, n$
 - \triangleright Equal endowment: w
 - \triangleright Payoff for each member from \$1 contribution by any member:

$$m \in \left(\frac{1}{n}, 1\right)$$

– Group optimality: all members make full contribution

$$g_i = w, \forall i$$

- Individual incentive:

$$g_i = 0, \forall i$$

- Competitive grouping: based on contributions
 - Total consumers: N
 - Fixed number of equal-sized groups: K
 - \triangleright Equal group size:

$$n = \frac{N}{K}$$

- Individuals are *ranked* according to their contributions, and then partitioned into K groups.¹⁴
- Inefficient no-contribution equilibrium E^0 :

$$g_i = 0, \quad \forall i = 1, \cdots, N$$

 $^{^{14}\}mathrm{Ties}$ are broken by random draw.

- Near-efficient positive-contribution equilibrium (NEE, E^+):
 - Class: set of consumers with identical contribution

 $\triangleright c_i \equiv$ number of consumers in Class C_i

 $\triangleright \bar{g}_i \equiv \text{individual contribution of consumers in Class } C_i$

 $\bar{g}_1 > \bar{g}_2 > \bar{g}_3 > \cdots$

- Group: 1, 2, 3, \cdots , K
- Equilibrium E^+ construction:
 - 1. There must be <u>at least</u> 2 classes, C_1 and C_2 .¹⁵
 - 2. Group 1 contains only C_1 players.¹⁶

 $\triangleright c_1$ must be greater than (but not divisible by) n.¹⁷

 \triangleright Some C_1 players will be mixed with C_2 players in a group.

3. All C_1 players make full contribution:¹⁸

$$\bar{g}_1 = w$$

4. The mixed group (with both C_1 and C_2 players) must be the <u>last group</u> K.¹⁹

 \triangleright In any E^+ , there are <u>exactly two</u> classes (C_1 and C_2).

- \triangleright All C_2 players are contained in last group K:
 - $c_2 < n$

¹⁵If all consumers have equal positive contributions (i.e., only 1 class), any one will want to deviate to g = 0.

¹⁶Otherwise any C_1 player *i* will want to reduce his contribution as long as $g_i > \bar{g}_2$.

¹⁷Otherwise any C_1 player can reduce his contribution and remain in the same group.

¹⁸Otherwise each C_1 player *i* will increase his g_i by ϵ to avoid being assigned to the mixed group.

¹⁹Assume that there are still groups below the mixed group. Then we have two possibilities: (1) Class C_2 extends beyond the mixed group further below: now each C_2 player *i* will increase his g_i by ϵ to stay for sure in the mixed group to be with the C_1 players. (2) Class C_2 does not extend beyond the mixed group: now each C_2 player *i* can slightly decrease his g_i by ϵ without being kicked out of the mixed group. Neither case is possible in equilibrium.

5. All C_2 players contribute nothing:

 $\bar{g}_2 = 0$

- Existence and uniqueness of E^+ :
 - Only equilibrium E^0 exist if

$$m \ < \ \frac{N-n+1}{Nn-n^2+1}$$

– Both E^0 and E^+ exist if

$$m > \frac{N-n+1}{Nn-n^2+1}$$

and, for E^+ , c_2 is an integer between b and b+1, with:

$$b = \frac{N - mN}{mN - mn + 1 - m}$$

 \triangleright Equal expected payoffs for both C_1 and C_2 players.

• Experimental test:

– In general, experimental results support NEE.

5 War of Attrition: Time Dynamics

- 5.1 Incomplete Info [Bliss-Nalebuff, JPuE 1984]
 - The problem:
 - Only 1 contributor is needed for an indivisible PG
 - Who and when will someone contribute?
 - Examples:
 - $\sqrt{Dragon slaying}$ and Ballroom dancing [paper title]
 - $\sqrt{}$ Who will clean up the house/toilet?
 - $\sqrt{}$ Who will get up to feed the crying baby at night?
 - $\sqrt{}$ Who will turn in the exam first?
 - $\sqrt{}$ The mice v. cat story
 - The Model:
 - -n+1 players, everyone gets one-time utility 1 when PG is provided
 - Individual contribution cost: private info

 $c \in [0,1]$

- $\triangleright c$ follows distribution pdf $f(\cdot)$ and cdf $F(\cdot)$
- Asymmetric equilibrium:
 - -(n+1) equilibria: any one contributes at time 0, others free ride
 - Not justifiable

- Symmetric-strategy equilibrium:
 - Identical strategy: waitig time limit

T(n,c)

– Can I benefit from deviation (pretending I am $c^* > c$)?²⁰

$$E[U(n, c, c^*)] = [1 - c]e^{-T(n, c^*)}[1 - F(c^*)]^n + \int_0^{c^*} e^{-T(n, x)} nf(x)[1 - F(x)]^{n-1} dx$$

- FOC for optimal deviation c^* :

$$\frac{\partial E[U(n,c,c^*)]}{\partial c^*} = 0$$

or:

$$\frac{\partial T(n, c^*)}{\partial c^*} = \frac{ncf(c^*)}{[1-c][1-F(c^*)]}$$

– However, by definition, T(n, c) implies $c^* = c$:

$$\frac{\partial T(n,c)}{\partial c} = \frac{ncf(c)}{[1-c][1-F(c)]} > 0$$
(7)

 \triangleright First-order P.D.E. with border condition:

$$T(n,0) = 0, \quad \forall n$$

• Properties of T(n, c):

– People with higher costs wait longer:

$$\frac{\partial T}{\partial c} > 0$$

²⁰With all others following T(n,c).

* Lowest-cost player will contribute at time limit T(n, c)

 \ast Efficiency loss: delayed provision of PG

– People wait longer with larger population:

$$\frac{\partial T}{\partial n} > 0$$

 \triangleright Since, by eq. (7):

$$T(n,c) = nS(c)$$

we know:

$$T(1,c) = S(c)$$

and

$$T(n,c) = n \cdot T(1,c)$$

E Let:

$$T(1,c) = S(c) = 10$$

then:

$$T(2,c) = 2 \cdot T(1,c) = 20$$

 $T(3,c) = 3 \cdot T(1,c) = 30$
... \Box

• It is still desirable to have more people (higher n):

$$\frac{\partial E[U(n,c,c)]}{\partial n} > 0, \ \forall n, \ \forall c$$

Pf We know

$$\frac{\partial E[U(n,0,0)]}{\partial n} = 0, \quad \forall n$$

and

$$\frac{\partial^2 E[U(n,c,c^*)]}{\partial n \partial c} \Big|_{c^*=c} = \frac{\partial (-e^{-nT(2,c)}[1-F(c)]^n)}{\partial n} \ge 0, \forall c \square$$

• Large population: let $\hat{c} \equiv \sup\{x : F(x) = 0\}$

$$\lim_{n \to \infty} E[e^{-T_{\min}}] = 1 - \hat{c}$$
$$\lim_{n \to \infty} T(C_{\min}) = \frac{\hat{c}}{1 - \hat{c}}$$

 \triangleright No efficiency loss: a zero-cost player will come out at time 0.

5.2 Perfect Info [Bilodeau-Slivinski JPuE 1996]

- Department chairing and toilet cleaning [paper title]
- Complete information
- n + 1 players: one contributor needed
- Utility without PG:

 v_i

• PG benefit for *i*: higher utility after PG is provided

 $u_i (> v_i)$

- Contributor cost:
 - One-time cost:

- f_i
- Prolonged cost c_i for Δ periods.

5.2.1 Infinite Time Horizon

- All players live forever to $t = \infty$.
- *i*'s lifetime utility (PV at t = 0) with PG provided at t:²¹

$$F_i(t) = \frac{v_i}{r_i} \left[1 - e^{-r_i t} \right] + \frac{u_i}{r_i} e^{-r_i t}$$

• *i*'s cost (PV at t = 0) if she provides PG at t:

$$C_i(t) = f_i e^{-r_i t} + \frac{c_i}{r_i} \left[e^{-r_i t} - e^{-r_i [t+\Delta]} \right]$$

• i's lifetime utility if she provides PG at t:

$$L_i(t) = F_i(t) - C_i(t)$$

• *i*'s lifetime utility if PG never occurs:

$$S_i = \frac{v_i}{r_i}$$

- \triangleright Ignore people with $L_i(0) < S_i$: they cannot be the contributor!
- SPE: anyone contributes at t = 0, with others free riding!
 - ! Multiple equilibria
 - ! Not justifiable!

 21 Note that

$$\int_{a}^{\infty} x e^{-rt} dt = \frac{x e^{-ra}}{r}$$
$$\int_{a}^{b} x e^{-rt} dt = \frac{x [e^{-ra} - e^{-rb}]}{r}$$

and hence:

5.2.2 Finite Time Horizon

- Player *i* dies at T_i (< ∞)
- *i*'s lifetime utility with PG provided at t:

$$F_{i}(t) = \frac{v_{i}}{r_{i}} \left[1 - e^{-r_{i}t} \right] + \frac{u_{i}}{r_{i}} \left[e^{-r_{i}t} - e^{-r_{i}T_{i}} \right]$$

• *i*'s cost if she provides PG at t:

$$C_i(t) = f_i e^{-r_i t} + \frac{c_i}{r_i} \left[e^{-r_i t} - e^{-r_i \tau_i(t)} \right]$$

with:

$$\tau_i(t) \equiv \min\{T_i, t + \Delta\}$$

• *i*'s lifetime utility if she provides PG at t:

$$L_i(t) = F_i(t) - C_i(t)$$

• i's lifetime utility if PG never occurs:

$$S_i = \frac{v_i}{r_i} \left[1 - e^{-r_i T_i} \right]$$

• The latest time \bar{t}_i that *i* may provide PG: Figure

$$L_i(\bar{t}_i) = S_i$$

and hence:

$$\bar{t}_i = T_i - \frac{1}{r_i} \ln \frac{B_i}{B_i - 1}, \quad B_i \equiv \frac{u_i - v_i - c_i}{r_i f_i}$$

• SPE (using backward induction):

– Re-arranging players:

$$\bar{t}_n < \bar{t}_{n-1} < \cdots < \bar{t}_1 < \bar{t}_0$$

– Efficiency: player 0 will contribute at t = 0 (no delay)²²

- Likely contributor:
 - $-T_i$ large: live longer

 $^{22}\mathrm{Note}$ that t_1' is where:

 $L_1(t_1') = F_1(\bar{t}_1).$

- $-r_i$ large: impatient to wait
- $-B_i$ large: benefit-cost ratio higher

6 Sequential-move Games

- 6.1 Stackelberg v. Nash Games [Varian, JPuE 1994]
 - Additive PG: 2 players (i = 1, 2)
 - Individual budget:

$$w_i = x_i + g_i$$

– PG:

$$G = g_1 + g_2$$

- Quasilinear utility:

$$U_i(x_i, G) = u_i(G) + x_i = u_i(g_1 + g_2) + [w_i - g_i]$$

• Stand-alone contribution: *i*'s contribution when $g_j = 0$

$$\bar{g}_1 = \operatorname{argmax}_{g_1} u_1(g_1) + [w_1 - g_1]$$

 $\bar{g}_2 = \operatorname{argmax}_{g_2} u_2(g_2) + [w_2 - g_2]$

 \triangleright Assume player 1 likes PG more:

 $\bar{g}_1 > \bar{g}_2$

• Nash reaction function: [Figure below]

$$g_1(g_2) = \max\{\bar{g}_1 - g_2, 0\}$$
$$g_2(g_1) = \max\{\bar{g}_2 - g_1, 0\}$$

• Simultaneous-move equilibrium: intersection N of Nash reaction curves

$$G^N = \bar{g}_1$$

- Sequential-move equilibrium:
 - 1. Player 2 as leader: since

$$u_2(\bar{g}_1) > u_2(\bar{g}_2) > u_2(\bar{g}_2) - \bar{g}_2$$

 \triangleright Player 2 will free ride:

$$g_2 = 0, \ g_1 = \bar{g}_1$$

 \triangleright PG level same as in Nash: $G^S = \bar{g}_1$

2. Player 1 as leader:

$$V_1(g_1) = u_1(g_1 + g_2(g_1)) + [w_1 - g_1]$$

= $u_1(g_1 + \max\{\bar{g}_2 - g_1, 0\}) + [w_1 - g_1]$

or:

$$V_1(g_1) = \begin{cases} u_1(\bar{g}_2) + [w_1 - g_1], & g_1 \le \bar{g}_2 \\ u_1(g_1) + [w_1 - g_1], & g_1 \ge \bar{g}_2 \end{cases}$$

- Choice 1: $g_1 = 0$ (free ride), let $G^S = \bar{g}_2$, and get utility

$$V_1^F = u_1(\bar{g}_2) + w_1$$

 \triangleright PG level lower than Nash:

$$G^S = \bar{g}_2$$

– Choice 2: $g_1 = \bar{g}_1$, let 2 free ride, and get utility

$$V_1^N = u_1(\bar{g}_1) + w_1 - \bar{g}_1$$

 $G^S = \bar{g}_1$

 \triangleright PG level same as in Nash:

$$V_1(g_1)$$

 V_1^F
 V_1^N
 $\overline{g_2}$
 $\overline{g_1}$
 $\overline{g_1}$
 $\overline{g_1}$

3. PG level in Stackelberg may be lower than Nash:

– when PG-lover is leader

$$-$$
 when PG-lover chooses to free ride.²³

 $^{^{23}\}mathrm{This}$ is not possible in Nash. Threat is not credible.

• Stackelberg leadership bidding:

– Value of leadership for players:

$$b_1 = V_1^F - V_1^N = u_1(\bar{g}_2) - [u_1(\bar{g}_1) - \bar{g}_1]$$

$$b_2 = V_2^N - V_2^F = u_2(\bar{g}_1) - [u_2(\bar{g}_2) - \bar{g}_2]$$

Therefore:

$$b_{2} - b_{1} = [u_{1}(\bar{g}_{1}) - u_{1}(\bar{g}_{2})] + [u_{2}(\bar{g}_{1}) - u_{2}(\bar{g}_{2})] - [\bar{g}_{1} - \bar{g}_{2}]$$

$$\geq [u'_{1}(\bar{g}_{1}) + u'_{2}(\bar{g}_{1}) - 1][\bar{g}_{1} - \bar{g}_{2}] \quad \text{(concavity)}$$

$$= u'_{2}(\bar{g}_{1})[\bar{g}_{1} - \bar{g}_{2}] \quad \text{(foc2)}$$

$$\geq 0$$

– Player 2 has a higher bid than player 1.

• <u>Generalization</u>: results hold for any convex preferences.

6.2 Donation Announcement by Charities

- Romano and Yildirim [JPuE, 2001/v81, pp. 423-447]
- Charities often announce donor contributions as they accrue.

 \triangleright Contributions become sequential, instead of simultaneous.

E Telethon, United Ways, university fund-raising

6.3 Seed Donation for Fixed-cost PG Campaign

- Leadership giving: Andreoni [JPE, 1998]
 - Discrete PG: fixed production costs
 - \triangleright Both <u>positive</u> and <u>zero provision</u> equilibria exist in Nash games
 - Donors may get stuck in no-provision outcome
 - \triangleright Due to lack of coordination
 - Sequential fund-raising strategy is preferable
 - \triangleright People are induced to contribute by large *initial donations*
 - <u>Lab experiment</u>: Bracha, Menietti, and Vesterlund [JPuE, 2011v95]
 ▷ Theory confirmed for *high* (not for *low*) fixed costs
- List and Lucking-Reiley [JPE, 2001/v110(1)]
 - Field experiment
 - Both likelihood and average amount of contributing are higher with larger initial seed amounts
- Andreoni [JET 2006]

-?

6.4 Alternating-move Game [Admati-Perry, REStud 1991]

- Alternating contributions:
 - Player 1 makes contribution in period 1.
 - Player 2 then makes contribution in period 2.
 - Player 1 again makes contribution in period 3.
 - And so on ...
 - \triangleright Game terminates when total contribution reaches PG cost.
- 2 contribution setups:
 - Contribution game: pay immediately when making commitment
 - Subscription game: pay only when PG is provided
- The 2-player model:
 - Same value of PG: V for both players
 - Cost of PG: K

6.4.1 Subscription Game

- Let $T \equiv$ time when the game terminates (when PG is provided) $\triangleright C_i^T \equiv$ total pledged contribution by *i* up to period *T*
 - \triangleright Utility at period T:

$$U_i^T(C_1, C_2) = \delta^T \left[V - C_i^T \right], \ i = 1, 2$$

- SPE, given (V, K), is:
 - -K > 2V: PG is never provided
 - $-K \in ([1 \delta]V, 2V)$: Player 1 contributes at t = 1:

$$C_1^* = \frac{K - [1 - \delta]V}{1 + \delta}$$

then player 2 contributes at t = 2:

$$C_2^* = K - C_1^* = \frac{\delta K + [1 - \delta]V}{1 + \delta}$$

- \triangleright PG provided at t = 2 (no delay)
- $-K = [1 \delta]V$: 2 possible SPEs.
 - Player 1 may contribute all cost $C_1^* = K$ at t = 1.

Or 1 makes no contribution at t = 1, and let 2 makes $C_2^* = K$. Player 1 will get same discounted utility:

$$V - K = \delta V$$

- $-K < [1 \delta]V$: player 1 takes full responsibility $(C_1^* = K)$ at t = 1, and let 2 free ride $(C_2^* = 0)$. ■
- Efficiency: PG is provided when K < 2V in no more than 2 periods.

6.4.2 Contribution Game

- Let $c_i^t \equiv \text{contribution by } i \text{ at } t$
- Payment sequence: $(c_1^1, c_2^1 = 0), (c_2^2, c_1^2 = 0), \cdots$
- Game terminates at time T if:

$$\sum_{t=1}^{T} [c_1^t + c_2^t] \ge K$$

– Outcome:

$$(T, \{c_1^t\}_{t=1}^T, \{c_2^t\}_{t=1}^T)$$

- Player *i* utility:

$$U_i^T \left(\{c_1^t\}_{t=1}^T, \{c_2^t\}_{t=1}^T \right) = \delta^{T-1}V - \sum_{t=1}^T \delta^{t-1}W(c_i^t)$$

where: $W(c_i) \equiv i$'s cost of making contribution c_i

- SPE may be inefficienct:
 - $W(c_i)$ is linear, say $W(c_i) = c_i$: > PG will occur <u>iff</u> V > K, with 1 being the sole contributor $(c_1^1 = K)$ > PG will not occur (as it should) when $K \in [V, 2V]$ - $W(c_i)$ is strictly convex: conditions for PG to be provided: <u>if</u>: V > W(K)<u>only if</u>: V > W'(0)K<u>E</u> When K = V = 1, $\delta = 1$, and $W(c) = c + c^2$: no PG.²⁴ \Box

²⁴The efficient solution would be equal sharing $(c_1 = c_2 = 1/2)$.

7 Mechanism Design for Optimality

7.1 Matching Game

- Indogenous linear matching: Guttman [AER 1978, 68:251–255]
 - Two-stage game:
 - 1 Each player *i* announces his/her matching rate b_i
 - 2 Each player decides his/her flat contribution a_i
 - PG contribution:

$$x_i = a_i + b_i \sum_{j \neq i} a_j, \quad X = \sum_i x_i$$

- Quasi-linear player payoff:

$$\pi_i \equiv f_i(X) - x_i = f_i\left(\sum_i [a_i + b_i \sum_{j \neq i} a_j]\right) - \left[a_i + b_i \sum_{j \neq i} a_j\right]$$

- Efficiency: SPE satisfies Samuelson condition.
- Exogenous matching rates μ_{ij} :
 - Buchholz-Cornes-Rubbelke [JPuE 2011, 95:639–645]
 - For a matching game equilibrium to be Pareto efficient, all players must be *contributors* (i.e., *interoir*)
 - Income distrubution is critical for interior solution
 - Warr neutrality no longer holds

E 2 players: $U_i(x_i, G) = x_i G, W = 2, \mu_{ij} = 1 \Rightarrow W_1 = W_2 = 1 \square$

7.2 Contribution Deposit

7.2.1 Introduction

- Gerber and Wichardt [JPuE 2009, 93:429–439]
- To implement any social goal \wp that is P-superior to Nash outcome \aleph
 - Lack of centralized sanctioning intitutions
 - Voluntary participation
- Applications:
 - International environmental agreement: Kyoto Protocal
 - Private contribution to public good
 - n -person Prisoners' Dilemma
- 2-stage mechanism:
 - 1 Deposit (押金) stage

- Subgame-perfect Nash equilibrium:
 - Unanimous deposit payment
 - Full ex-post contributions

7.2.2 2-player Example: Symmetric Linear Public Good

- The Nash contribution game Γ^0 :
 - -2 players (i = 1, 2) with equal endowment e
 - Voluntary individual PG contribution:

$$c_i \in [0, e]$$

- Additive PG:

$$C = c_1 + c_2$$

- Linear Utility:

$$U_i(c_1, c_2) = [e - c_i] + \alpha [c_1 + c_2], \quad \frac{1}{2} < \alpha < 1$$
Q Why do we need $\alpha \in (\frac{1}{2}, 1)$?

• Unique Nash equilibrium ℵ:

$$c_1 = c_2 = 0$$

• Full-contribution optimum \wp :

$$c_1 = c_2 = e = \bar{c}$$

 $\triangleright \aleph$ is Pareto dominated by \wp :

$$U_i(\bar{c},\bar{c}) > U_i(0,0), \quad i = 1,2$$

• How can we implement \wp ?

• 2-stage game design to implement \wp :

S1 Both players decide simultaneously whether to pay deposit \overline{d} .

– Payment d_i is hence either 0 or \overline{d} .

– Payment decision (d_1, d_2) is public info. \Box

S2 If either $d_i = 0$: all deposits are refunded, game Γ^0 is played.

If $d_1 = d_2 = \overline{d}$: players contributing full \overline{c} get refund \overline{d} .

• SPE:

[S2] Stage game Nash equilibrium:

* If either $d_i = 0$: player dominant strategy is

$$c_1 = c_2 = 0$$

and utility is:

$$U_1^0 = U_2^0 = e \quad \Box$$

* If $d_1 = d_2 = \overline{d}$: player payoffs are:

$$\pi_i(c_i, c_j) = \begin{cases} e - \bar{d} - c_i + \alpha[c_i + c_j], & \text{if } c_i \neq \bar{c} \\ e - \bar{c} + \alpha[\bar{c} + c_j], & \text{if } c_i = \bar{c} \end{cases}$$

or:

$$\pi_i(c_i, c_j) = \begin{cases} e - \overline{d} - [1 - \alpha]c_i + \alpha c_j, & \text{if } c_i \neq \overline{c} \\ e - [1 - \alpha]\overline{c} + \alpha c_j, & \text{if } c_i = \overline{c} \end{cases}$$

 \triangleright Dominant strategy is $c_i = \bar{c} \ (i = 1, 2) \ \mathrm{if}^{25}$

 $e \geq \bar{d} > [1-\alpha]\bar{c} = [1-\alpha]e$

²⁵Note that if $c_i \neq \bar{c}$, *i* should choose $c_i = 0$. Hence we are comparing:

$$\pi_i(c_i, c_j) = \begin{cases} e - \bar{d} + \alpha c_j, & \text{if } c_i = 0\\ e - [1 - \alpha]\bar{c} + \alpha c_j, & \text{if } c_i = \bar{c} \end{cases}$$

and utility is:

$$U_1^* = U_2^* = e + [2\alpha - 1]\bar{c}$$

S1 Payment $d_i = \overline{d}$ is a weakly dominant strategy for either player.

* If $d_j = \bar{d}$: then $d_i = \bar{d}$ is strictly better than $d_i = 0$ for i

$$U_i^*(\bar{c},\bar{c}) > U_i^0(0,0)$$

* If $d_j = 0$: then both $d_i = \bar{d}$ and $d_i = 0$ yield same utility

$$U_i^0(0,0) = e \Box$$

- Intuition:
 - Players are now forced to choose between Pareto-superior \wp and Nash \aleph .
 - Threats: either commit to \wp , or revert to the Nash outcome \aleph .²⁶
 - Players cannot choose individual c_i (hence cannot free ride).

 $^{^{26}\}mathrm{For}$ PD game: if you be tray me, you won't get deposit back.

7.2.3 General *n*-player Model

1. Assumptions

• Utility function: x private, y public

$$U^{i}(x_{i}, y); \quad U^{i}_{x} > 0, \quad U^{i}_{y} > 0$$

- Endowment: e_i (units of x)
- Individual PG contribution:

$$c_i \in [0, e_i]$$

 \triangleright budget constraint:

$$x_i + c_i = e_i$$

• Aggregate PG production:

$$y = F\left(\sum_{i} f_i(c_i)\right), \quad f'_i > 0, \quad f''_i < 0, \quad F' > 0$$

• For any $c = (c_1, \dots, c_n) = (c_i, c_{-i})$: utility

$$\pi_i(c_i, c_{-i}) = U_i\left(e_i - c_i, F\left(\sum_i f_i(c_i)\right)\right)$$

• A1 Spending on x yields higher marginal return than $y: \forall i$

$$U_x^i > U_y^i F' f'_i$$

 \triangleright Contribution lowers utility:

$$\frac{\partial \pi_i(c_i, c_{-i})}{\partial c_i} < 0, \quad \forall i, \ \forall c_i \ge 0, \ \forall c_{-i}$$

! Very strict restriction on utility function

• Equilibrium \aleph of the Nash game $\Gamma^0:$ strictly dominant strategy

$$c_i^0 = 0, \quad \forall i$$

E Linear utility function:

$$U^{i}(x_{i}, y) = x_{i} + ay; \ a < 1$$
$$f_{i}(c_{i}) = c_{i}, \ F(x) = x \quad \Box$$

2. Design

• Can implement <u>any</u> $c^* = (\bar{c}_1, \dots, \bar{c}_n)$ that <u>Pareto-dominates</u> \aleph :

$$\pi_i(\bar{c}_1,\cdots,\bar{c}_n) > \pi_i(0,\cdots,0), \quad \forall i$$

Example: The PD game

• 2-stage game:

S1 Everyone pays deposit: $d_i \in \{0, \bar{d}_i\}$

 $\triangleright d \equiv (d_1, \cdots, d_n)$ is public info at end of S1.

S2 Depending on $d = (d_1, \dots, d_n)$ in S1:

- If any $d_i = 0$:
 - * All deposits d_i are refunded.
 - * Nash game Γ^0 is played, all players get utility

 $\pi_i(0,\cdots,0)$

– If all $d_i = \bar{d}_i$: game Γ^* below is played:

- * Players contributing full $c_i = \bar{c}_i$ get refund \bar{d}_i . Others (with $c_i < \bar{c}_i$) receive no refund.
- * Player *i* gets payoff:

$$\pi_i(c_i, c_{-i}) = \begin{cases} U^i(e_i - c_i - \bar{d}_i, F(\sum_j f_j(c_j))), & \text{if } c_i < \bar{c}_i \\ U^i(e_i - \bar{c}_i, F(\sum_j f_j(c_j))), & \text{if } c_i = \bar{c}_i \end{cases} \square$$

• A2 Deposit $(\bar{d}_1, \dots, \bar{d}_n)$: $\bar{d}_i \ (\leq e_i)$ is chosen such that: $\forall c_{j \ (\neq i)} \leq e_j$

$$U^{i}\left(e_{i}-\bar{c}_{i},F(f_{i}(\bar{c}_{i}+\sum_{j\neq i}f_{j}(c_{j}))\right) > U^{i}\left(e_{i}-\bar{d}_{i},F(\sum_{j\neq i}f_{j}(c_{j}))\right)$$

• SPE of the 2-stage game:

S1 Weakly dominant strategy for all i:

$$d_i = \bar{d}_i$$

S2 Strictly dominant strategy for all i:

$$c_i(d) = \begin{cases} \bar{c}_i, & \text{if } d_j = \bar{d}_j, \forall j \\ 0, & \text{if } d_j = 0 \text{ for some } j \end{cases} \square$$

• Sketch of Proof:

S2 By A1, subgame Γ^0 has unique DSE $c_i = 0$ (all i).

By <u>A2</u>, subgame Γ^* has unique DSE $c_i = \bar{c}_i$ (all i).

S1 For i:

If any $d_j = 0$: outcome is $\pi_i(0, \dots, 0)$, independent of d_i . If $d_j = \bar{d}_j, \forall j \neq i$: outcome is $\pi_i(\bar{c}_1, \dots, \bar{c}_n)$ if $d_i = \bar{d}_i$. $\triangleright d_i = \bar{d}_i$ is weakly dominant strategy for all i.

3. Extensions

- Costly deposit collection/payment:
 - Payoff modification: fraction δ is payer cost
 - $\triangleright \Gamma^0$ game:

$$\pi_i(c_i, c_{-i}) = \begin{cases} U^i(e_i - c_i - \delta \bar{d}_i, F(\sum_j f_j(c_j))), & \text{if } d_i = \bar{d}_i \\ U^i(e_i - \bar{c}_i, F(\sum_j f_j(c_j))), & \text{if } d_i = 0 \end{cases}$$

 $\triangleright \Gamma^*$ game:

$$\pi_i(c_i, c_{-i}) = \begin{cases} U^i(e_i - c_i - \bar{d}_i, F(\sum_j f_j(c_j))), & \text{if } c_i < \bar{c}_i \\ U^i(e_i - \bar{c}_i - \delta \bar{d}_i, F(\sum_j f_j(c_j))), & \text{if } c_i = \bar{c}_i \end{cases}$$

- Results still hold.
- Possible uses of forfeited deposits: off-equilibrium cases
 - Throw away (gift to other economies)
 - Extra/bonus refund to <u>full contributors</u>
 - Other inrelevent use
- Repeated games:
 - Collect a big deposit first (as long-run commitment)
 - Refund a share in each subsequent period

7.3 Category Reporting: Harbough [JPuE 1998]

7.3.1 Stylized Facts

- Many charities use category reporting for fundraising
- Donors tend to give minimum necessary to get into a category
- Donors enjoy having their donations publicized

7.3.2 Pure Egoism

- Warm glow: pure internal satisfaction from act of giving
 - Proportional to donation amount
- Prestige: utility from having their donations publicly known
 - Affected by charity reporting plans
 - Due to social recognition, business opportunities, etc.

7.3.3 The Model

• Donor choice:

- Utility:

$$U(x, p, d), U_x > 0, U_p > 0, U_d > 0$$

- $x \equiv$ private consumption
- $p \equiv \text{prestige}$
- $d \equiv$ warm glow (= donation)
- Budget:

$$x+d = w$$

$$\max_{x,d} U(x,p,d) \quad \text{s.t.} \quad x+d=w$$

 \triangleright

$$\max_{d} \quad U(w-d, p, d)$$

– Level curves: Fig ?

$$I_w(k) = \{ (p,d) \mid U(w-d, p, d) = k \}$$

▷ U-shaped on p-d space, with slope: 先負後正

$$\frac{dp}{dd} = \frac{U_x - U_d}{U_p}$$

▷ As $w \uparrow$, infection points (反轉點) shift right. (:: $d \uparrow$ with w)

• Prestige effect:

r(d)

- Donor then gets prestige p from publicly known r:

$$p(r) = p(r(d))$$

- Can let p = r: prestige fn is absorbed into util fn

- 3 possible charity report plans r(d): restriction $r(d) \leq d$
 - No reporting:

$$r(d) = 0, \quad p(d) = 0$$

- Exact reporting:

$$r(d) = d, \ p(d) = d$$

- Category reporting:

$$p(d) = r(d) = \begin{cases} \alpha, & \text{if } d \ge \alpha \\ 0, & \text{otherwise} \end{cases}$$

• Donors choose optimal (p, d) subject to report constraint p(d).

7.3.4 Effects of Reporting Plans on Donations

- No reporting d_0 : $U_x = U_d$ (zero slope) on p = 0 line
- Exact reporting d_e : $U_x = U_d + U_p$ (slope = 1) on p = d line
- Category reporting:

$$d_c = \begin{cases} d_0, & \text{if } \alpha < d_0 \\ \alpha, & \text{if } \alpha \in [d_0, d_e) \\ \alpha, & \text{if } \alpha \in [d_e, d_m) \\ d_0, & \text{if } \alpha \ge d_m \end{cases}$$

• One-donor case:

$$d_e > d_0$$
, but $d_c \gtrless d_e$

• Charity strategy: to max donation, choose bracket

$$\alpha = d_m$$

• Donor bunching: donors of different incomes bunching up at bracket Fig ?

7.3.5 Optimal Solicitation Strategy of Charities

- To show: can always increase total donations by using categories.
- Assume: n types of donors with

$$d_e^1 < d_e^2 < \cdots < d_e^n$$

• Low-end category: can raise 1's donation w/o affecting others' choice.

(C1)
$$d_e^1 < d_m^1 < d_e^2$$
: can fully exploit 1 Fig?
 $\tilde{r}(d) = \begin{cases} d, & \text{if } d \ge d_m^1 \\ 0, & \text{otherwise} \end{cases}$

- \triangleright Exact reporting for donations above d_m^1 only
- \triangleright Donor 1 change from d_e^1 to d_m^1 ; donor 2 remains same

(C2)
$$d_e^1 < d_e^2 < d_m^1$$
: cannot fully exploit 1 Fig ?
 $\tilde{r}(d) = \begin{cases} d, & \text{if } d \ge d_e^2 \\ 0, & \text{otherwise} \end{cases}$

- \triangleright Exact reporting for donations above d_e^2 only
- \triangleright Donor 1 change from d_e^1 to d_e^2 ; all others still same
- High-end category: can raise *n*'s contribution Fig ?

$$\hat{r}(d) = \begin{cases} d, & \text{if } d \le d_e^{n-1} \\ d_e^{n-1}, & \text{if } d \in [d_e^{n-1}, d_m^n) \\ d_m^n, & \text{if } d \ge d_m^n \end{cases}$$

 \triangleright Donor *n* change from d_e^n to d_m^n ; all others unchanged.

- <u>Note</u>: \tilde{r} and \hat{r} not necessarily optimal: may still raise donations further
- Similar devices: unique souvenir, building naming, trophy, etc.

7.3.6 Charity Classification and Theory Testing

- Educational institutions:
 - Monopoly on alumni donations: without substitute
 - Can fully exploit consumers \triangleright categories far apart
 - Donations publicized to a limited circle
- National organizations: E Sierra Club, RFF
 - Strong competition among charities
 - Unable to exploit consumers fully \Rightarrow Categories closer together
 - Aim at small donations from large population
- United Way (聯合勸募):
 - Formed to effectively use categories
 - Facilitate distribution of donation reports

7.3.7 Problems

- Not an equilibrium analysis of public-good model
- No PG in model: donors do not care about total PG level
- No consumer interaction: donors do not care about how much others donate