
Motivation Yusen Sung

私 人 捐 獻 賽 局

1 Contribution Motivation

1.1 Cornes-Sandler Anomaly

• Severe free-riding (cf. moderate in experiments)

• Neutrality/crowing-out

✄ Experiment: Eckel et al. [JPuE 2005/v89, pp. 1543–1560]1

• Large-population effect

✄ White [1989], Steiberg [1989]

1.2 Other Possible Explanations

• Fair share [Margolis 1982]:

✄ G-utility v. S-utility

• Principle of rational commitments (or Kantian behavior):2

max
x, g

U(x, ng) s.t. x+ pg = I

Samuelson foc:

n ·MRSG,x = p

• Principle of reciprocity [Sugden 1984]

✄ “I should also contribute ḡ if all other do so.”

• Sentiment [Hollander 1990]: social approval

1Framing effects: crowding-out depends on player’s perception about source of the funding.
2So called “Kantian categorical imperative”. See, for example, Laffont [1975], Collard [1978], and Harsanyi [1980].
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1.3 Impure Altruism: Warm Glow Theory

• Altruism v. egoism:

– Pure egoistic:

Ui(xi, gi)

– Pure altruistic:

Ui(xi, G)

– Impure altruism: Andreoni [JPE 1989, EJ 1990]

Ui(xi, gi, G)

• Implications of impure altruism:

1. Neutrality result does not hold:

✄ May have higher G using transfer:

More
egoistic

More
altruistic

income

redistribution

2. RKT will break down: kids will steal from head.3

✄ Parent: Up(Xp, Xk, t), more egoistic

✄ Kid: Uk(Xk), more altruistic

3Ironically, now the head is more egoistic, while kids are more altruistic.
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1.4 Environmental Offset

• Kotchen, M.J. (Economic Journal, 2009, V119, pp. 883–899)

✄ Contribution compensation for harmful private consumption

• Pure altruistic preference:

Ui(xi, G)

Consumer budget:

xi + gi = Ii

• Private consumption xi diminishes PG:

G = G−i + gi − βxi

✄ gi ≡ direct contribution by i

✄ yi = gi − βxi ≡ net contribution by i

• Equilibrium:

– Mean contribution does not converge to zero as population grows

large
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2 Non-additive Public Goods

2.1 Social Composition Functions: Hirshleifer [PC 1983]

• Summation rule:

G =
∑

i

gi

• Best-shot:

G = max{g1, · · · gn}

• Weakest-link:

G = min{g1, · · · gn}

2.1.1 Summation Rule

• Optimality condition:

∑

j

MRS
G,xj

j = MCi(gi), ∀i

• Nash interior condition:

MRSG,xi

i = MCi(gi), ∀i
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2.1.2 Best-shot

• Optimality condition: with the low cost player k

∑

i

MRSG,xi

i = MCk(G
B); and TCk(G

B) ≤ TCj(G
B), ∀j 6= k

and

gj = 0, ∀j 6= k

• Nash interior condition: with the low cost player k

MRSG,xk

k = MCk(N
B)

and

gj = 0, ∀j 6= k
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2.1.3 Weakest-link

• Optimality condition:

∑

i

MRSG,xi

i =
∑

i

MCi(G
W )

• Nash interior condition: ∃ k

MRSG,xk

k = MCk(N
W )

MRS
G,xj

j > MCj(N
W ), ∀j 6= k

x (x )2 1

x (x )1 2

x*1

x1

x*2

x2

ParetoOptimun
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2.2 Generalization

• Cornes [QJE 1993]

• Constant elasticity of substitution (CES) production function:

Q = α

[∑n
i=1 q

λ
i

n

]1/λ

– Summation:

α = n, λ = 1

– WL:

α = 1, λ → −∞

– BS:

α = 1, λ → +∞

– Average: α = λ = 1, hence:

Q =

∑

i qi
n

• Weaker-link: λ → +0

Q =

(

n
∏

i=1

qi

)1/n

✄

∂Q

∂qi
=

Q

nqi
↑ with lower qi
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2.3 Group Contest/Tournament: Group-specific Public-good Prize

2.3.1 Baik [EL 1993]

• N groups: each with mi risk-neutral members

• Effort of member k in group-i:

xk
i

• Total group i effort:

Xi =
mi
∑

j=1

xj
i

• Prize-winning probability:

pi(X1, . . . , XN)

with:
∂pi
∂Xi

≥ 0,
∂2pi
∂X2

i

≤ 0;
∂pi
∂Xj

≤ 0,
∂2pi
∂X2

j

≥ 0

• Member-specific prize value: vki (> 0)

EUk
i = vki pi(X1, . . . , XN)− xk

i

• Assuming, for each group i:

v1i ≥ v2i ≥ · · · ≥ vmi

i (> 0)

• player-k-best response:

X̃k
i ≡ argmaxXi

vki pi(Xi|X−i)−Xi s.t. Xi ≥ 0

✄

X̃1
i ≥ X̃2

i ≥ · · · ≥ X̃mi

i , ∀i

8



Non-additive PG Yusen Sung

• Equilibrium:

(X∗
1 , · · · , X∗

N)

– Only member 1 will put out effort: X∗
i = x1

i = X̃1
i

v1i · ∂pi
∂Xi

(x1
i , X

∗
−i) = 1

– Other members (j 6= 1) will free ride (xj
i = 0):

vji · ∂pi
∂Xi

(x1
i , X

∗
−i) < 1

2.3.2 Plurality rule

• Baik-Shogren [1998]4

• Winning probability:

p1(X1, X2) = F (X1 −X2), p2(X1, X2) = 1− F (X1 −X2)

with:

F (0) = 1/2, F (−d) = 1− F (d)

0 < F (d) < 1, ∀ d ∈ R

F ′(·) > 0, F ′′(0) = 0, F ′′(d)d < 0

4K.H. Baik and J.F. Shogren, “A Behavioral Basis for Best-Shot Public-Good Contest,” in Advances in Applied Microe-
conomics (Volume 7), JAI Press, pp. 169–78, 1998.
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2.3.3 Two-stage Game

• Baik-Lee [1998]5

• Two stages:

S1 Inter-group contest:

pi =
Xi

∑

j Xj

S2 Intra-group competition: for share αi of the prize

2.3.4 All-pay Auction

• Baik-Kim-Na [JPuE, 2001/v82, PP. 415–429]

• Winning probability:

pi(X1, X2) =











1, if Xi > Xj

1/2, if Xi = Xj

0, if Xi < Xj

5K.H. Baik and S. Lee, “Group Rent Seeking with Sharing,” in Advances in Applied Microeconomics (Volume 7), JAI
Press, pp. 75–85, 1998.
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3 Binary/Discrete/Threshold Public Goods

3.1 Continuous/variable Contributions

1. The case of Oral Roberts

2. Bagnoli-McKee [EI 1991]

• Binary PG: price/cost C

• N players: income wi, WTP for PG Vi, contribution ci

• Assume:

C > wi > Vi, ∀ i

• Game rule:

–
∑

i ci > C: PG provided, player i gets payoff:

πi = Vi + [wi − ci]

–
∑

i ci < C: no PG, ci is refunded, i gets payoff:

πi = wi

• Nash equilibrium: 3 cases

–
∑

i ci > C: (c1, . . . , cN) cannot be Nash.6

–
∑

i ci = C: stable Nash with ci ≤ Vi, ∀ i

–
∑

i ci < C: Nash (but not trembling-hand perfect) if

Vi +
∑

j 6=i

cj < C, ∀ i

6Player i would want to lower ci, given other players’ contributions.
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3.2 Binary Contributions

3.2.1 Palfrey-Rosenthal [JPuE 1984]

1. Analysis goal:

• Two designs: NoRefund (ℵ) v. Refund (ℜ)

• Two possible reasons for not contributing: Greed v. Fear

2. The Model:

• M players

• Binary PG: provided if w (≤ M) players contribute

– Cost c for contributors, 0 for non-contributors

– Player gets utility 1 with PG, 0 without

• 3 groups of players:

(a) Contributors: |G1| = m1

(b) Non-contributors: |G2| = m2

(c) Randomizers (contribute with probability q): |G3| = m3

– m̄3 ≡ number of players actually contribute in G3

– m̄3
−i ≡ number of contributors excluding i in G3

– m̄ ≡ number of total contributors

3. NoRefund (ℵ)

• Pure-strategy Nash (m3 = 0):

(a) w = 1: M equilibria (m1 = 1, m2 = M − 1)

(b) w ≥ 2:

12
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i. m1 = 0, m2 = M : no one controbutes, no PG

ii. m1 = w, m2 = M − w: exactly w contributors, PG provided

• Mixed-strategy Nash (m3 > 0): equilibrium conditions are

– G1: EU is greater with contributing

P (m̄3 ≥ w −m1)− c ≥ P (m̄3 ≥ w −m1 + 1)

so c ≤ P (m̄3 = w −m1), or:

c ≤
(

M −m1 −m2

w −m1

)

qw−m1

[1− q]M−w−m2

(1)

where P (X) is the probability of event X.

– G2: EU is greater without contributing

P (m̄3 ≥ w −m1) ≥ P (m̄3 ≥ w −m1 − 1)− c

so c ≥ P (m̄3 = w −m1 − 1), or:

c ≥
(

M −m1 −m2

w −m1 − 1

)

qw−m1−1[1− q]M−w−m2+1 (2)

– G3: equal EU either way

P (m̄3
−i ≥ w −m1 − 1)− c = P (m̄3

−i ≥ w −m1)

so c = P (m̄3
−i = w −m1 − 1), or:

c =

(

M −m1 −m2 − 1

w −m1 − 1

)

qw−m1−1[1− q]M−w−m2

(3)

– For mixed strategy Nash (m1, m2, m3, q):

(a) if (m1 = 0): (m2, m3, q) must satisfy (2, 3)
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(b) if (m2 = 0): (m1, m3, q) must satisfy (1, 3)

(c) if (m1 = m2 = 0, m3 = M): q only have to satisfy (3)

(d) otherwise: all 3 eqs (1, 2, 3) must hold

– Admissible (m1, m2, m3, q), given (M,w, c), satisfies:

(1) m1 ≤ w− 1: or else there must be PG, hence no need to mix

(2) m2 ≤ M −w: or else there must be no PG, hence no need to

mix

– c(q), by Eq.(3), must be uni-modal, and peaks at cmax = c(q̂):

q̂ ≡ w −m1 − 1

M −m1 −m2 − 1

Cmax

1

1

C

q
0 q̂ q̃

m1 > 0

m2 > 0

– iff condition for existence of mixed-strategy Nash, given any ad-
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missible (m1, m2, w,M):

c ≤
{

c(q̂), if m1 = 0

c(q̃), if m1 > 0

∗ If m2 > 0, then by Eqs.(2)(3): q ≥ q̂。

∗ If m1 > 0, then by Eqs.(1)(3):

q ≥ q̃ ≡ w −m1

M −m1 −m2
> q̂

∗ If m1 > 0 and m2 > 0: q ≥ q̃ (as q̂ is not binding)

– Nash (m1, m2, m3, q) can hence be obtained, for any chosen

(m1, m2).7

E Assume (M = 4, w = 2, c = 0.096):

∗ Pure Nash: (m1 = 0, m2 = 4) and (m1 = m2 = 2)

∗ Mixed Nash:

(1) m1 = m2 = 0: two solutions

q = 0.800, E(m̄) = 3.2 > w

q = 0.034, E(m̄) = 0.14 < w

(2) m1 = 0, m2 = 1: q = 0.9494, E(m̄) = 2.85 > w

(3) m1 = 1, m2 = 0: q = 0.69, E(m̄) = 3.07 > w

(4) m1 = m2 = 1: q = 0.904, E(m̄) = 2.81 > w

∗ NB: It is possible that everyone contributes (m2 = 0), and

PG is over-provided (m̄ > w).
7When m1 > 0 or m2 > 0, we have no more than one solution. Otherwise (m1 = m2 = 0), we have at most two

solutions.
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– Eventually, when M is very large, only pure Nash exists.8

4. Refund (ℜ)

• Pure-strategy Nash (m3 = 0):

– w ≤ 2: same as in (ℵ)

– w > 2: besides those in ℵ, we have (0 < m1 ≤ w − 2, m2 =

M −m1)

– NB: Now we have more Nash than in ℵ, but only (m1 = w,m2 =

M − w) is strong.9 In contrast, all Nash in ℵ are strong.。

• Mixed-strategy Nash (m3 > 0):

– Define:

C(N, n, q) ≡
(

N

n

)

qn[1− q]N−n

– Equilibrium condition for mixed Nash:

∗ G1: now cost c is incured only when PG is provided

P (m̄3 ≥ w −m1)[1− c] + P (m̄3 < w −m1) · 0

≥ P (m̄3 ≥ w −m1 + 1) · 1 + P (m̄3 < w −m1 + 1) · 0

so:

c ≤ P (m̄3 = w −m1)

P (m̄3 ≥ w −m1)
8The proof goes as follows: First begin with an admissible (m1

0
,m2

0
, w0,M0), define a sequence:

{(m1

n,m
2

n, wn,Mn)}
∞

n=1; m1

n ≡ nm1

0, m2

n ≡ nm2

0, wn ≡ nw0, Mn ≡ nM0

and let cnmax be the corresponding cmax of (m1
n,m

2
n, wn,Mn). Then by limiting property of binomial distribution, we know:

lim
n→∞

cnmax = 0

Therefore, limn→∞ qn = 0, any mixed Nash is actually pure Nash.
9“Strong” means that a player will get get strictly lower utility if he/she deviates from Nash strategy.
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=
C(M −m1 −m2, w −m1, q)

∑M−m1−m2

t=w−m1 C(M −m1 −m2, t, q)
(4)

∗ G2:

P (m̄3 ≥ w −m1) · 1 ≥ P (m̄3 ≥ w −m1 − 1)[1− c]

or:

c ≥ P (m̄3 = w −m1 − 1)

P (m̄3 ≥ w −m1 − 1)

=
C(M −m1 −m2, w −m1 − 1, q)
∑M−m1−m2

t=w−m1−1 C(M −m1 −m2, t, q)
(5)

∗ G3:

P (m̄3
−i ≥ w −m1 − 1)[1− c] = P (m̄3

−i ≥ w −m1) · 1

or:

c =
P (m̄3

−i = w −m1 − 1)

P (m̄3
−i ≥ w −m1 − 1)

=
C(M −m1 −m2 − 1, w −m1 − 1, q)
∑M−m1−m2−1

t=w−m1−1 C(M −m1 −m2 − 1, t, q)
(6)

– Note that eqs(4)(5) are not binding. Then by eq.(6):

∗ c is continuously differentiable in q ∈ (0, 1)

c(0) = 1, c′(q) < 0, lim
q→1

c(q) = 0

∗ c(q) has inverse function Q(c):

Q(1) = 0, Q′(c) < 0, lim
c→0

Q(c) = 1

∗ Unique Q for any c (∈ (0, 1)) and admissible (m1, m2, w,M)
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Q

c

1

1

– Comparision:

∗ PG more likely in ℜ than in ℵ when c is high.10

∗ For any admissible (m1, m2, w,M) and c ≤ cmax(m
1, m2, w,M),

by comparing eq.(3)(6), we know Q(c) in ℜ is strictly greater

than q(c) in ℵ.11

E Take again (M = 4, w = 2, c = 0.096), now ℜ has same pure

Nash as ℵ, but mixed nash are:

(a) m1 = m2 = 0: Q = 0.802

(b) m1 = 0, m2 = 1: Q = 0.9496

(c) m1 = 1: same as in ℵ
✄ Q > q (but very close)

10PG is possible only when c ≤ cmax in ℵ.
11When m1 = m2 = 0, Q(c) must be greater than the two solutions in ℵ.
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3.2.2 Palfrey-Rosenthal [JPuE 1988]

1. Perfect-info game: contribution cost c ∈ (0, 1), PG utility 1

B
A

◗
◗ Contribute Not

Contribute (1− c, 1− c) (1− c, 1)*

Not (1, 1− c)* (0, 0)

• 2 pure Nash: either one contributes

• 1 mixed Nash: both contribute with probability p = 1− c

2. Bayesian game:

• “Warm glow” utility di ≥ 0 (i = A,B): private info

✄ CDF F (·) is common knowledge

• Normal form:

B
A

◗
◗ Contribute Not

Contribute (1− c+ dA, 1− c+ dB) (1− c+ dA, 1)

Not (1, 1− c+ dB) (0, 0)

• Player i’s strategy:

– If di > c: should contribute

– If di < c− 1: should not contribute

– ∃ d∗ ∈ [c− 1, c]: contribute iff di > d∗

d

c-1 c

d*
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• Equilibrium:

– For either player i, probability(j will contribute) is:

q∗ = 1− F (d∗)

– At threshold di = d∗, same utility from contributing or not:

1− c+ d∗ = q∗

– Can solve for equilibrium (d∗, q∗) from the above two eqs.12

d

q
1-c 1

2-player equilibrium (d∗, q∗)

q = 1− c+ d
q = 1− F (d)

3. N -player games:

• Dummy si: = 1 for contributing, = 0 for not contributing

• Warm-glow EU:

Ui(mi, si) =

{

V (mi, 1) + di, if si = 1

V (mi, 0), if si = 0

12(d∗, q∗) must exist if F is continuous.
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where: V (mi, si) ≡ EUi if there are mi other contributors.

• Can solve for equilibrium (d∗, q∗) with the two eqs:

q∗ = 1− F (d∗)

N−1
∑

j=0

πjV (j, 1) + d∗ =
N−1
∑

j=0

πjV (j, 0)

where

πj ≡
(

N − 1

j

)

[q∗]j[1− q∗]N−1−j

is probability that j of the other N − 1 players will contribute.

4. Possible games: w contributors required for PG provision

• Chicken: players have both “greed” and “fear”13

mi < w − 1 mi = w − 1 mi > w − 1

V (mi, 1) −c [1− c] [1− c]

V (mi, 0) 0 0 [1]

• NoFear: cost refund if PG is not provided

mi < w − 1 mi = w − 1 mi > w − 1

V (mi, 1) 0 [1− c] [1− c]

V (mi, 0) 0 0 [1]

• NoGreed: cost sharing, everyone must incur c if PG is provided

mi < w − 1 mi = w − 1 mi > w − 1

V (mi, 1) −c [1− c] [1− c]

V (mi, 0) 0 0 [1− c]

13Parentheses in table indicate cases that PG is provided.
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• Control: with both refund and cost sharing

mi < w − 1 mi = w − 1 mi > w − 1

V (mi, 1) 0 [1− c] [1− c]

V (mi, 0) 0 0 [1− c]

• Equilibrium strategy:

(Chicken) d∗ =
∑N−1

j=0 πjc− πw−1 = c− πw−1

(NoFear) d∗ =
∑N−1

j=w−1 πjc− πw−1

(NoGreed) d∗ =
∑w−1

j=0 πjc− πw−1

(Control) d∗ = πw−1[1− c]

• Comparision: given N , w, c, and F (·)

q∗Chicken ≤ q∗NoFear ≤ q∗Control

q∗Chicken ≤ q∗NoGreed ≤ q∗Control

✄ People are more likely to contribute without greed or fear.

d

q
1

0.5

0 NoGreed

Control

Chicken

NoFear

Equilibria of the four games

q = 1− F (d)

q = 1− F (d)
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4 Contribution-based Group Formation

• Gunnthorsdottir et al. [JPuE, 2010/v94, pp. 987–994]

• Within-group public good contribution:

– Group members: i = 1, · · · , n
✄ Equal endowment: w

✄ Payoff for each member from $1 contribution by any member:

m ∈
(

1

n
, 1

)

– Group optimality: all members make full contribution

gi = w, ∀ i

– Individual incentive:

gi = 0, ∀ i

• Competitive grouping: based on contributions

– Total consumers: N

– Fixed number of equal-sized groups: K

✄ Equal group size:

n =
N

K

– Individuals are ranked according to their contributions, and then

partitioned into K groups.14

• Inefficient no-contribution equilibrium E0:

gi = 0, ∀ i = 1, · · · , N
14Ties are broken by random draw.
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• Near-efficient positive-contribution equilibrium (NEE, E+):

– Class: set of consumers with identical contribution

✄ ci ≡ number of consumers in Class Ci

✄ ḡi ≡ individual contribution of consumers in Class Ci

ḡ1 > ḡ2 > ḡ3 > · · ·

– Group: 1, 2, 3, · · · , K

– Equilibrium E+ construction:

1. There must be at least 2 classes, C1 and C2.
15

2. Group 1 contains only C1 players.
16

✄ c1 must be greater than (but not divisible by) n.17

✄ Some C1 players will be mixed with C2 players in a group.

3. All C1 players make full contribution:18

ḡ1 = w

4. The mixed group (with both C1 and C2 players) must be the

last group K.19

✄ In any E+, there are exactly two classes (C1 and C2).

✄ All C2 players are contained in last group K:

c2 < n
15If all consumers have equal positive contributions (i.e., only 1 class), any one will want to deviate to g = 0.
16Otherwise any C1 player i will want to reduce his contribution as long as gi > ḡ2.
17Otherwise any C1 player can reduce his contribution and remain in the same group.
18Otherwise each C1 player i will increase his gi by ǫ to avoid being assigned to the mixed group.
19Assume that there are still groups below the mixed group. Then we have two possibilities: (1) Class C2 extends beyond

the mixed group further below: now each C2 player i will increase his gi by ǫ to stay for sure in the mixed group to be with
the C1 players. (2) Class C2 does not extend beyond the mixed group: now each C2 player i can slightly decrease his gi by
ǫ without being kicked out of the mixed group. Neither case is possible in equilibrium.
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5. All C2 players contribute nothing:

ḡ2 = 0

• Existence and uniqueness of E+:

– Only equilibrium E0 exist if

m <
N − n+ 1

Nn− n2 + 1

– Both E0 and E+ exist if

m >
N − n+ 1

Nn− n2 + 1

and, for E+, c2 is an integer between b and b+ 1, with:

b =
N −mN

mN −mn+ 1−m

✄ Equal expected payoffs for both C1 and C2 players.

• Experimental test:

– In general, experimental results support NEE.
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5 War of Attrition: Time Dynamics

5.1 Incomplete Info [Bliss-Nalebuff, JPuE 1984]

• The problem:

– Only 1 contributor is needed for an indivisible PG

– Who and when will someone contribute?

• Examples:

√
Dragon slaying and Ballroom dancing [paper title]

√
Who will clean up the house/toilet?

√
Who will get up to feed the crying baby at night?

√
Who will turn in the exam first?

√
The mice v. cat story

• The Model:

– n+1 players, everyone gets one-time utility 1 when PG is provided

– Individual contribution cost: private info

c ∈ [0, 1]

✄ c follows distribution pdf f(·) and cdf F (·)

• Asymmetric equilibrium:

– (n+ 1) equilibria: any one contributes at time 0, others free ride

– Not justifiable
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• Symmetric-strategy equilibrium:

– Identical strategy: waitig time limit

T (n, c)

– Can I benefit from deviation (pretending I am c∗ > c)?20

E[U(n, c, c∗)] = [1− c]e−T (n,c∗)[1− F (c∗)]n

+

∫ c∗

0
e−T (n,x)nf(x)[1− F (x)]n−1dx

– FOC for optimal deviation c∗:

∂E[U(n, c, c∗)]

∂c∗
= 0

or:
∂T (n, c∗)

∂c∗
=

ncf(c∗)

[1− c][1− F (c∗)]

– However, by definition, T (n, c) implies c∗ = c:

∂T (n, c)

∂c
=

ncf(c)

[1− c][1− F (c)]
> 0 (7)

✄ First-order P.D.E. with border condition:

T (n, 0) = 0, ∀n

• Properties of T (n, c):

– People with higher costs wait longer:

∂T

∂c
> 0

20With all others following T (n, c).
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∗ Lowest-cost player will contribute at time limit T (n, c)

∗ Efficiency loss: delayed provision of PG

– People wait longer with larger population:

∂T

∂n
> 0

✄ Since, by eq. (7):

T (n, c) = nS(c)

we know:

T (1, c) = S(c)

and

T (n, c) = n · T (1, c)

E Let:

T (1, c) = S(c) = 10

then:

T (2, c) = 2 · T (1, c) = 20

T (3, c) = 3 · T (1, c) = 30

. . . ✷

• It is still desirable to have more people (higher n):

∂E[U(n, c, c)]

∂n
> 0, ∀n, ∀c

Pf We know
∂E[U(n, 0, 0)]

∂n
= 0, ∀n
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and

∂2E[U(n, c, c∗)]

∂n ∂c

∣

∣

∣

∣

c∗=c

=
∂(−e−nT (2,c)[1− F (c)]n)

∂n
≥ 0, ∀c ✷

c
0

dEU/dn>0

Slope = d EU/dndc>0
2

• Large population: let ĉ ≡ sup{x : F (x) = 0}

lim
n→∞

E[e−Tmin] = 1− ĉ

lim
n→∞

T (Cmin) =
ĉ

1− ĉ

✄ No efficiency loss: a zero-cost player will come out at time 0.
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5.2 Perfect Info [Bilodeau-Slivinski JPuE 1996]

• Department chairing and toilet cleaning [paper title]

• Complete information

• n+ 1 players: one contributor needed

• Utility without PG:

vi

• PG benefit for i: higher utility after PG is provided

ui (> vi)

• Contributor cost:

– One-time cost:

fi

– Prolonged cost ci for ∆ periods.

PG benefit

PG cost

t
v i

f i

u i

c i
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5.2.1 Infinite Time Horizon

• All players live forever to t = ∞.

• i’s lifetime utility (PV at t = 0) with PG provided at t:21

Fi(t) =
vi
ri

[

1− e−rit
]

+
ui

ri
e−rit

• i’s cost (PV at t = 0) if she provides PG at t:

Ci(t) = fie
−rit +

ci
ri

[

e−rit − e−ri[t+∆]
]

• i’s lifetime utility if she provides PG at t:

Li(t) = Fi(t) − Ci(t)

• i’s lifetime utility if PG never occurs:

Si =
vi
ri

✄ Ignore people with Li(0) < Si: they cannot be the contributor!

• SPE: anyone contributes at t = 0, with others free riding!

! Multiple equilibria

! Not justifiable!

21Note that
∫

∞

a

xe−rtdt =
xe−ra

r

and hence:
∫ b

a

xe−rtdt =
x[e−ra − e−rb]

r
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5.2.2 Finite Time Horizon

• Player i dies at Ti (< ∞)

• i’s lifetime utility with PG provided at t:

Fi(t) =
vi
ri

[

1− e−rit
]

+
ui

ri

[

e−rit − e−riTi
]

• i’s cost if she provides PG at t:

Ci(t) = fie
−rit +

ci
ri

[

e−rit − e−riτi(t)
]

with:

τi(t) ≡ min{Ti, t+∆}

• i’s lifetime utility if she provides PG at t:

Li(t) = Fi(t) − Ci(t)

• i’s lifetime utility if PG never occurs:

Si =
vi
ri

[

1− e−riTi
]

• The latest time t̄i that i may provide PG: Figure

Li(t̄i) = Si

and hence:

t̄i = Ti − 1

ri
ln

Bi

Bi − 1
, Bi ≡ ui − vi − ci

rifi
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Li(0)

Si

0
Ti

Li(Ti)

t
t i

• SPE (using backward induction):

– Re-arranging players:

t̄n < t̄n−1 < · · · < t̄1 < t̄0

– Efficiency: player 0 will contribute at t = 0 (no delay)22

t

t '1

tn t1

t0

tn-1

........

• Likely contributor:

– Ti large: live longer
22Note that t′

1
is where:

L1(t
′

1) = F1(t̄1).
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– ri large: impatient to wait

– Bi large: benefit-cost ratio higher
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6 Sequential-move Games

6.1 Stackelberg v. Nash Games [Varian, JPuE 1994]

• Additive PG: 2 players (i = 1, 2)

– Individual budget:

wi = xi + gi

– PG:

G = g1 + g2

– Quasilinear utility:

Ui(xi, G) = ui(G) + xi = ui(g1 + g2) + [wi − gi]

• Stand-alone contribution: i’s contribution when gj = 0

ḡ1 = argmaxg1 u1(g1) + [w1 − g1]

ḡ2 = argmaxg2 u2(g2) + [w2 − g2]

✄ Assume player 1 likes PG more:

ḡ1 > ḡ2

• Nash reaction function: [Figure below]

g1(g2) = max{ḡ1 − g2, 0}

g2(g1) = max{ḡ2 − g1, 0}

• Simultaneous-move equilibrium: intersection N of Nash reaction curves

GN = ḡ1
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g1

g2

N

F

ḡ1

ḡ1

ḡ2

ḡ2

g1(g2)

g2(g1)

• Sequential-move equilibrium:

1. Player 2 as leader: since

u2(ḡ1) > u2(ḡ2) > u2(ḡ2)− ḡ2

✄ Player 2 will free ride:

g2 = 0, g1 = ḡ1

✄ PG level same as in Nash: GS = ḡ1

2. Player 1 as leader:

V1(g1) = u1(g1 + g2(g1)) + [w1 − g1]

= u1(g1 +max{ḡ2 − g1, 0}) + [w1 − g1]

or:

V1(g1) =

{

u1(ḡ2) + [w1 − g1], g1 ≤ ḡ2
u1(g1) + [w1 − g1], g1 ≥ ḡ2
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– Choice 1: g1 = 0 (free ride), let GS = ḡ2, and get utility

V F
1 = u1(ḡ2) + w1

✄ PG level lower than Nash:

GS = ḡ2

– Choice 2: g1 = ḡ1, let 2 free ride, and get utility

V N
1 = u1(ḡ1) + w1 − ḡ1

✄ PG level same as in Nash:

GS = ḡ1

V (g1 1)

g1

N

F

ḡ1ḡ2

V F
1

V N
1

3. PG level in Stackelberg may be lower than Nash:

– when PG-lover is leader

– when PG-lover chooses to free ride.23
23This is not possible in Nash. Threat is not credible.
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• Stackelberg leadership bidding:

– Value of leadership for players:

b1 = V F
1 − V N

1 = u1(ḡ2)− [u1(ḡ1)− ḡ1]

b2 = V N
2 − V F

2 = u2(ḡ1)− [u2(ḡ2)− ḡ2]

Therefore:

b2 − b1 = [u1(ḡ1)− u1(ḡ2)] + [u2(ḡ1)− u2(ḡ2)]− [ḡ1 − ḡ2]

≥ [u′
1(ḡ1) + u′

2(ḡ1)− 1][ḡ1 − ḡ2] (concavity)

= u′
2(ḡ1)[ḡ1 − ḡ2] (foc2)

> 0

– Player 2 has a higher bid than player 1.

• Generalization: results hold for any convex preferences.
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6.2 Donation Announcement by Charities

• Romano and Yildirim [JPuE, 2001/v81, pp. 423–447]

• Charities often announce donor contributions as they accrue.

✄ Contributions become sequential, instead of simultaneous.

E Telethon, United Ways, university fund-raising
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6.3 Seed Donation for Fixed-cost PG Campaign

• Leadership giving: Andreoni [JPE, 1998]

– Discrete PG: fixed production costs

✄ Both positive and zero provision equilibria exist in Nash games

– Donors may get stuck in no-provision outcome

✄ Due to lack of coordination

– Sequential fund-raising strategy is preferable

✄ People are induced to contribute by large initial donations

– Lab experiment: Bracha, Menietti,and Vesterlund [JPuE, 2011v95]

✄ Theory confirmed for high (not for low) fixed costs

• List and Lucking-Reiley [JPE, 2001/v110(1)]

– Field experiment

– Both likelihood and average amount of contributing are higher with

larger initial seed amounts

• Andreoni [JET 2006]

– ?
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6.4 Alternating-move Game [Admati-Perry, REStud 1991]

• Alternating contributions:

– Player 1 makes contribution in period 1.

– Player 2 then makes contribution in period 2.

– Player 1 again makes contribution in period 3.

– And so on ...

✄ Game terminates when total contribution reaches PG cost.

• 2 contribution setups:

– Contribution game: pay immediately when making commitment

– Subscription game: pay only when PG is provided

• The 2-player model:

– Same value of PG: V for both players

– Cost of PG: K
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6.4.1 Subscription Game

• Let T ≡ time when the game terminates (when PG is provided)

✄ CT
i ≡ total pledged contribution by i up to period T

✄ Utility at period T :

UT
i (C1, C2) = δT

[

V − CT
i

]

, i = 1, 2

• SPE, given (V,K), is:

– K > 2V : PG is never provided

– K ∈ ([1− δ]V, 2V ): Player 1 contributes at t = 1:

C∗
1 =

K − [1− δ]V

1 + δ

then player 2 contributes at t = 2:

C∗
2 = K − C∗

1 =
δK + [1− δ]V

1 + δ

✄ PG provided at t = 2 (no delay)

– K = [1− δ]V : 2 possible SPEs.

Player 1 may contribute all cost C∗
1 = K at t = 1.

Or 1 makes no contribution at t = 1, and let 2 makes C∗
2 = K.

Player 1 will get same discounted utility:

V −K = δV

– K < [1− δ]V : player 1 takes full responsibility (C∗
1 = K) at t = 1,

and let 2 free ride (C∗
2 = 0).

• Efficiency: PG is provided when K < 2V in no more than 2 periods.

42



Sequential-move Yusen Sung

6.4.2 Contribution Game

• Let cti ≡ contribution by i at t

• Payment sequence: (c11, c
1
2 = 0), (c22, c

2
1 = 0), · · ·

• Game terminates at time T if:

T
∑

t=1

[ct1 + ct2] ≥ K

– Outcome:

(T, {ct1}Tt=1, {ct2}Tt=1)

– Player i utility:

UT
i

(

{ct1}Tt=1, {ct2}Tt=1

)

= δT−1V −
T
∑

t=1

δt−1W (cti)

where: W (ci) ≡ i’s cost of making contribution ci

• SPE may be inefficienct:

– W (ci) is linear, say W (ci) = ci:

✄ PG will occur iff V > K, with 1 being the sole contributor

(c11 = K)

✄ PG will not occur (as it should) when K ∈ [V, 2V ]

– W (ci) is strictly convex: conditions for PG to be provided:

if: V > W (K)

only if: V > W ′(0)K

E When K = V = 1, δ = 1, and W (c) = c+ c2: no PG.24 ✷

24The efficient solution would be equal sharing (c1 = c2 = 1/2).
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7 Mechanism Design for Optimality

7.1 Matching Game

• Indogenous linear matching: Guttman [AER 1978, 68:251–255]

– Two-stage game:

1 Each player i announces his/her matching rate bi

2 Each player decides his/her flat contribution ai

– PG contribution:

xi = ai + bi
∑

j 6=i

aj, X =
∑

i

xi

– Quasi-linear player payoff:

πi ≡ fi(X)− xi = fi





∑

i

[ai + bi
∑

j 6=i

aj ]



−



ai + bi
∑

j 6=i

aj





– Efficiency: SPE satisfies Samuelson condition.

• Exogenous matching rates µij :

– Buchholz-Cornes-Rubbelke [JPuE 2011, 95:639–645]

– For a matching game equilibrium to be Pareto efficient, all players

must be contributors (i.e., interoir)

– Income distrubution is cricual for interior solution

– Warr neutrality no longer holds

E 2 players: Ui(xi, G) = xiG, W = 2, µij = 1 ⇒ W1 = W2 = 1 ✷
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7.2 Contribution Deposit

7.2.1 Introduction

• Gerber and Wichardt [JPuE 2009, 93:429–439]

• To implement any social goal ℘ that is P-superior to Nash outcome ℵ

– Lack of centralized sanctioning intitutions

– Voluntary participation

• Applications:

– International environmental agreement: Kyoto Protocal

– Private contribution to public good

– n-person Prisoners’ Dilemma

• 2-stage mechanism:

1 Deposit (押金) stage

2 Contribution stage

• Subgame-perfect Nash equilibrium:

– Unanimous deposit payment

– Full ex-post contributions
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7.2.2 2-player Example: Symmetric Linear Public Good

• The Nash contribution game Γ0:

– 2 players (i = 1, 2) with equal endowment e

– Voluntary individual PG contribution:

ci ∈ [0, e]

– Additive PG:

C = c1 + c2

– Linear Utility:

Ui(c1, c2) = [e− ci] + α[c1 + c2],
1

2
< α < 1

Q Why do we need α ∈ (12, 1)?

• Unique Nash equilibrium ℵ:

c1 = c2 = 0

• Full-contribution optimum ℘:

c1 = c2 = e = c̄

✄ ℵ is Pareto dominated by ℘:

Ui(c̄, c̄) > Ui(0, 0), i = 1, 2

• How can we implement ℘?
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• 2-stage game design to implement ℘:

S1 Both players decide simultaneously whether to pay deposit d̄.

– Payment di is hence either 0 or d̄.

– Payment decision (d1, d2) is public info. ✷

S2 If either di = 0: all deposits are refunded, game Γ0 is played.

If d1 = d2 = d̄: players contributing full c̄ get refund d̄.

• SPE:

S2 Stage game Nash equilibrium:

∗ If either di = 0: player dominant strategy is

c1 = c2 = 0

and utility is:

U 0
1 = U 0

2 = e ✷

∗ If d1 = d2 = d̄: player payoffs are:

πi(ci, cj) =

{

e− d̄− ci + α[ci + cj ], if ci 6= c̄

e− c̄+ α[c̄+ cj], if ci = c̄

or:

πi(ci, cj) =

{

e− d̄− [1− α]ci + αcj , if ci 6= c̄

e− [1− α]c̄+ αcj , if ci = c̄

✄ Dominant strategy is ci = c̄ (i = 1, 2) if25

e ≥ d̄ > [1− α]c̄ = [1− α]e
25Note that if ci 6= c̄, i should choose ci = 0. Hence we are comparing:

πi(ci, cj) =

{

e− d̄+ αcj , if ci = 0
e− [1− α]c̄+ αcj , if ci = c̄
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and utility is:

U ∗
1 = U ∗

2 = e+ [2α− 1]c̄ ✷

S1 Payment di = d̄ is a weakly dominant strategy for either player.

∗ If dj = d̄: then di = d̄ is strictly better than di = 0 for i

U ∗
i (c̄, c̄) > U 0

i (0, 0)

∗ If dj = 0: then both di = d̄ and di = 0 yield same utility

U 0
i (0, 0) = e ✷

• Intuition:

– Players are now forced to choose between Pareto-superior ℘ and

Nash ℵ.

– Threats: either commit to ℘, or revert to the Nash outcome ℵ.26

– Players cannot choose individual ci (hence cannot free ride).

26For PD game: if you betray me, you won’t get deposit back.
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7.2.3 General n-player Model

1. Assumptions

• Utility function: x private, y public

U i(xi, y); U i
x > 0, U i

y > 0

• Endowment: ei (units of x)

• Individual PG contribution:

ci ∈ [0, ei]

✄ budget constraint:

xi + ci = ei

• Aggregate PG production:

y = F

(

∑

i

fi(ci)

)

, f ′
i > 0, f ′′

i < 0, F ′ > 0

• For any c = (c1, · · · , cn) = (ci, c−i): utility

πi(ci, c−i) = Ui

(

ei − ci, F

(

∑

i

fi(ci)

))

• A1 Spending on x yields higher marginal return than y: ∀ i

U i
x > U i

yF
′f ′

i

✄ Contribution lowers utility:

∂πi(ci, c−i)

∂ci
< 0, ∀ i, ∀ ci ≥ 0, ∀ c−i

! Very strict restriction on utility function
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• Equilibrium ℵ of the Nash game Γ0: strictly dominant strategy

c0i = 0, ∀ i

E Linear utility function:

U i(xi, y) = xi + ay; a < 1

fi(ci) = ci, F (x) = x ✷
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2. Design

• Can implement any c∗ = (c̄1, · · · , c̄n) that Pareto-dominates ℵ:

πi(c̄1, · · · , c̄n) > πi(0, · · · , 0), ∀ i

Example: The PD game

• 2-stage game:

S1 Everyone pays deposit: di ∈ {0, d̄i}
✄ d ≡ (d1, · · · , dn) is public info at end of S1.

S2 Depending on d = (d1, · · · , dn) in S1:

– If any di = 0:

∗ All deposits di are refunded.

∗ Nash game Γ0 is played, all players get utility

πi(0, · · · , 0)

– If all di = d̄i: game Γ∗ below is played:

∗ Players contributing full ci = c̄i get refund d̄i.

Others (with ci < c̄i) receive no refund.

∗ Player i gets payoff:

πi(ci, c−i) =

{

U i(ei − ci − d̄i, F (
∑

j fj(cj))), if ci < c̄i
U i(ei − c̄i, F (

∑

j fj(cj))), if ci = c̄i
✷

• A2 Deposit (d̄1, · · · , d̄n): d̄i (≤ ei) is chosen such that: ∀ cj (6=i) ≤ ej

U i



ei − c̄i, F (fi(c̄i +
∑

j 6=i

fj(cj))



 > U i



ei − d̄i, F (
∑

j 6=i

fj(cj))




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• SPE of the 2-stage game:

S1 Weakly dominant strategy for all i:

di = d̄i

S2 Strictly dominant strategy for all i:

ci(d) =

{

c̄i, if dj = d̄j, ∀ j
0, if dj = 0 for some j

✷

• Sketch of Proof:

S2 By A1, subgame Γ0 has unique DSE ci = 0 (all i).

By A2, subgame Γ∗ has unique DSE ci = c̄i (all i).

S1 For i:

If any dj = 0: outcome is πi(0, · · · , 0), independent of di.
If dj = d̄j, ∀ j( 6= i): outcome is πi(c̄1, · · · , c̄n) if di = d̄i.

✄ di = d̄i is weakly dominant strategy for all i.
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3. Extensions

• Costly deposit collection/payment:

– Payoff modification: fraction δ is payer cost

✄ Γ0 game:

πi(ci, c−i) =

{

U i(ei − ci − δd̄i, F (
∑

j fj(cj))), if di = d̄i
U i(ei − c̄i, F (

∑

j fj(cj))), if di = 0

✄ Γ∗ game:

πi(ci, c−i) =

{

U i(ei − ci − d̄i, F (
∑

j fj(cj))), if ci < c̄i
U i(ei − c̄i − δd̄i, F (

∑

j fj(cj))), if ci = c̄i

– Results still hold.

• Possible uses of forfeited deposits: off-equilibrium cases

– Throw away (gift to other economies)

– Extra/bonus refund to full contributors

– Other inrelevent use

• Repeated games:

– Collect a big deposit first (as long-run commitment)

– Refund a share in each subsequent period
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7.3 Category Reporting: Harbough [JPuE 1998]

7.3.1 Stylized Facts

• Many charities use category reporting for fundraising

• Donors tend to give minimum necessary to get into a category

• Donors enjoy having their donations publicized

7.3.2 Pure Egoism

• Warm glow: pure internal satisfaction from act of giving

- Proportional to donation amount

• Prestige: utility from having their donations publicly known

- Affected by charity reporting plans

- Due to social recognition, business opportunities, etc.
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7.3.3 The Model

• Donor choice:

– Utility:

U(x, p, d), Ux > 0, Up > 0, Ud > 0

x ≡ private consumption

p ≡ prestige

d ≡ warm glow (= donation)

– Budget:

x+ d = w

– Utility max:

max
x, d

U(x, p, d) s.t. x+ d = w

✄

max
d

U(w − d, p, d)

– Level curves: Fig ?

Iw(k) = { (p, d) | U(w − d, p, d) = k }

✄ U-shaped on p-d space, with slope: 先負後正

dp

dd
=

Ux − Ud

Up

✄ As w ↑, infection points (反轉點) shift right. (∵ d ↑ with w)

• Prestige effect:
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– Charity reports r for donation d:

r(d)

– Donor then gets prestige p from publicly known r:

p(r) = p(r(d))

– Can let p = r: prestige fn is absorbed into util fn

• 3 possible charity report plans r(d): restriction r(d) ≤ d

– No reporting:

r(d) = 0, p(d) = 0

– Exact reporting:

r(d) = d, p(d) = d

– Category reporting:

p(d) = r(d) =

{

α, if d ≥ α

0, otherwise

• Donors choose optimal (p, d) subject to report constraint p(d).
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7.3.4 Effects of Reporting Plans on Donations

• No reporting d0: Ux = Ud (zero slope) on p = 0 line

• Exact reporting de: Ux = Ud + Up (slope = 1) on p = d line

• Category reporting:

dc =



















d0, if α < d0
α, if α ∈ [d0, de)

α, if α ∈ [de, dm)

d0, if α ≥ dm

• One-donor case:

de > d0, but dc >−< de

α
d0

d0

de

de

dm

dm

dc(α)

57



Category Reporting Yusen Sung

• Charity strategy: to max donation, choose bracket

α = dm

• Donor bunching: donors of different incomes bunching up at bracket

Fig ?
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7.3.5 Optimal Solicitation Strategy of Charities

• To show: can always increase total donations by using categories.

• Assume: n types of donors with

d1e < d2e < · · · < dne

• Low-end category: can raise 1’s donation w/o affecting others’ choice.

(C1) d1e < d1m < d2e: can fully exploit 1 Fig ?

r̃(d) =

{

d, if d ≥ d1m
0, otherwise

✄ Exact reporting for donations above d1m only

✄ Donor 1 change from d1e to d1m; donor 2 remains same

(C2) d1e < d2e < d1m: cannot fully exploit 1 Fig ?

r̃(d) =

{

d, if d ≥ d2e
0, otherwise

✄ Exact reporting for donations above d2e only

✄ Donor 1 change from d1e to d2e; all others still same

• High-end category: can raise n’s contribution Fig ?

r̂(d) =











d, if d ≤ dn−1
e

dn−1
e , if d ∈ [dn−1

e , dnm)

dnm, if d ≥ dnm

✄ Donor n change from dne to dnm; all others unchanged.

• Note: r̃ and r̂ not necessarily optimal: may still raise donations further

• Similar devices: unique souvenir, building naming, trophy, etc.
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7.3.6 Charity Classification and Theory Testing

• Educational institutions:

– Monopoly on alumni donations: without substitute

– Can fully exploit consumers ✄ categories far apart

– Donations publicized to a limited circle

• National organizations: E Sierra Club, RFF

– Strong competition among charities

– Unable to exploit consumers fully ⇒ Categories closer together

– Aim at small donations from large population

• United Way (聯合勸募):

– Formed to effectively use categories

– Facilitate distribution of donation reports

7.3.7 Problems

• Not an equilibrium analysis of public-good model

• No PG in model: donors do not care about total PG level

• No consumer interaction: donors do not care about how much others

donate
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