Motivation Yusen Sung

BANBRER

1 Contribution Motivation

1.1 Cornes-Sandler Anomaly

e Severe free-riding (cf. moderate in experiments)

e Neutrality /crowing-out

> Experiment: Eckel et al. [JPuE 2005/v89, pp. 1543-1560]

e Large-population effect

> White [1989], Steiberg [1989]

1.2 Other Possible Explanations

e Fuir share [Margolis 1982]:
> G-utility v. S-utility

e Principle of rational commitments (or Kantian behavior):?

max U(z,ng) st. x+pg=1
.9

Samuelson foc:

n - MRSY* = p

e Principle of reciprocity [Sugden 1984]

> “I should also contribute g if all other do so.”

e Sentiment [Hollander 1990]: social approval

IFraming effects: crowding-out depends on player’s perception about source of the funding.
2S0 called “Kantian categorical imperative”. See, for example, Laffont [1975], Collard [1978], and Harsanyi [1980].
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1.3 Impure Altruism: Warm Glow Theory

e Altruism v. egoism:

— Pure egoistic:
Ui(zi, gi)
— Pure altruistic:

Ui(z;, Q)
— Impure altruism: Andreoni [JPE 1989, EJ 1990]
Ui(zi, gi, G)
e Implications of impure altruism:

1. Neutrality result does not hold:
> May have higher G using transfer:

More
altruistic

More income
egoistic redistribution

»

2. RKT will break down: kids will steal from head.?
> Parent: Uy,(X,, X}, t), more egoistic
> Kid: Ug(Xj), more altruistic

3Tronically, now the head is more egoistic, while kids are more altruistic.
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1.4 Environmental Offset

e Kotchen, M.J. (Economic Journal, 2009, V119, pp. 883-899)

> Contribution compensation for harmful private consumption

e Pure altruistic preference:

Consumer budget:

T + gi = I
e Private consumption x; diminishes PG:
G =G+ g — P

> g; = direct contribution by ¢

>y, = ¢g; — [Bx; = net contribution by ¢
e Equilibrium:

— Mean contribution does not converge to zero as population grows

large
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2 Non-additive Public Goods

2.1 Social Composition Functions: Hirshleifer [PC 1983]
e Summation rule:
G =29
1
e Best-shot:

G = max{gi, - gn}

o Weakest-link:

G = min{gi, - gn}

2.1.1 Summation Rule

e Optimality condition:

G,Ij .
ZMRSj = MCi(g,), Vi

J

e Nash interior condition:

MRS = MCy(g;), Vi
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2.1.2  Best-shot
e Optimality condition: with the low cost player k
> MRS{ = MC(GP); and TC(GP) < TC;(GP), Vj # k
and
g; =0, #k
e Nash interior condition: with the low cost player k
MRSS™ = MCy(NP)

and
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2.1.3 Weakest-link

e Optimality condition:

> MRS =) T MC(GY)

e Nash interior condition: 3 k

MRS = MC(N")

MRS > MC;(NW), Vj #k
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2.2 Generalization

e Cornes [QJE 1993]

e Constant elasticity of substitution (CES) production function:

n )\ 1/)\
Q — o [Zi—l QZ]
n
— Summation:
a=n, \=1
- WL:
a=1, A\— —o0
- BS:

a=1, A\ — 400

— Average: o = A\ = 1, hence:

n
e Weaker-link: A — +0 y
Q= (H %‘)
i=1
>
oQ = Q 1T with lower ¢;
dg; ng;
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2.3 Group Contest/Tournament: Group-specific Public-good Prize

2.3.1 Baik [EL 1993]

e N groups: each with m; risk-neutral members

e Effort of member k£ in group-::

=

e Total group i effort:
m;
j=1

e Prize-winning probability:

pi( X1, ..., Xn)
with:
8]%‘ 82]%' apz‘ 82}%
>0, — <0 —— <0 > ()
0X; — ’ 8Xz2 - 8Xj -7 0X?2 T

e Member-specific prize value: vF (> 0)

EUY = ofpi(Xy,..., Xy) — 2F
e Assuming, for each group :

v} > vf > o > 0" (>0)

e player-k-best response:

XF = argmaxy, vfp,'(Xi\X_i) —X; st. X;>0
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e Equilibrium:

(Xika T 7X]>|§7)
— Only member 1 will put out effort: X; = z! = X!

ot P
©OX,

— Other members (j # 1) will free ride (z! = 0):

_ op;
0X;

.

EN

2.3.2 Plurality rule
e Baik-Shogren [1998]*
e Winning probability:
p(X1, Xp) = F(X1 —Xy), p(X1,Xo) = 1 - F(X; - Xy)

with:
F(0)=1/2, F(—=d)=1- F(d)
0 < F(d) <1, VdeR

F'(-) >0, F"(0) =0, F"(d)d < 0

4K.H. Baik and J.F. Shogren, “A Behavioral Basis for Best-Shot Public-Good Contest,” in Advances in Applied Microe-
conomics (Volume 7), JAI Press, pp. 169-78, 1998.
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2.3.3 Two-stage Game

e Baik-Lee [1998]°

e T'wo stages:

Inter-group contest:
X

pi =
Z Zj X;
Intra-group competition: for share «; of the prize

2.3.4 All-pay Auction
e Baik-Kim-Na [JPuE, 2001/v82, PP. 415-429]

e Winning probability:
1, if X; > Xj
pi(X1, X)) = ¢ 1/2, if X;=X;
0, if X;<Xj;

5K.H. Baik and S. Lee, “Group Rent Seeking with Sharing,” in Advances in Applied Microeconomics (Volume 7), JAI
Press, pp. 75-85, 1998.

10



Binary PG Yusen Sung

3 Binary/Discrete/Threshold Public Goods

3.1 Continuous/variable Contributions

1. The case of Oral Roberts
2. Bagnoli-McKee [EI 1991]

e Binary PG: price/cost C
e N players: income w;, WTP for PG V;, contribution ¢;
e Assume:
C>w; >V, Vi
e Game rule:

— >, ¢ > C: PG provided, player i gets payoft:
T, = Vi-l—[wi—ci]

— ;¢ < C: no PG, ¢ is refunded, 7 gets payoft:

e Nash equilibrium: 3 cases
—>".¢; > C: (c1,...,cn) cannot be Nash.®
— Y ¢; = C: stable Nash with ¢; <V}, Vi
— >, ¢; < C: Nash (but not trembling-hand perfect) if

V;“FZC]' < C, Vi
JFi

6Player ¢ would want to lower ¢;, given other players’ contributions.

11
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3.2 Binary Contributions

3.2.1 Palfrey-Rosenthal [JPuE 1984]

1. Analysis goal:

e Two designs: NoRefund (X) v. Refund ()

e T'wo possible reasons for not contributing: Greed v. Fear
2. The Model:

e M players
e Binary PG: provided if w (< M) players contribute
— Cost ¢ for contributors, 0 for non-contributors
— Player gets utility 1 with PG, 0 without
e 3 groups of players:
(a) Contributors: |G| = m?
(b) Non-contributors: |G?| = m?
(c) Randomizers (contribute with probability ¢): |G?| = m?

—m? = number of players actually contribute in G*
3

—m?3, = number of contributors excluding i in G*

—m = number of total contributors
3. NoRefund (R)

e Pure-strategy Nash (m?3 = 0):
(a) w = 1: M equilibria (m! =1, m?> = M — 1)
(b) w > 2:

12
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i. m! =0, m? = M: no one controbutes, no PG
ii. m!
e Mixed-strategy Nash (m?® > 0): equilibrium conditions are

— G': EU is greater with contributing

so ¢ < P(m3 =w —mt), or:

M — ml — m2 w—mt —w—m?

where P(X) is the probability of event X.

w—m

— G?%: EU is greater without contributing
Pm*>w—-—m') > P(m*>w—-—m'—1)—c

soc> P(m? =w—m!—1), or:

M — ml — m2 w—ml— —w—m?
¢ > ( 1 )q L= gt

— G3: equal EU either way

Pim?, > w—m'—1)—c=P(m>, >w—m"

—7 =

so c = P(m?

M — L 2—1 1 2
c = ( m 1m >qwm —1[1_q]M—w—m
w—m —1

2

;=w—m!—1), or:

— For mixed strategy Nash (m!', m? m?, q):

(a) if (m! = 0): (m?, m?,q) must satisfy (2, 3)

13

=w, m?> = M — w: exactly w contributors, PG provided

(2)

(3)
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(b) if (m? = 0): (m!, m3, q) must satisfy (1, 3)
(c) if (m! =m? =0, m3> = M): q only have to satisfy (3)
(d) otherwise: all 3 egs (1, 2, 3) must hold
— Admissible (m!, m? m3,q), given (M, w, c), satisfies:
(1) m! < w —1: or else there must be PG, hence no need to mix
(2) m* < M —w: or else there must be no PG, hence no need to
mix
— ¢(q), by Eq.(3), must be uni-modal, and peaks at ¢ = ¢(q):

w—mb—1
M —m!—m? -1

q =

— iff condition for existence of mixed-strategy Nash, given any ad-

14
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missible (m!, m? w, M):

. c(q), if m'=0
c(q), if m* >0
x If m? > 0, then by Eqgs.(2)(3): ¢ > Go
x If m! > 0, then by Eqgs.(1)(3):
i w —m! A
q = q= > q

M —m! —m?
x If m! > 0 and m? > 0: ¢ > ¢ (as ¢ is not binding)
— Nash (m!,m? m? q) can hence be obtained, for any chosen
(ml,m?).7
Assume (M =4, w = 2, ¢ = 0.096):
x Pure Nash: (m! =0, m?> = 4) and (m! = m? = 2)
* Mixed Nash:

(1) m! = m? = 0: two solutions
¢ = 0.800, E(m)=3.2>w

¢ =0.034, E(m)=0.14<w

(2) m! =0, m? = 1: q = 0.9494, E(m) = 2.85 > w

1, m?=0: q=0.69, B(m) = 3.07 > w
L=m?=1: ¢=0.904, E(m) =2.81 > w
+ NB: It is possible that everyone contributes (m? = 0), and

PG is over-provided (m > w). &

"When m! > 0 or m? > 0, we have no more than one solution. Otherwise (m! = m? = 0), we have at most two

solutions.

15
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— Eventually, when M is very large, only pure Nash exists.®
4. Refund (R)

e Pure-strategy Nash (m? = 0):
—w < 2: same as in (X)
—w > 2: besides those in N, we have (0 < m! < w — 2, m? =
M —m!)

— NB: Now we have more Nash than in X, but only (m! = w, m? =

M — w) is strong.? In contrast, all Nash in N are strong..
e Mixed-strategy Nash (m? > 0):

— Define:
N n —nNn
C(Nng) = | |4 [1—q™

— Equilibrium condition for mixed Nash:
* G now cost ¢ is incured only when PG is provided
P(m* >w—mH[l —d+ P(m* <w-m') -0
> Pm*>w—m'+1)- 1+ P(m* <w—m'+1)-0
SO:
P(m? =w —m?)

<
— P(m3>w—ml

8The proof goes as follows: First begin with an admissible (m(l),m%, wo, Mp), define a sequence:

C

1,2 o o1 1 2 _ 2 _ _
{(my,, m;, wn, Mp)}olq; m, =nmg, m; =nmg, wn = nwo, My =nMy

and let ¢, be the corresponding cmax of (ml, m2,wn, My). Then by limiting property of binomial distribution, we know:
lim ¢}

=0
n—oo Max

Therefore, lim,— 00 ¢" = 0, any mixed Nash is actually pure Nash.
9«Strong” means that a player will get get strictly lower utility if he/she deviates from Nash strategy.

16
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C(M T ml _ m27w - m17Q)
M=m'—m? C(M —m!'—m?2t, q)

t=w—m!

(4)

or:
. Pim? =w—m!—1)
P(m? >w—m!—1)
C(M —m!—m? w—m!—1,q) (5)
i\i;ii{lﬁ C(M —m!' —m?t q)
* G

or:
P(m?, =w—m!—1)

_Z_

P(m3, >w—m!—1)
C(M—m'—m?>—1,w—m!—1,q)
M_ml_mz_lC(M— mt —m?2 —1,t,q)

t=w—m!—1

CcC =

(6)

— Note that eqs(4)(5) are not binding. Then by eq.(6):

* ¢ is continuously differentiable in ¢ € (0, 1)
c(0)=1, d(¢) <0, limc(q) =0

q—1

* ¢(q) has inverse function Q(c):
Q) =0, Q(c) <0, limQ(c) =1

* Unique @ for any ¢ (€ (0,1)) and admissible (m!, m? w, M)

17
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v
le)

— Comparision:
+ PG more likely in R than in X when c is high.!
* For any admissible (m!, m?,w, M) and ¢ < cpax(m?t, m?,w, M),
by comparing eq.(3)(6), we know @Q(c) in R is strictly greater
than ¢(c) in .1
Take again (M =4, w = 2, ¢ = 0.096), now R has same pure
Nash as N, but mixed nash are:
(a) m' =m? =0: Q = 0.802
(b) m! =0, m* =1: Q = 0.9496
(c) m! = 1: same as in N

> @ > g (but very close) B

10PG is possible only when ¢ < ¢max in N.
"' When m!' = m? = 0, Q(c) must be greater than the two solutions in R.

18
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3.2.2 Palfrey-Rosenthal [JPuE 1988]

1. Perfect-info game: contribution cost ¢ € (0,1), PG utility 1

B
AN ‘ Contribute Not
Contribute | (1 —¢, 1 —¢) (1 —¢, 1)*
Not (1,1 —¢)* (0, 0)

e 2 pure Nash: either one contributes

e 1 mixed Nash: both contribute with probability p=1—¢

2. Bayesian game:

e “Warm glow” utility d; > 0 (i = A, B): private info
> CDF F(-) is common knowledge

e Normal form:

B
AN ‘ Contribute Not
Contribute | (1 —c+dy, 1 —c+dp) (1 —c+da, 1)
Not (1,1 —c+dp) (0, 0)

e Player i’s strategy:

— If d; > ¢: should contribute

— If d; < ¢ — 1: should not contribute

—3d* € [c—1,¢|: contribute iff d; > d*
d*

|
1
c-1 C

A
o
o
\

19



Binary PG Yusen Sung

e Equilibrium:

— For either player i, probability(j will contribute) is:
¢ = 1-F(d)

— At threshold d; = d*, same utility from contributing or not:
l—c+d = ¢

— Can solve for equilibrium (d*, ¢*) from the above two eqs.'?

2-player equilibrium (d*, ¢*)

»
»

»
l-c 1
3. N-player games:
e Dummy s;: = 1 for contributing, = 0 for not contributing
e Warm-glow EU:
V(im;,1)+d;, if s;,=1
Ui(mg, s;) = (i, 1)+ 1 ’
V(m;,0), if s,=0

12(d*, q*) must exist if F' is continuous.

20
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where: V(my, s;) = EU; if there are m; other contributors.

e Can solve for equilibrium (d*, ¢*) with the two eqgs:

¢ = 1—F(d
N—1 N-1
YomVG ) +d =Y wV(,0)
i= j=0
where
N -1 *17 *IN—1—j
Wj:< ; )[Q]‘][lﬂNlj

is probability that j of the other N — 1 players will contribute.

4. Possible games: w contributors required for PG provision

e Chicken: players have both “greed” and “fear”!

‘mi<w—1 m;,=w—1 m; >w-—1
V(mi, 1) —c [1—] 1 —¢]
0 0 1]

e NoFear: cost refund if PG is not provided

‘m,’<w—1 mi=w—1 m;>w-—1
V(mg;, 1) 0 [1—¢] [1—¢]
0 0 1]

e NoGreed: cost sharing, everyone must incur ¢ if PG is provided

‘mi<w—1 m;,=w—1 m; >w-—1
V(mi, 1) —c [1—] 1 —¢]
V(m,,O) 0 0 [1—6]

13Parentheses in table indicate cases that PG is provided.

21
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e Control: with both refund and cost sharing

‘m,’<w—1 mi=w—1 m;>w—1
V(mg;, 1) 0 [1—¢] [1—¢]
V(mZ,O) 0 0 [1—@]

e Equilibrium strategy:

(Chicken) d* = ZN_lﬂ'jC — Tyl = C— Ty_1
(NoFear)  d*
(NoGreed) d* = Y07 mjc — w1
(Control) d* = my_1[1 — ]

I
I
g
L
A

A

3
i

e Comparision: given N, w, ¢, and F(-)

9Chicken < INoFear < 9Control

Q*Chicken < ql*\ToGreed < qaontrol

> People are more likely to contribute without greed or fear.

Equilibria of the four games

Chicken ---------.
-> ¢ NoFear -—-——— _

-, NoGreed ------
Control --—-—-—-

22
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4 Contribution-based Group Formation

e Gunnthorsdottir et al. [JPuE, 2010/v94, pp. 987-994]
o Within-group public good contribution:
— Group members: i =1,---,n
> Equal endowment: w
> Payoff for each member from $1 contribution by any member:
1
m € <—, 1)
n
— Group optimality: all members make full contribution
g = w, Vi
— Individual incentive:
g; = O, V1
e Competitive grouping: based on contributions
— Total consumers: N

— Fixed number of equal-sized groups: K

> Equal group size:

— Individuals are ranked according to their contributions, and then

partitioned into K groups.'*

e Inefficient no-contribution equilibrium E°:

14Ties are broken by random draw.

23
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e Near-efficient positive-contribution equilibrium (NEE, E7):

— (lass: set of consumers with identical contribution
> ¢; = number of consumers in Class C;

> ¢g; = individual contribution of consumers in Class C;
g1 > G2 > gz >
— Group: 1, 2, 3, -+, K

— Equilibrium E" construction:

1. There must be at least 2 classes, C; and C5.'

2. Group 1 contains only C; players.'0
> ¢; must be greater than (but not divisible by) n.”

> Some C] players will be mixed with C5 players in a group.

3. All C; players make full contribution:!®
g = w

4. The mixed group (with both €7 and Cy players) must be the

last group K.
> In any E*, there are exactly two classes (C] and Cy).
> All (5 players are contained in last group K:

Cr <N

151f all consumers have equal positive contributions (i.e., only 1 class), any one will want to deviate to g = 0.

6Otherwise any Cq player i will want to reduce his contribution as long as g; > ga.

17Otherwise any C player can reduce his contribution and remain in the same group.

18Otherwise each C; player i will increase his g; by € to avoid being assigned to the mixed group.

19 Assume that there are still groups below the mixed group. Then we have two possibilities: (1) Class C2 extends beyond
the mixed group further below: now each C> player ¢ will increase his g; by € to stay for sure in the mixed group to be with
the Cq players. (2) Class C does not extend beyond the mixed group: now each C player i can slightly decrease his g; by
e without being kicked out of the mixed group. Neither case is possible in equilibrium.

24
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5. All C5 players contribute nothing;:

g =0
e Existence and uniqueness of E:
— Only equilibrium E° exist if
_ N—-n+1
m
Nn—n?+1
— Both EY and E7 exist if
- N-—-n+1
m
Nn—n?+1

and, for ET, ¢y is an integer between b and b + 1, with:

N — mN

b =
mN —mn—+1—m

> Equal expected payoffs for both C; and Cy players.
e Experimental test:

— In general, experimental results support NEE.

25
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5 War of Attrition: Time Dynamics

5.1 Incomplete Info [Bliss-Nalebuff, JPuE 1984]
e The problem:

— Only 1 contributor is needed for an indivisible PG

— Who and when will someone contribute?
e Examples:

\/ Dragon slaying and Ballroom dancing [paper title]
v/ Who will clean up the house/toilet?

v/ Who will get up to feed the crying baby at night?
v/ Who will turn in the exam first?

v/ The mice v. cat story
e The Model:

— n+1 players, everyone gets one-time utility 1 when PG is provided

— Individual contribution cost: private info
c € [0,1]
> ¢ follows distribution pdf f(-) and cdf F(-)
e Asymmetric equilibrium:

— (n 4 1) equilibria: any one contributes at time 0, others free ride

— Not justifiable

26
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e Symmetric-strategy equilibrium:
— Identical strategy: waitig time limit
T(n,c)
— Can I benefit from deviation (pretending I am ¢* > ¢)?%
E[U(n,c,c)] = [1 — cle T[T — F()"
+ /OC* e_T("’x)nf(x)[l - F(x)]"_ldx

— FOC for optimal deviation c*:

OE[U(n,c,c)] i

oc* B
or:
oT'(n,c*) nef(c*)
occ 11— [l — F(c)]
— However, by definition, T'(n, ¢) implies ¢* = ¢:
oT(n,c) nef(c)
oc  —dn-r@ =" (7)

> First-order P.D.E. with border condition:
T(n,0)=0, Vn
e Properties of T'(n, ¢):

— People with higher costs wait longer:

orT

— >0
oc

20With all others following T'(n, c).

27
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x Lowest-cost player will contribute at time limit T'(n, ¢)

« Efficiency loss: delayed provision of PG

— People wait longer with larger population:

or
%>0

> Since, by eq. (7):
T(n,c) = nS(c)

we know:
T(1,¢) = S(c)
and

T(n,c) = n-T(1,c¢)

Let:

T(1l,¢) = S(c) = 10

then:
T(2,¢) = 2-T(1,¢) = 20
T(3,¢c) = 3-T(1,¢) = 30
(]

e It is still desirable to have more people (higher n):

OE[U(n,c,c)] >0, Vn, Ve
on
We know
OB 0.0 _ |
on

28
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and
9 % _—nT(2,¢)[1 _ n
O*E[U(n,c,c")] _ O9(=e - F") > 0, Ve O
on Oc cf=c on
i dEU/dn>0

Slope = d’EU/dndc>0

e Large population: let ¢ = sup{z : F'(z) = 0}

lim Ele 1] = 1 —¢
n—oo

¢
li T Cmin — -
S T(Cuin) = 17

> No efficiency loss: a zero-cost player will come out at time 0.

29



War of Attrition

Yusen Sung

5.2 Perfect Info [Bilodeau-Slivinski JPuE 1996]
e Department chairing and toilet cleaning [paper title]
e Complete information

e n + 1 players: one contributor needed

e Utility without PG:

(%
e PG benefit for ¢: higher utility after PG is provided
U; (> Ui)

e Contributor cost:

— One-time cost:
fi

— Prolonged cost ¢; for A periods.

PG cost m

(U]

\

PG benefit =

30

\



War of Attrition Yusen Sung

5.2.1 Infinite Time Horizon

e All players live forever to t = oc.

e i’s lifetime utility (PV at ¢t = 0) with PG provided at ¢:?!

Fi(t) = Sll—em] 4 e

r; Tr;

e i’s cost (PV at t = 0) if she provides PG at ¢:

Ci(t) = fie Tt + 2 [e‘”t _ e—n—[tw]}

)

e ¢’s lifetime utility if she provides PG at ¢:
Lit) = Fi(t) — Gi()

e ;’s lifetime utility if PG never occurs:

U.
Si=-

T
> Ignore people with L;(0) < S;: they cannot be the contributor!
e SPE: anyone contributes at t = 0, with others free riding!

m Multiple equilibria,
1] Not justifiable!

21Note that

o0 —ra
_ ze
/ ze "ldt =
o r

/b ‘,Eef'r“tdt _ ‘,E[ef'ra _ ef'rb}
a T

and hence:
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5.2.2 Finite Time Horizon
e Player i dies at T; (< 00)

e ¢’s lifetime utility with PG provided at ¢:

Ui

Fi(t) = % [1—e] 4 G [ent — et

r; r;

e i’s cost if she provides PG at t:

Ci(t) = fie "'+ “ {e_m — e—Tm(t)}

T
with:
7;(t) = min{T;,t + A}

e ¢’s lifetime utility if she provides PG at ¢:
Li(t) = Fi(t) — Ci(t)
e ;’s lifetime utility if PG never occurs:

Vi T
S; n[l e }

e The latest time ¢; that ¢ may provide PG: |Figure

Li(fi) =5;
and hence:
— 1 Bz U;
ti =T, — —1 , Bi =
r; H Bz — 1
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A A
Li(0)
Si
Li(Ti)
>t
0 -
b Ti

e SPE (using backward induction):

— Re-arranging players:
t, < th-1 < -+ < 1?1 < t_o

— Efficiency: player 0 will contribute at ¢t = 0 (no delay)??

e Likely contributor:

— T; large: live longer

22Note that t} is where:
Li(ty) = Fi(f).
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— r; large: impatient to wait

— B; large: benefit-cost ratio higher
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6 Sequential-move Games

6.1 Stackelberg v. Nash Games [Varian, JPuE 1994]

e Additive PG: 2 players (i = 1,2)
— Individual budget:

- PG:

— Quasilinear utility:

Ui(ﬂfz‘, G) = uz(G) +x; = ui(gl + 92) + [wz — gi]

e Stand-alone contribution: 7’s contribution when g; = 0

g1 = argmax, ui(gi) + [w1 — gi]

g2 = argmax,, us(gz) + [w2 — go]

> Assume player 1 likes PG more:
g1 > g2
e Nash reaction function: [Figure below]
91(g2) = max{gs — g3, 0}

92(91) = max{gs — g1,0}

e Simultaneous-move equilibrium: intersection N of Nash reaction curves

GN =g
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g

e Sequential-move equilibrium:

1. Player 2 as leader: since

us(g1) > ua(g2) > u2(g2) — G
> Player 2 will free ride:
92=0, g1=aq

> PG level same as in Nash: G° = g1

2. Player 1 as leader:
Vilg1) = wi(g1 + g2(g1)) + [w1 — g1]

= u1(91 + maX{§2 — g1, 0}) + [wl - gl]

or.
Vi(g) = u () + w1 — g1}, ¢ <5
ui(g1) + (w1 — g1}, g1 > 9o
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— Choice 1: g; = 0 (free ride), let G* = go, and get utility
Vi = ui(G2) +w
> PG level lower than Nash:
G = g
— Choice 2: g1 = g1, let 2 free ride, and get utility
V¥ =wi(g) +wi — g
> PG level same as in Nash:
G° = g

Vi(g)4

Vi 'F\
N

3. PG level in Stackelberg may be lower than Nash:

— when PG-lover is leader

— when PG-lover chooses to free ride.??

23This is not possible in Nash. Threat is not credible.
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e Stackelberg leadership bidding:

— Value of leadership for players:
b= Vi =V = wi(g) — [m(g) — 1]

by = V3" = Vi = us(gh) — [ua(72) — 72]
Therefore:
by — b1 = [ui(g1) —wi(g2)] + [ua2(g1) — u2(g2)] — [1 — 3]
[ui(g1) + u5(g1) — 1[g1 — g2]  (concavity)
92

= uy(g1)[g1 — g2] (foc2)
> 0

Vv

— Player 2 has a higher bid than player 1.

e Generalization: results hold for any convex preferences.
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6.2 Donation Announcement by Charities

e Romano and Yildirim [JPuE, 2001 /v81, pp. 423-447]

e Charities often announce donor contributions as they accrue.
> Contributions become sequential, instead of simultaneous.

Telethon, United Ways, university fund-raising
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6.3 Seed Donation for Fixed-cost PG Campaign

e Leadership giving: Andreoni [JPE, 1998]

— Discrete PG: fixed production costs

> Both positive and zero provision equilibria exist in Nash games

— Donors may get stuck in no-provision outcome

> Due to lack of coordination

— Sequential fund-raising strategy is preferable

> People are induced to contribute by large initial donations

— Lab experiment: Bracha, Menietti,and Vesterlund [JPuE, 2011v95]

> Theory confirmed for high (not for low) fixed costs

e List and Lucking-Reiley [JPE, 2001 /v110(1)]

— Field experiment

— Both likelihood and average amount of contributing are higher with

larger initial seed amounts

e Andreoni [JET 2006]

-7
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6.4 Alternating-move Game [Admati-Perry, REStud 1991]

e Alternating contributions:

— Player 1 makes contribution in period 1.

— Player 2 then makes contribution in period 2.
— Player 1 again makes contribution in period 3.
— And so on ...

> Game terminates when total contribution reaches PG cost.
e 2 contribution setups:

— Contribution game: pay immediately when making commitment

— Subscription game: pay only when PG is provided
e The 2-player model:

— Same value of PG: V for both players
— Cost of PG: K
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6.4.1 Subscription Game

e Let 7' = time when the game terminates (when PG is provided)
> CT = total pledged contribution by i up to period 7'
> Utility at period T"

Ui (Cy,Cy) =6" [V =Cf], i=1,2
e SPE, given (V, K), is:

— K > 2V: PG is never provided

— K € ([1 —0]V,2V): Player 1 contributes at ¢ = 1:

., K-[1-¢V
=T
then player 2 contributes at t = 2:
K +[1 =9V
ko K — ko
G2 ¢ 146

> PG provided at t = 2 (no delay)
— K =[1 —0]V: 2 possible SPEs.
Player 1 may contribute all cost C] = K at t = 1.
Or 1 makes no contribution at ¢ = 1, and let 2 makes C5 = K.

Player 1 will get same discounted utility:
V-K =0V

— K < [1 —=46]V: player 1 takes full responsibility (Cf = K) at t = 1,
and let 2 free ride (C5 =0). ®

e Efficiency: PG is provided when K < 2V in no more than 2 periods.
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6.4.2 Contribution Game
e Let ¢t = contribution by i at ¢
AR 2 2 _
e Payment sequence: (c¢j,¢5 =0), (¢5,¢1 =0),---

e Game terminates at time 7 if:
T

Z[cﬁ +¢) > K
t=1

— Qutcome:
(T, {ci 1, {1y

— Player ¢ utility:
T
U ({e i {d ) = 677V =3 o' wi(e)
t=1

where: W (¢;) = i’s cost of making contribution ¢;
e SPE may be inefficienct:

— W(¢;) is linear, say W(c¢;) = ¢;:
> PG will occur iff V' > K, with 1 being the sole contributor
(e = K)
> PG will not occur (as it should) when K € [V, 2V]

— W (¢;) is strictly convex: conditions for PG to be provided:
if: V> W(K)
only if: V. > W'(0)K
[E]When K=V =1,6 =1, and W(c) = ¢+ ¢% no PG.** O

24The efficient solution would be equal sharing (c1 = ca = 1/2).
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7 Mechanism Design for Optimality

7.1 Matching Game
e Indogenous linear matching: Guttman [AER 1978, 68:251-255]

— Two-stage game:
Each player ¢ announces his/her matching rate b;
Each player decides his/her flat contribution a;

— PG contribution:

xr, = a; + biZaj, X = ZQ?Z
JF#i i
— Quasi-linear player payoft:
mo= f(X)—a = fi| D lai+b Y a] | = |ai+b ) a
i J#i JF#i

— Efficiency: SPE satisfies Samuelson condition.

e ixogenous matching rates p;;:

— Buchholz-Cornes-Rubbelke [JPuE 2011, 95:639-645]

— For a matching game equilibrium to be Pareto efficient, all players

must be contributors (i.e., interoir)
— Income distrubution is cricual for interior solution

— Warr neutrality no longer holds

2 players: Uij(z;,G) =G, W =2, pjj=1= Wy =Wy =1 0O
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7.2 Contribution Deposit

7.2.1 Introduction
e Gerber and Wichardt [JPuE 2009, 93:429-439]
e To implement any social goal @ that is P-superior to Nash outcome N

— Lack of centralized sanctioning intitutions

— Voluntary participation
e Applications:

— International environmental agreement: Kyoto Protocal
— Private contribution to public good

— n-person Prisoners’ Dilemma

e 2-stage mechanism:

Deposit (<) stage
Contribution stage

e Subgame-perfect Nash equilibrium:

— Unanimous deposit payment

— Full ex-post contributions
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7.2.2 2-player Example: Symmetric Linear Public Good

e The Nash contribution game I'%;
— 2 players (i = 1,2) with equal endowment e
— Voluntary individual PG contribution:

¢ € 10,¢€]

— Additive PG:
C

c1+ ¢

— Linear Utility:

Ui(cr,02) = [e—¢] + aler + e, % <a<l
Why do we need a € (5, 1)?
e Unique Nash equilibrium X:
cp =c =0
e Full-contribution optimum g:
Cl] = C = e = ¢
> N is Pareto dominated by @:

Ui(é,é) > UZ(O,O), 1=1,2

e How can we implement p?
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e 2-stage game design to implement g:

Both players decide simultaneously whether to pay deposit d.
— Payment d; is hence either 0 or d.

— Payment decision (dy, dy) is public info. O

If either d; = 0: all deposits are refunded, game I'V is played.
-
If di = doy = d: players contributing full ¢ get refund d. m

e SPE:

Stage game Nash equilibrium:

x If either d; = 0: player dominant strategy is
Cl — C = 0

and utility is:
Ul = U) =e O
x If d; = dy = d: player payoffs are:
e—cZ—cZ-Jroz[cmLcj], if ¢;#¢
Wi(Ci,Cj) = _ _ . _
e —Cc+ alc+ ¢, if ¢;=c¢
or:
e—d—[1—aei+ac, if ¢;#£¢
Wi(Ci,Cj) = _ . _
e —[1—alc+ acj, if ¢;=¢

> Dominant strategy is ¢; = ¢ (i = 1, 2) if*

e >d>[l—ale =[1l-ale
25Note that if ¢; # ¢, i should choose ¢; = 0. Hence we are comparing:

(esyes) = e—d+ acj, if ¢;=0
TilCir€j) = e—[l—alc+oac;, if ¢;=c¢
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and utility is:
U =U; =e+2a—1c O
Payment d; = d is a weakly dominant strategy for either player.
* If dj = d: then d; = d is strictly better than d; = 0 for ¢
Ui (e,e) > U(0,0)
* If d;j = 0: then both d; = d and d; = 0 yield same utility
U2(0,0) = e O
e Intuition:

— Players are now forced to choose between Pareto-superior g and

Nash N.
— Threats: either commit to g, or revert to the Nash outcome N.25

— Players cannot choose individual ¢; (hence cannot free ride).

26For PD game: if you betray me, you won't get deposit back.
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7.2.3 General n-player Model

1. Assumptions

e Utility function: x private, y public
U'xiy); U,>0, Uy >0
e Endowment: e; (units of x)
e Individual PG contribution:
¢ € 10,¢

> budget constraint:

T, + ¢ = €

e Aggregate PG production:
Yy = F(Zfl(cl)>7 fz/>07 fz'//<07 F/>0

e For any ¢ = (¢1,-- -, ¢,) = (¢, c—;): utility

mi(cic—) = U; (62' —¢, F (Z fz‘(Ci)>>

° Spending on x yields higher marginal return than y: Vi
U, > UF'f;

> Contribution lowers utility:
omi(ci, c—i)
802-

m Very strict restriction on utility function

< 0, \V/Z, Ve, > 0, Ve
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e Equilibrium N of the Nash game I'Y: strictly dominant strategy
& =0, Vi
Linear utility function:
Uz, y) =2 +ay; a <1

filc)) =¢, F(z)=z O
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2. Design

e Can implement any ¢* = (¢, -, ¢,) that Pareto-dominates X:
mi(C1, v+, Cy) > m(0,---,0), Vi
Example: The PD game
e 2-stage game:
Everyone pays deposit: d; € {0,d,}
> d = (dy,---,d,) is public info at end of SI.
Depending on d = (dy, - --,d,) in SI:
— If any d; = 0:
x All deposits d; are refunded.
+ Nash game I'? is played, all players get utility
mi(0,---,0)
— If all d; = d;: game I'* below is played:
+ Players contributing full ¢; = ¢ get refund d;.

Others (with ¢; < ¢;) receive no refund.

x Player i gets payoff:

mi(ci, c—i) = { U%(ei_ci F(Zﬂ filep)), if e <&
i\Cis C—i U'(e; — ¢, (ij](cj))) if ¢;=g¢

° Deposit (dy,---,d,): d; (< e;) is chosen such that: Vi) < €

U'[ei—e. F(fie+ ) file) | > U | ei—di, FO_ filey))
j#i j#i
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e SPE of the 2-stage game:

Weakly dominant strategy for all :
d; = d;

Strictly dominant strategy for all i:

Cz(d) _ C;, 1f dj:dj, \V/] . 0
0, if d; =0 for some j

e Sketch of Proof:
By Al, subgame I'° has unique DSE ¢; = 0 (all 7).

By A2, subgame I'* has unique DSE ¢; = ¢; (all 7).

For ¢:

If any d; = 0: outcome is 7;(0, - - -, 0), independent of d;.
If d; = d;, Vj(s i): outcome is m;(cy,- -+, ¢,) if d; = d;.

> d; = d; is weakly dominant strategy for all i. m

52



Deposit Yusen Sung

3. Extensions

e Costly deposit collection/payment:

— Payoff modification: fraction ¢ is payer cost

> I game:
Wi(Ci, C—i) — Uz(ez - fz - 5&1“ F(Zj fj(cj))), 1f dz — dz
U (el_c’“F(Z] fj(c])))’ lf dl :0

> ' game:

_JUei— e —di, F(3; filey), it e <&
mi(ci, c—i) { Ui(ei—éi—éczi,F(Zj:j?fj(jcj))), if ¢, =¢

— Results still hold.
e Possible uses of forfeited deposits: off-equilibrium cases

— Throw away (gift to other economies)

— Extra/bonus refund to full contributors

— Other inrelevent use

e Repeated games:

— Collect a big deposit first (as long-run commitment)

— Refund a share in each subsequent period
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7.3 Category Reporting: Harbough [JPuE 1998]

7.3.1 Stylized Facts
e Many charities use category reporting for fundraising
e Donors tend to give minimum necessary to get into a category
e Donors enjoy having their donations publicized

7.3.2 Pure Egoism

e Warm glow: pure internal satisfaction from act of giving

- Proportional to donation amount

e Prestige: utility from having their donations publicly known
- Affected by charity reporting plans

- Due to social recognition, business opportunities, etc.
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7.3.3 The Model

e Donor choice:
— Utility:
Ulx,p,d), Uy >0, U,>0, Ug>0

r = private consumption
p = prestige
d = warm glow (= donation)

— Budget:
r+d = w

— Utility max:

max U(x,p,d) st. z4+d=w

max U(w—d,p,d)

— Level curves: |Fig ?

Ly(k) = {(p,d) | U(w—d,p,d) =k}

> U-shaped on p-d space, with slope: CE#&IE
@ . U:c - Ud
dd ~ U,
> As w 1, infection points (S#EEE) shift right. (. d 1 with w)

e Prestige effect:
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— Charity reports r for donation d:
r(d)

— Donor then gets prestige p from publicly known 7:

— Can let p = r: prestige fn is absorbed into util fn
e 3 possible charity report plans r(d): restriction r(d) < d

— No reporting:

— Exact reporting:

a, if d>«

0, otherwise

p(d) = r(d) {

e Donors choose optimal (p, d) subject to report constraint p(d).
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7.3.4 Effects of Reporting Plans on Donations
e No reporting dy: U, = Uy (zero slope) on p = 0 line
e Exact reporting d.: U, = Uz~ U, (slope = 1) on p = d line

e Category reporting:

dy, if o <d
a, if a € ldy,d,)
a, if a€lde,dy)
dy, if a>d,

e One-donor case:

de > dy, but d. 2 d,

do

\4

do de dm,
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e Charity strategy: to max donation, choose bracket

oa = d,,

e Donor bunching: donors of different incomes bunching up at bracket

Fig ?
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7.3.5 Optimal Solicitation Strategy of Charities

e To show: can always increase total donations by using categories.
e Assume: n types of donors with

d < d* < - < d

(&

e Low-end category: can raise 1’s donation w/o affecting others’ choice.

(C1) d! < d}, < d?: can fully exploit 1 |Fig ?

. > 1
Hd) — {d, it d>d,

0, otherwise
> Exact reporting for donations above d’ only

> Donor 1 change from d! to d! ; donor 2 remains same

(C2) d! < d? < d: cannot fully exploit 1 |Fig ?
{ d, if d> d

0, otherwise

> Exact reporting for donations above d? only

> Donor 1 change from d! to d?; all others still same

e High-end category: can raise n’s contribution |Fig ?
d, if d<d!
Ad) = § ar, i de (@ an)
ar, if d>d

> Donor n change from d to d; all others unchanged.

e Note: 7 and 7 not necessarily optimal: may still raise donations further

e Similar devices: unique souvenir, building naming, trophy, etc.
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7.3.6 Charity Classification and Theory Testing
e Educational institutions:

— Monopoly on alumni donations: without substitute
— Can fully exploit consumers > categories far apart

— Donations publicized to a limited circle
e National organizations: Sierra Club, RFF

— Strong competition among charities
— Unable to exploit consumers fully = Categories closer together

— Aim at small donations from large population
e United Way (BiEEIE):

— Formed to effectively use categories

— Facilitate distribution of donation reports
7.3.7 Problems
e Not an equilibrium analysis of public-good model
e No PG in model: donors do not care about total PG level

e No consumer interaction: donors do not care about how much others

donate
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