Public Choice

1. Introduction

- Social/public choice: the process of social/collective decision-making
- Elements:
 - $\sqrt{\text{Candidates/alternatives/options: choice set }A}$

 $\sqrt{\text{Voters: } i}$

 $\sqrt{$ Individual preference/ranking:

$\{R_i\}$

- Preference aggrgation mechanism:
 - Social decision rule: collective ranking R of all alternatives
 - Aggregation of individual preference $\{R_i\}$
 - Process: <u>Indv Ranking</u> $\{R_i\}$ in, <u>Social Ranking</u> R out

E Beauty contest, sports event

- Social choice function (SCF): a single choice

$$a \in A$$

– Process: <u>Indv Ranking</u> $\{R_i\}$ in, <u>Social Choice</u> a out

E Political election, travel destination choice

• Saari [1988] story: choice of drinks in department meeting

15 voters	1st	2nd	3rd
6	Milk	Juice	Beer
5	Beer	Juice	Milk
4	Juice	Beer	Milk

- "Milk" chosen initially as most favored (M6 : B5 : J4)
- "Beer" served in meeting for lack of Milk
- But people found "Juice" (10) is actually preferred to "Beer" (5)
- Further: "Milk" least favored by pairwise comparision:

2. Unanimity rule

- Wicksell [1896]
- Consistent with Pareto criterion
 - \triangleright Bill passed must make everyone better off!
- Problems:
 - \checkmark (Theory) Social ranking not "complete". Agreement rarely reached.

 $\sqrt{(\text{Reality})}$ Distribution/jealousy issue not considered.

 \triangleright Some may prefer non-Paretian situation.

 $\sqrt{(\text{Reality})}$ Everyone has veto power, transaction costs high

- \triangleright Outcome subject to negotiation and strategic behaviors.
- Unanimity with compensation/side-payment
 - \triangleright Buying votes is illegal?

3. Majority Voting

- Relative majority: $\eta\%~(\geq~50\%)$ for agreement
- Constitutional choice: [Buchanan-Tullock 1962]¹

$$\min_{n} \quad \text{ETSC} \equiv D + E$$

 $\sqrt{\text{External costs}}$ (外部成本) E: damages imposed on minority

 $\sqrt{\text{Decision costs}}$ (交易成本) D: costs for reaching decisions

- Condorcet winner: pairwise comparision
 - Binary agenda for 2 or more options
 - The winner against any other candidate

¹J.M. Buchanan and G. Tullock, Chapter 6 in *The Calculus of Consent – Logical Foundations of Constitutional Democracy*, 1962, University of Michigan Press.

- Plurality rule: simultaneous voting²
 - For 3 or more candidates.

	(9 voters)	1st	2nd	3rd
Conderact winner may lose:	2	А	В	С
- Condorcet winner may lose.	cet winner may lose: $\begin{array}{c} (9 \text{ voters}) & 1 \text{st} \\ \hline 2 & \text{A} \\ \hline 3 & \text{B} \\ \hline 4 & \text{C} \end{array}$	А	С	
	4	С	А	В

 \triangleright C is the Plurality winner; A is Condorcet winner

- Strategic behavior³

• May's Theorem: with only 2 candidates⁴

Only majority rule can satisfy the following:

 $\sqrt{\text{Anonymity: symmetry among all voters (treated equally)}}$

 $\sqrt{\text{Neutrality: symmetry among all candidates}}$

- $\sqrt{}$ Decisiveness: a winner will always be picked
- $\sqrt{\text{Positive responsiveness: more votes, more likely to win} \blacksquare$

²Hindriks-Myles, 2006, MIT press, p.319.

 $^{^{3}}$ For example, people may vote for 2nd choice, if they feel their top choice has no chance to win.

⁴Hindriks-Myles, 2006, MIT press, p.306.

	Ranking	1st	2nd	3rd
• Voting paradox [Conderant 1785]	Voter 1	А	В	С
• Voting paradox [Conducet 1783].	Voter 2	В	С	А
	Voter 3	С	А	В

- Voting cycles:

 $A \succ_{1,3} B \succ_{1,2} C \succ_{2,3} A$

 \vartriangleright Outcome subject to "agenda manipulation"

- Single-peaked preferences (單峰偏好) [Black]: 1-dim choice

* <u>Def</u>: On a 1-dim line, for 2 voters a < b, and 2 options x < y:

$$U^{a}(y) > U^{a}(x) \Rightarrow U^{b}(y) > U^{b}(x)$$

and

$$U^b(x) > U^b(y) \Rightarrow U^a(x) > U^a(y) \square$$

* If voter preferences satisfy SC, then there is no cycle.

* Condorcet winner is preferred option of the median voter M.⁶

- Cycle probability 1-2%; not detectable when it arises!

⁵Hindriks-Myles, 2006, MIT, pp.310.

⁶Because, for any 2 options x < y, if M prefers x, then all voters to his left will also prefer x. If M prefers y, then all voters to his right must also prefer y. \Box

- 2-dim voting cycle

$$A \succ_{1,3} C \succ_{2,3} B \succ_{1,2} A$$

Round	А	В	С
1	1/3	1/3	1/3
2	1/2	1/2	0
3	2/3	0	1/3
4	0	1/2	1/2
			•••

E 3 people dividing \$1: no Condorcet winner!

E Bundled voting: no Condorcet winner!

Voter value	А	В	С
1	500	-100	-100
2	-100	500	-100
3	-100	-100	500

$$\succ \text{Cycle: } (n,n,n) \rightarrow (y,y,y) \rightarrow (y,y,n) \rightarrow (n,y,n) \rightarrow (n,n,n)^7$$

• Independence from Irrelevant Alternatives (IIA) may be violated

	#voters / ranking	1st	2nd	3rd
F Example:	9	А	В	С
E Example.	4	В	С	А
	6	С	В	А

– With all 3 candidates: (A9 : B4 : C6) \Rightarrow A elected

– If C drops out: (A9 : B10) $\Rightarrow B$ elected

⁷Any proposal changing a "y" to "n" will pass with two votes. But then (n,n,n) will be defeated by a proposal replacing any two "y" with two "n".

- Need IIA to avoid sabotage (攪局)⁸

• Outcome may be Pareto inferior!

Ranking	1st	2nd	3rd	4th	5th	6th	7th
Voter 1	А	В	С	D	Е	F	G
Voter 2	\mathbf{C}	D	А	F	G	В	Ε
Voter 3	D	А	G	В	С	Е	F

- \rhd Possible outcome: $A \to D \to C \to B \to G \to F \to E$
- $\triangleright E$ is Pareto inferior to (A, B, C, D) !
- Voter preference intensity not considered:

▷ Logrolling (選票互換): vote trading/exchange

- (Yes) Voter intensity revealed: compromise means efficiency!

(Project)	А	В	С	NetValue	M.V.	logrolling
Hospital	200	-50	-55	95	n	y (1,2)
Library	-40	150	-30	80	n	y(1,2), (2,3)
Park	-120	-60	400	220	n	y(2,3)

- (No) Special-interest gains may outweight general losses!

⁸For example: Taipei city mayor election 1998, Presidential election 2000.

(Project)	А	В	С	NetValue	M.V.	logrolling
Hospital	200	-110	-105	-15	n	y (1,2)
Library	-40	150	-120	-10	n	y(1,2), (2,3)
Park	-270	-140	400	-10	n	y(2,3)

• 64% mojority rule [Caplin-Nalibuff, Econometrica 1988]

- In k-dim elections, incumbent can garantee only: Figure 1

$$\sigma_k = \left(\frac{k}{k+1}\right)^k$$

 \triangleright For example: $\sigma_1 = 1/2, \sigma_2 = 4/9$

– In real-life elections, a challenger will get at least:

$$\sigma_{\infty} = \lim_{k \to \infty} \left[1 - \left(\frac{k}{k+1} \right)^k \right] = 1 - \frac{1}{e} \approx 64\% \quad \Box$$

• Median Voter Theorem (中值選民定理)⁹

– M.V. outcome reflects preference of the median voter:

 $-X_2$ is Condorcet winner (by pairwise comparison)

- Outcome usually inefficient

 $^{^9\}mathrm{Holcombe}$ pp.175–76; Hyman p.165.

Figure 1: Justification for 2/3 majority rule

4. Borda Count

• Counting pocedure: choose one with lowest count \Rightarrow no cycles

#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	2	1	3
1 Chair	2	3	1
Rank / Score	1(32)	2(33)	3(61)

 \triangleright May set rank values to reflect relative weights (eg, 1,2,3,10,...)

• Problem: Strategic manipulation

[E] 10 Micros now claim [Chair as 2nd, Keynes as 3rd]

#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	3	1	2
1 Chair	2	3	1
Rank / Score	2(42)	1(33)	3(51)

• Problem: IIA violated, different outcomes w/w.o. chair

#voters	Keynes	Becker
10 Macro	1	2
10 Micro	2	1
1 Chair	1	2
Rank / Score	1(31)	2(32)

5. Approval Voting

- Can vote for any number of alternatives, each vote counts as 1.
- Voter flexibility.
- Outcome indeterminacy:

#voters / ranking	1st	2nd	3rd
6	х	\mathbf{Z}	У
5	У	\mathbf{Z}	х
4	\mathbf{Z}	У	х

- x wins: if everyone votes only for 1st choice (x6 : y5 : z4)
- y wins: if group 3 votes for top 2 choices (x6 : y9 : z4)
- z wins: if everyone votes for top 2 choices (x6 : y9 : z15)
- \triangleright Condorcet winner may not be picked.

6. Runoff Voting

- Top 2 winners in Round 1 will enter Round 2.
- Condorcet winner may not win.

Count	1st	2nd	3rd
6	a	b	с
5	с	a	b
4	b	с	a
2	b	a	с

• Positive Responsiveness may be violated.

7. Elimination

• Everyone votes for the candidate you dislike most.

 \triangleright The candidate who receives least votes get elected.

- May have cycle.
- IIA violated.

Count	1st	2nd	3rd	4th
9	А	В	С	D
4	В	С	D	А
6	\mathbf{C}	D	А	В
5	D	А	В	С

- 4 candidates: $(A4 : B6 : C5 : D9) \Rightarrow A$ elected.
- If B withdraws: $(A10 : C5 : D9) \Rightarrow C$ elected.

8. Collective Choice Depends on Voting Mechanism

V1	V2	V3	V4	V5	V6	V7
А	А	А	В	В	С	С
В	В	В	С	С	D	D
С	С	С	D	D	А	А
D	D	D	А	А	В	В

E 7 voters, 4 alternatives:

- Plurality rule: $A^*(3) : B(2) : C(2) : D(0)$
- Borda count: $A(17) : B(16) : C^*(15) : D(22)$
- Approval (2 votes): $A(3) : B^*(5) : C(4) : D(2)$
- Pairwise comparision: cycle, no Condorcet winner

 $A \succ_{5:2} B \succ_{5:2} C \succ_{7:0} D \succ_{4:3} A$

9. Arrow's Impossibility Theorem [1951]

- Axiomatic approach
- No social decision rule can guarantee satisfaction of the following:
 - Universality (全域性): voters may have any preference patterns.
 - Consistency (一致性): social preference is transitive, no cycle.

– Pareto axiom

- IIA (independence of irrelevant alternatives)

- Non-dictatorship

• Satherswaite Theorem: strategy-proofness required (instead of IIA)

10. Application: Congress Voting on Own Pay Raise

Payoff	Bill "pass"	Bill "fail"
Vote "yes"	1	-1
Vote "no"	2	0

Congress pay-raise voting:

11. Application: Tie-breaking Power [Farquharson 1969, p.50]

 \vartriangleright Vote by majority rule, voter 1 can break tie.

Voter	1st	2nd	3rd
1	А	С	В
2	В	А	С
3	С	В	А

Figure 2

Pay-offs:

(3=A)				(3=B)				(3=C)				
1/2	А	В	С	1/2	A	В	С		1/2	А	В	С
А	А	А	A	А	A	В	A*		А	A	A*	С
В	А	В	B*	В	В	В	В		В	B*	В	С
С	A	C*	С	С	C*	В	С		С	С	С	С

Elimination of dominated strategies (Round 1):

Elimination of dominated strategies (Round 2):

	(3=	A)		(3=B)			(3=C)			
1/2	A	В	1/2	A	В		1/2	A	В	
A	A	A	A	A	B		A	A	A*	

Equilibrium outcome: B (1 for A, 2 for B, 3 for B), 1 gets worst!

Figure 2: Tie-breaking power may hurt you!