Public Choice

1. Introduction

- Social/public choice: the process of social/collective decision-making
- Elements:
$\sqrt{ }$ Candidates/alternatives/options: choice set A
$\sqrt{ }$ Voters: i
$\sqrt{ }$ Individual preference/ranking:

$$
\left\{R_{i}\right\}
$$

- Preference aggrgation mechanism:
- Social decision rule: collective ranking R of all alternatives
- Aggregation of individual preference $\left\{R_{i}\right\}$
- Process: Indv Ranking $\left\{R_{i}\right\}$ in, Social Ranking R out

E Beauty contest, sports event

- Social choice function (SCF): a single choice

$$
a \in A
$$

- Process: Indv Ranking $\left\{R_{i}\right\}$ in, $\underline{\text { Social Choice } a \text { out }}$

E Political election, travel destination choice

- Saari [1988] story: choice of drinks in department meeting

15 voters	1st	2nd	3rd
6	Milk	Juice	Beer
5	Beer	Juice	Milk
4	Juice	Beer	Milk

- "Milk" chosen initially as most favored (M6: B5: J4)
- "Beer" served in meeting for lack of Milk
- But people found "Juice" (10) is actually preferred to "Beer" (5)
- Further: "Milk" least favored by pairwise comparision:
J9 : M6, B9: M6

2. Unanimity rule

- Wicksell [1896]
- Consistent with Pareto criterion
\triangleright Bill passed must make everyone better off!
- Problems:
$\sqrt{ }$ (Theory) Social ranking not "complete". Agreement rarely reached.
$\sqrt{ }$ (Reality) Distribution/jealousy issue not considered.
\triangleright Some may prefer non-Paretian situation.
$\sqrt{ }$ (Reality) Everyone has veto power, transaction costs high \triangleright Outcome subject to negotiation and strategic behaviors.
- Unanimity with compensation/side-payment \triangleright Buying votes is illegal?

3．Majority Voting

－Relative majority：$\eta \%$（ $\geq 50 \%$ ）for agreement
－Constitutional choice：［Buchanan－Tullock 1962］${ }^{1}$

$$
\min _{\eta} \quad \mathrm{ETSC} \equiv D+E
$$

$\sqrt{ }$ External costs（外部成本）E：damages imposed on minority
$\sqrt{ }$ Decision costs（交易成本）D ：costs for reaching decisions

－Condorcet winner：pairwise comparision
－Binary agenda for 2 or more options
－The winner against any other candidate

[^0]- Plurality rule: simultaneous voting ${ }^{2}$
- For 3 or more candidates.
- Condorcet winner may lose:

(9 voters)	1 st	2 nd	3 rd
2	A	B	C
3	B	A	C
4	C	A	B

$\triangleright \mathrm{C}$ is the Plurality winner; A is Condorcet winner

- Strategic behavior ${ }^{3}$
- May's Theorem: with only 2 candidates ${ }^{4}$

Only majority rule can satisfy the following:
$\sqrt{ }$ Anonymity: symmetry among all voters (treated equally)
$\sqrt{ }$ Neutrality: symmetry among all candidates
$\sqrt{ }$ Decisiveness: a winner will always be picked
$\sqrt{ }$ Positive responsiveness: more votes, more likely to win

[^1]－Voting paradox［Condorcet 1785］：

Ranking	1st	2nd	3rd
Voter 1	A	B	C
Voter 2	B	C	A
Voter 3	C	A	B

－Voting cycles：

$$
A \succ_{1,3} B \succ_{1,2} C \succ_{2,3} A
$$

\triangleright Outcome subject to＂agenda manipulation＂
－Single－peaked preferences（單峰偏好）［Black］：1－dim choice

- Single-crossing preferences (SC): ${ }^{5}$

* Def: On a 1-dim line, for 2 voters $a<b$, and 2 options $x<y$:

$$
U^{a}(y)>U^{a}(x) \Rightarrow U^{b}(y)>U^{b}(x)
$$

and

$$
U^{b}(x)>U^{b}(y) \Rightarrow U^{a}(x)>U^{a}(y)
$$

* If voter preferences satisfy SC, then there is no cycle.
* Condorcet winner is preferred option of the median voter M. ${ }^{6}$
- Cycle probability 1-2\%; not detectable when it arises!

[^2]- 2-dim voting cycle

$$
A \succ_{1,3} C \succ_{2,3} B \succ_{1,2} \quad A
$$

E 3 people dividing $\$ 1$: no Condorcet winner!

Round	A	B	C
1	$1 / 3$	$1 / 3$	$1 / 3$
2	$1 / 2$	$1 / 2$	0
3	$2 / 3$	0	$1 / 3$
4	0	$1 / 2$	$1 / 2$
\cdots	\cdots	\cdots	\cdots

E Bundled voting: no Condorcet winner!

Voter value	A	B	C
1	500	-100	-100
2	-100	500	-100
3	-100	-100	500

\triangleright Cycle: $(\mathrm{n}, \mathrm{n}, \mathrm{n}) \rightarrow(\mathrm{y}, \mathrm{y}, \mathrm{y}) \rightarrow(\mathrm{y}, \mathrm{y}, \mathrm{n}) \rightarrow(\mathrm{n}, \mathrm{y}, \mathrm{n}) \rightarrow(\mathrm{n}, \mathrm{n}, \mathrm{n})^{7}$

- Independence from Irrelevant Alternatives (IIA) may be violated

E Example:

\#voters $/$ ranking	1st	2 nd	3 rd
9	A	B	C
4	B	C	A
6	C	B	A

- With all 3 candidates: (A9: B4: C6) $\Rightarrow A$ elected
- If C drops out: $(\mathrm{A} 9: \mathrm{B} 10) \Rightarrow B$ elected

[^3]－Need IIA to avoid sabotage（攪局）$)^{8}$
－Outcome may be Pareto inferior！

Ranking	1st	2nd	3rd	4th	5th	6th	7 th
Voter 1	A	B	C	D	E	F	G
Voter 2	C	D	A	F	G	B	E
Voter 3	D	A	G	B	C	E	F

\triangleright Possible outcome：$A \rightarrow D \rightarrow C \rightarrow B \rightarrow G \rightarrow F \rightarrow E$
$\triangleright E$ is Pareto inferior to (A, B, C, D) ！
－Voter preference intensity not considered：
－Logrolling（選票互換）：vote trading／exchange
－（Yes）Voter intensity revealed：compromise means efficiency！

（Project）	A	B	C	NetValue	M．V．	logrolling
Hospital	200	-50	-55	95	n	$\mathrm{y}(1,2)$
Library	-40	150	-30	80	n	$\mathrm{y}(1,2),(2,3)$
Park	-120	-60	400	220	n	$\mathrm{y}(2,3)$

－（No）Special－interest gains may outweight general losses！

[^4]| （Project） | A | B | C | NetValue | M．V． | logrolling |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Hospital | 200 | -110 | -105 | -15 | n | $\mathrm{y}(1,2)$ |
| Library | -40 | 150 | -120 | -10 | n | $\mathrm{y}(1,2),(2,3)$ |
| Park | -270 | -140 | 400 | -10 | n | $\mathrm{y}(2,3)$ |

－64\％mojority rule［Caplin－Nalibuff，Econometrica 1988］
－In k－dim elections，incumbent can garantee only：Figure 1

$$
\sigma_{k}=\left(\frac{k}{k+1}\right)^{k}
$$

\triangleright For example：$\sigma_{1}=1 / 2, \sigma_{2}=4 / 9$
－In real－life elections，a challenger will get at least：

$$
\sigma_{\infty}=\lim _{k \rightarrow \infty}\left[1-\left(\frac{k}{k+1}\right)^{k}\right]=1-\frac{1}{e} \approx 64 \%
$$

－Median Voter Theorem（中值選民定理）${ }^{9}$
－M．V．outcome reflects preference of the median voter：

－X_{2} is Condorcet winner（by pairwise comparison）
－Outcome usually inefficient

[^5]
Hotelling Spatial Model: 1-dimensional Voting

2-dimensional Voting

Figure 1: Justification for $2 / 3$ majority rule

4. Borda Count

- Counting pocedure: choose one with lowest count \Rightarrow no cycles

\#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	2	1	3
1 Chair	2	3	1
Rank / Score	$1(32)$	$2(33)$	$3(61)$

\triangleright May set rank values to reflect relative weights (eg, 1,2,3,10,...)

- Problem: Strategic manipulation

E 10 Micros now claim [Chair as 2nd, Keynes as 3rd]

\#voters	Keynes	Becker	Chair
10 Macro	1	2	3
10 Micro	3	1	2
1 Chair	2	3	1
Rank / Score	$2(42)$	$1(33)$	$3(51)$

- Problem: IIA violated, different outcomes w/w.o. chair

\#voters	Keynes	Becker
10 Macro	1	2
10 Micro	2	1
1 Chair	1	2
Rank $/$ Score	$1(31)$	$2(32)$

5. Approval Voting

- Can vote for any number of alternatives, each vote counts as 1.
- Voter flexibility.
- Outcome indeterminacy:

\#voters $/$ ranking	1st	2nd	3 rd
6	x	z	y
5	y	z	x
4	z	y	x

- x wins: if everyone votes only for 1st choice (x6:y5:z4)
- y wins: if group 3 votes for top 2 choices (x6:y9: z4)
- z wins: if everyone votes for top 2 choices (x6:y9: z15)
\triangleright Condorcet winner may not be picked.

6. Runoff Voting

- Top 2 winners in Round 1 will enter Round 2.
- Condorcet winner may not win.
- Positive Responsiveness may be violated.

Count	1st	2nd	3rd
6	a	b	c
5	c	a	b
4	b	c	a
2	b	a	c

7. Elimination

- Everyone votes for the candidate you dislike most.
\triangleright The candidate who receives least votes get elected.
- May have cycle.
- IIA violated.

Count	1st	2nd	3rd	4 th
9	A	B	C	D
4	B	C	D	A
6	C	D	A	B
5	D	A	B	C

- 4 candidates: $(\mathrm{A} 4: \mathrm{B} 6: \mathrm{C} 5: \mathrm{D} 9) \Rightarrow A$ elected.
- If B withdraws: (A10: C5: D9) $\Rightarrow C$ elected.

8．Collective Choice Depends on Voting Mechanism

E 7 voters， 4 alternatives：

V1	V2	V3	V4	V5	V6	V7
A	A	A	B	B	C	C
B	B	B	C	C	D	D
C	C	C	D	D	A	A
D	D	D	A	A	B	B

－Plurality rule： $\mathrm{A}^{*}(3): \mathrm{B}(2): \mathrm{C}(2): \mathrm{D}(0)$
－Borda count： $\mathrm{A}(17): \mathrm{B}(16): \mathrm{C}^{*}(15): \mathrm{D}(22)$
－Approval（2 votes）： $\mathrm{A}(3): \mathrm{B}^{*}(5): \mathrm{C}(4): \mathrm{D}(2)$
－Pairwise comparision：cycle，no Condorcet winner

$$
A \succ_{5: 2} B \succ_{5: 2} C \succ_{7: 0} D \succ_{4: 3} A
$$

9．Arrow＇s Impossibility Theorem［1951］

－Axiomatic approach
－No social decision rule can guarantee satisfaction of the following：

- Universality（全域性）：voters may have any preference patterns．
- Consistency（一致性）：social preference is transitive，no cycle．
- Pareto axiom
- IIA (independence of irrelevant alternatives)
- Non-dictatorship
- Satherswaite Theorem: strategy-proofness required (instead of IIA)

10. Application: Congress Voting on Own Pay Raise

Payoff	Bill "pass"	Bill "fail"
Vote"yes"	1	-1
Vote"no"	2	0

Congress pay-raise voting:

11. Application: Tie-breaking Power [Farquharson 1969, p.50]

\triangleright Vote by majority rule, voter 1 can break tie.

Voter	1st	2nd	3rd
1	A	C	B
2	B	A	C
3	C	B	A

Figure 2

Pay-offs:

($3=A$)				($3=B$)				($3=C$)			
1/2	A	B	C	1/2	A	B	C	1/2	A	B	C
A	A	A	A	A	A	B	A*	A	A	A*	C
B	A	B	B*	B	B	B	B	B	B*	B	C
C	A	C*	C	C	C*	B	C	C	C	C	C

Elimination of dominated strategies (Round 1):

($3=A$)				($3=B$)				($3=C$)			
1/2	A	B	C	1/2	A	B	C	1/2	A	B	C
A	A	A	A	A	A	B	A*	A	A	A*	C
B	A	B		B	B	B	B	B	B*	B	C
C	A	C*	c	C	C*	B	C	C	C	C	C

Elimination of dominated strategies (Round 2):

	$(3=\mathrm{A})$	
$1 / 2$	A	B
A	A	A

	$(3=B)$	
$1 / 2$	A	B
A	A	B

	$(3=C)$	
$1 / 2$	A	B
A	A	A* *

Equilibrium outcome: B (1 for $A, 2$ for $B, 3$ for B), 1 gets worst!

Figure 2: Tie-breaking power may hurt you!

[^0]: ${ }^{1}$ J．M．Buchanan and G．Tullock，Chapter 6 in The Calculus of Consent－Logical Foundations of Constitutional Democ－ racy，1962，University of Michigan Press．

[^1]: ${ }^{2}$ Hindriks-Myles, 2006, MIT press, p. 319.
 ${ }^{3}$ For example, people may vote for 2 nd choice, if they feel their top choice has no chance to win.
 ${ }^{4}$ Hindriks-Myles, 2006, MIT press, p. 306 .

[^2]: ${ }^{5}$ Hindriks-Myles, 2006, MIT, pp. 310.
 ${ }^{6}$ Because, for any 2 options $x<y$, if M prefers x, then all voters to his left will also prefer x. If M prefers y, then all voters to his right must also prefer $y . \square$

[^3]: ${ }^{7}$ Any proposal changing a " y " to " n " will pass with two votes. But then ($\mathrm{n}, \mathrm{n}, \mathrm{n}$) will be defeated by a proposal replacing any two " y " with two " n ".

[^4]: ${ }^{8}$ For example：Taipei city mayor election 1998，Presidential election 2000.

[^5]: ${ }^{9}$ Holcombe pp．175－76；Hyman p．165．

