!'_ The functionality

Managing more than Operating







i What to Manage

= Processing
= CPU and Memory

= Storage
= Input and Output Devices



i Functions

= CPU - Process management
= RAM - Memory management
= Storage — File system

= |/O — Device drivers



!'_ Process Management




i CPU at Work

o =

200+100

—
S~
e
T
b
.
—
.'-'-l.

O LELE

{300




i In Details

1. (200),, -> (011001000) , /

2. (100) ,,-> (001100100) ,, i

3. (011001000) , +(001100100) ,
-> (100101100) , g

4. (100101100) ,->(300) 4, —

200+100

300

Computer’s View < User’'s View



i Granularity

1. (200),, -> (011001000),

2. (100) ,,-> (001100100) , g

3. (011001000) , +(001100100) , | : |200+100
-> (100101100) i

4. (100101100) ,->(300) ,,

Instruction Process

Computer’s View « ------- » User’s View



i Process

= A task started by an user or another
process

« Starting MS Word
= Cut and paste in MS Word
= Save files

s Each task could take the CPU a while to
complete



i Average Computer

= 1 CPU
s [herefore, one Instruction at a time

= However, It Is not necessary that one
process runs from the beginning to the
end without interruption

= Have you tried to start multiple
applications all at once?



i Running Model

= Uni-programming
= Must terminate one before the next one can
Sstart

s EX. MS-DOS

= Multi-programming (Multi-tasking)
= Multiple processes progressing at the same time
= CPU still works on one process at a time
= Can get around slow processes
= EX. Pretty much all other OS’s



i Types of Multi-programming

s Event-driven

= Switch from one process to another by
triggering events

= Time-sharing

= Switch from one process to another based
on the share of CPU time



i EX. JOrge (CPV) and 3M (processes)




i Event-driven

= When processing needs to be
temporarily suspended, an interrupt Is
generated

= This Is a signal to the operating system
to evaluate the cause of the interrupt
and determine who should now have
CPU time



i Event-driven Example

Two programs are running — Payroll and Inventory
I\/Ianagement

= Payroll needs to read an employee record
= Payroll generates an interrupt
= Normal processing is temporarily suspended

= The CPU looks at the interrupt and initiates the read
operation

= While waiting for the read to complete, the CPU
begins processing the Inventory Management
program



‘.L Event-driven Example (cont.)

= When the read operation is complete, another
Interrupt is generated

= Normal processing is temporarily suspended

= The CPU looks at the interrupt and determines Iits
cause

= The CPU will either continue processing the Inventory
Management program or return to the Payroll program
depending upon their priority



i Time-sharing

s A small fraction of CPU time Is allocated to
the program

s he time slice ends

= The CPU begins processing a different
program

= Response time can vary depending upon the
number of processes on the system



‘L Time sharing

Intelrrupt Inte{rupt Intelrrupt Interlrupt Intefrupt
i | ! i i
! Process B : Process B : Proc
| | |
| | |
e e 4
: Process Process : Process Process : Process
| switch switch | switch switch | switch
| \ | \ |
| | |
ss A Process A Process A
A(j“f.ancing_l 1 1 | | 1 1 1 1 1
‘t|me T T T T T T T T T |

|
Timeslice Timeslice Timeslice Timeslice



i EX. JOrge (CPV) and 3M (processes)




i Priority

= Can be in many forms
= Time share
= Foreground, background
= User/system assigned



Foreground and Background

= Programs are placed in either Foreground or
Background

= Programs in Foreground have priority for
CPU time

= While performing read / write operations for
the Foreground program, the CPU gives time
to a program in Background

= Programs are placed in a holding queue while
waiting to run



i Scheduling

= Processes are sorted by the priority

= The highest-priority one gets processed
when interrupt occurs

= The Interrupted process gets re-
prioritized and inserted into the sort list

= This Is so called process scheduling



i Parallel Computers

= Multiple CPUs
= Can process several programs simultaneously

= One program can be divided (with caution) and
executed on multiple CPUs

= Speed up

= Compared with pipelining
= Inside a CPU but several instructions at the same
time



!'_ Memory Management




i Not Quite as Simple

200+100

takd LELELE




i In Reality

CPU

2. +

-> (100101100) ,
5. (100101100) ,->(300) ,,

1. (200),, -> (011001000) , -

3. (100) ,,-> (001100100) , — |

\

\

— |

200+100

/

Memory

\Z 011001000

ééé 001100100
4. (011001000) , +(001100100) ;

+

- — 100101100

{300




i The Problem T

-~ | 400+300
CPU -
1. (200),, -> (011001000), | | ~ ™Memory
2. % \\Z o+11001000

3. (400) ,,-> (110010000
(400) 10> ( )Z\ééé 110010000

4. (011001000) , + (110010000) 4
-> (1001011000) , —

— 1001011000

5. (1001011000) ,->(600) ;; ~—

{600




i Program

= Program must be in memory to be
executed

= Memory space for each program must
not overlap




i Memory Management

= The process of providing separate
memory space to programs



i MM Methods

= Partitioning
= Paging

= Virtual memory



i Partitioning

= Divide memory into partitions
= Fixed-size partitions

= Variable-size partitions



i Fixed-size Partitioning

= What should be the size?

s Can’'t be too small

= The partition must accommodate the
largest possible program

= Can’t be too large
= May cause wasted memory space



i Variable-size Partitioning

= Sequential memory allocation
= Program memory space interleaving
=« Tedious link list

= Sequential memory block allocation
= Less memory space interweaving
= Manageable link list

= Memory blocks are referred to as page
frames



i Paging

= Divide the program into equal-size pieces
(pages)

= Store each piece in equal-size memory
spaces (page frames)

= Typical size is 2KB or 4KB

= Create an index to each page and store In
a Page Table



i Comparison

Manageability

Thrifty use of memory

Fixed-size Partition

Page

Variable-size Partition

Run out of RAM space!
Some parts of a program might not really be used...



i Virtual Memory

= A portion of the program is placed In
memory

= The remainder 1s on disk

= Pages on disk will be brought into
memory as needed (one page at a time)

= Referred to as the Paging Process



i Virtual Memory

»  With virtual memory (VM), portion of hard disk is
allocated to function as RAM

Step 1. The
operating system
transfers the least
recently used (or
oldest) data and
program instructions
to disk because
memory is needed
for other functions.

RAM /

(physical memory)

swap file

disk (virtual memory)

page swapped out —» > ' 4
§/

‘

-——page swapped in

Step 2. The
operating system
transfers data and
program instructions
from disk to
memory when they
are needed.



i Swapping

= In there’s no free space on the physical
memory, some pages need to be
discarded

= This Is referred to as the swapping
process

= Many ways to select the discarded
pages
» Oldest
= Least Recently Used (LRU)




i Thrashing

= Too large a portion of CPU time Is spent
locating the correct page and bringing it
INto memory



!'_ File System




TIHIEE LA
AN ]

f.f
F .
i

i

[}

200+100

(LTI TS

AplanilEERdiets

o FYRYR SN NES AN

shakd LELGLE

RRTARRIUN LT LI C LAY (Ve



Disk Structure




i Direct/Random Access

= Files are not physically stored in any
order

= Update In place
= Read/write to the file’s place on disk

= Such storage devices are called Direct-
Access Storage Device (DASD)

= For example, a hard disk



i Sequential

s Records are stored and accessed In
order

= All files prior to the one requested must
be read

= For example magnetic tapes



i L ocating Files

= Sequential
= Have to go through previous files anyway
= No intelligence

= Direct access, the old way

= Hashing — apply a formula to the filename to
produce the address

= Collision — same address for different filenames
= A simplified example



i Indexing

= Direct Access, the new way

= Files are stored sequentially or
randomly

= Index Is generated that contains
fillename and address



i Records in a File

= Similar to Files on a Disk

= Records can be stored sequentially or
randomly

= Index Is generated containing record
key and address



i Directory vs. File

= Directory — index of files
s File — index of records

= And so on so forth
= Record — index of sub-records

= And vice versa
= Super-directory — index of directories



!'_ Input/Output Management




i 1/0 Management

= OS keeps track of the 1/0 requests

= OS processes 1/0 requests in order
received

= Except print jobs



Device Driver

Program that With Plug and Play,
tells operating S){stem Device oper:ating syste.m
how to communicate automatically configures

with device D12l new devices as you
Also called driver install them




i Sharing a Printer

= A printer Is shared by multiple active
processes

= Printouts are generated In pieces as the
CPU gives each concurrent program
some time



i The Problem

= The current program may generate a
few print lines

= The CPU moves to the next program

= The second program may generate a
few print lines, etc.



i The Solution

= Spooling

= Each program thinks it is writing to the
printer

= The program actually writes to the hard
disk

= When the program is complete, the file
on the hard disk is sent to the printer



i Printer Spooling

» Sending print jobs to buffer instead of directly to
printer

» Print jobs line up In queue

jobs to be
printed

Wi jobs: being
printed

— server
print spooler
print job
Prinber Cooument  Yew  Help
oo ot Wiy it vl P el Sbiied Post,
_a Marosoft 'Word - Fas Corver iLstter do Prirting 5L Series 1 0.3 .. AT RM DL LPT1:
. _ﬁl‘mm&m.m 5 Saras 1 ZPEER DDA AM DI
I}I'lnt QUBLE ———3m={ B a] recrosnit PosmsPomt - Bregramenies Ciress .. 5 Srwa 5 SZIKE  DEATIEOAM |19
ﬂmtp.f,r-im.qn.::nrpulp-mw,toh. ' 5 Series 1 (Pl s P T
4 »
o descumesri L] I ouess




i Computer System




i Computer System

Input

|

Memory
(short term data)

Output

|

» Processor

Storage
(long term data)




i Operating System




