
The functionality

Managing more than Operating

Remember This?

What to Manage

Processing
CPU and Memory

Storage
Input and Output Devices

Functions

CPU - Process management
RAM - Memory management
Storage – File system
I/O – Device drivers

Process Management

CPU at Work

200+100

300

In Details

200+100

1. (200)10 -> (011001000) 2
2. (100) 10 -> (001100100) 2
3. (011001000) 2 + (001100100) 2

-> (100101100) 2
4. (100101100) 2->(300) 10 300

User’s ViewComputer’s View

Granularity

200+100

1. (200)10 -> (011001000) 2
2. (100) 10 -> (001100100) 2
3. (011001000) 2 + (001100100) 2

-> (100101100) 2
4. (100101100) 2->(300) 10

User’s ViewComputer’s View

ProcessInstruction

Process

A task started by an user or another
process

Starting MS Word
Cut and paste in MS Word
Save files

Each task could take the CPU a while to
complete

Average Computer

1 CPU
Therefore, one instruction at a time

However, it is not necessary that one
process runs from the beginning to the
end without interruption
Have you tried to start multiple
applications all at once?

Running Model

Uni-programming
Must terminate one before the next one can
start
Ex. MS-DOS

Multi-programming (Multi-tasking)
Multiple processes progressing at the same time
CPU still works on one process at a time
Can get around slow processes
Ex. Pretty much all other OS’s

Types of Multi-programming

Event-driven
Switch from one process to another by
triggering events

Time-sharing
Switch from one process to another based
on the share of CPU time

Ex. Jorge (CPU) and 3M (processes)

Event-driven

When processing needs to be
temporarily suspended, an interrupt is
generated

This is a signal to the operating system
to evaluate the cause of the interrupt
and determine who should now have
CPU time

Event-driven Example
Two programs are running – Payroll and Inventory
Management

Payroll needs to read an employee record

Payroll generates an interrupt

Normal processing is temporarily suspended

The CPU looks at the interrupt and initiates the read
operation

While waiting for the read to complete, the CPU
begins processing the Inventory Management
program

Event-driven Example (cont.)

When the read operation is complete, another
interrupt is generated

Normal processing is temporarily suspended

The CPU looks at the interrupt and determines its
cause

The CPU will either continue processing the Inventory
Management program or return to the Payroll program
depending upon their priority

Time-sharing

A small fraction of CPU time is allocated to
the program

The time slice ends

The CPU begins processing a different
program

Response time can vary depending upon the
number of processes on the system

Time sharing

Ex. Jorge (CPU) and 3M (processes)

Priority

Can be in many forms
Time share
Foreground, background
User/system assigned

Foreground and Background
Programs are placed in either Foreground or
Background

Programs in Foreground have priority for
CPU time

While performing read / write operations for
the Foreground program, the CPU gives time
to a program in Background

Programs are placed in a holding queue while
waiting to run

Scheduling

Processes are sorted by the priority
The highest-priority one gets processed
when interrupt occurs
The interrupted process gets re-
prioritized and inserted into the sort list
This is so called process scheduling

Parallel Computers

Multiple CPUs
Can process several programs simultaneously
One program can be divided (with caution) and
executed on multiple CPUs

Speed up

Compared with pipelining
Inside a CPU but several instructions at the same
time

Memory Management

Not Quite as Simple

200+100

300

001100100

In Reality
200+100

1. (200)10 -> (011001000) 2

300

3. (100) 10 -> (001100100) 2

011001000

4. (011001000) 2 + (001100100) 2
-> (100101100) 2 100101100

2. +
+

5. (100101100) 2->(300) 10

CPU

Memory

The Problem

110010000

200+100

1. (200)10 -> (011001000) 2

600

3. (400) 10 -> (110010000) 2

011001000

4. (011001000) 2 + (110010000) 2
-> (1001011000) 2 1001011000

2. +
+

5. (1001011000) 2->(600) 10

CPU

Memory

400+300

Program

Program must be in memory to be
executed
Memory space for each program must
not overlap

Memory Management

The process of providing separate
memory space to programs

MM Methods

Partitioning

Paging

Virtual memory

Partitioning

Divide memory into partitions
Fixed-size partitions

Variable-size partitions

Fixed-size Partitioning

What should be the size?

Can’t be too small

The partition must accommodate the
largest possible program

Can’t be too large
May cause wasted memory space

Variable-size Partitioning

Sequential memory allocation
Program memory space interleaving
Tedious link list

Sequential memory block allocation
Less memory space interweaving
Manageable link list
Memory blocks are referred to as page
frames

Paging

Divide the program into equal-size pieces
(pages)

Store each piece in equal-size memory
spaces (page frames)

Typical size is 2KB or 4KB

Create an index to each page and store in
a Page Table

Comparison

Fixed-size Partition Variable-size PartitionPage

Manageability Thrifty use of memory

Run out of RAM space!
Some parts of a program might not really be used…

Virtual Memory

A portion of the program is placed in
memory

The remainder is on disk

Pages on disk will be brought into
memory as needed (one page at a time)

Referred to as the Paging Process

Virtual Memory

Step 1. The
operating system
transfers the least
recently used (or
oldest) data and
program instructions
to disk because
memory is needed
for other functions.

Step 2. The
operating system
transfers data and
program instructions
from disk to
memory when they
are needed.

With virtual memory (VM), portion of hard disk is
allocated to function as RAM

Swapping

In there’s no free space on the physical
memory, some pages need to be
discarded
This is referred to as the swapping
process
Many ways to select the discarded
pages

Oldest
Least Recently Used (LRU)

Thrashing

Too large a portion of CPU time is spent
locating the correct page and bringing it
into memory

File System

Again

200+100

300

Disk Structure
Sector

Track
Cylinder

Direct/Random Access

Files are not physically stored in any
order
Update in place

Read/write to the file’s place on disk

Such storage devices are called Direct-
Access Storage Device (DASD)

For example, a hard disk

Sequential

Records are stored and accessed in
order
All files prior to the one requested must
be read
For example magnetic tapes

Locating Files

Sequential
Have to go through previous files anyway
No intelligence

Direct access, the old way
Hashing – apply a formula to the filename to
produce the address
Collision – same address for different filenames
A simplified example

Indexing

Direct Access, the new way
Files are stored sequentially or
randomly
Index is generated that contains
filename and address

Records in a File

Similar to Files on a Disk
Records can be stored sequentially or
randomly
Index is generated containing record
key and address

Directory vs. File

Directory – index of files
File – index of records

And so on so forth
Record – index of sub-records

And vice versa
Super-directory – index of directories

Input/Output Management

I/O Management

OS keeps track of the I/O requests

OS processes I/O requests in order
received

Except print jobs

Device Driver

Device Device
DriverDriver

Program that Program that
tells operating system tells operating system
how to communicate how to communicate

with devicewith device

With With Plug and PlayPlug and Play, ,
operating system operating system

automatically configures automatically configures
new devices as you new devices as you

install theminstall themAlso called Also called driverdriver

Sharing a Printer

A printer is shared by multiple active
processes

Printouts are generated in pieces as the
CPU gives each concurrent program
some time

The Problem

The current program may generate a
few print lines
The CPU moves to the next program
The second program may generate a
few print lines, etc.

The Solution

Spooling

Each program thinks it is writing to the
printer
The program actually writes to the hard
disk
When the program is complete, the file
on the hard disk is sent to the printer

Printer Spooling
Sending print jobs to buffer instead of directly to
printer
Print jobs line up in queue

Computer System

Processor

Input Output

Memory
(short term data)

Storage
(long term data)

Process
Management

Memory
Management

Storage
Management

I/O
Management

Computer System

Processor

Input Output

Memory
(short term data)

Storage
(long term data)

Operating System

Process
Management

Memory
Management

Storage
Management

I/O
Management

