The AND operation

Binary System

--Basics

- 0 AND $0=0$
- 0 AND $1=0$
- 1 AND $0=0$
- 1 AND $1=1$

The OR operation

- 0 OR $0=0$
- 0 OR 1 = 1
- 1 OR $0=1$
- 1 OR 1 = 1

The NOT operation

- NOT $0=1$
- NOT 1 = 0

A	B	AND	OR	XOR	NAND	NOR
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	1	0
1	1	1	1	0	0	0

The hexadecimal coding system

$a_{2} a_{2} a_{1} a_{0}=a_{3} \times 2^{3}+a_{2} \times 2^{2}+a_{1} \times 2^{1}+a_{0}$

- 0000 0 10008
- 0001 1 10019
- 00102101010 A
- 00113101111 B
- 01004110012 C
- $010151101 \quad 13$ D
- $01106111014 E$
- 01117111115 F

Figure 1.7: The organization of a byte-size memory cell

High-order end $\underline{0} \underline{1} \underline{0} \underline{1} \quad \underline{0} \quad \underline{0}$ Low-order end
Most

$$
\begin{aligned}
& \text { Most } \\
& \text { significant } \\
& \text { bit }
\end{aligned}
$$

significant
bit
Least
Least
significant

Figure 1.14: The base ten and binary systems
a. Base ten system

b. Base two system
$\begin{array}{llllll}1 & 0 & 1 & 1 & \text {]-Representation }\end{array}$
芯

Figure 1.15: Decoding the binary representation 100101

An algorithm for finding the binary representation of a positive integer

- Step 1: Divide the value by two and record the remainder
- Step 2: As long as the quotient obtained is not zero, continue to divide the newest quotient by two and record the remainder.
- Step 3: Now that a quotient of zero has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded.

Figure 1.17: Applying the algorithm in Figure 1.15 to obtain the binary representation of thirteen

Figure 1.19: The binary addition facts
$\begin{array}{r}6 \\ +8 \\ \hline 14\end{array} \begin{array}{r}0 \\ +0 \\ \hline 0\end{array}+\begin{array}{r}1 \\ 1\end{array}+\begin{array}{r}0 \\ 1\end{array}+\frac{1}{10}$

Figure 1.23: Addition problems converted to two's complement notation

Overflow? E.g. $6+7=-3$ or $-6-8=(-6)+(-8)=+2$ Machine can make mistakes. It is treated with a special procedure.

Complement

- $67-55=67-(100-45)$
- $\quad=67+45-100$
- $=12$

Figure 1.22: Coding the value -6 in two's complement notation using four bits

skip
Figure 1.24: An excess eight conversion table

Bit pattern	Value represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111	-1
0110	-2
0101	-3
0100	-4
0011	-5
0010	-6
0001	-7
0000	-8

Ship
Figure 1.25: An excess notation system using bit patterns of length three

Bit pattern	Value represented
111	3
110	2
101	1
100	0
011	-1
010	-2
001	-3
000	-4

Figure 1.20: Decoding the binary representation 101.101

Figure 1.26: Floating-point notation

$$
1768231.1097=0.176823 \times 10^{7}
$$

Figure 1.27: Coding the value $25 / 8$

