Binary System --Basics

The AND operation

- 0 AND 0 = 0
- 0 AND 1 = 0
- 1 AND 0 = 0
- 1 AND 1 = 1

The OR operation

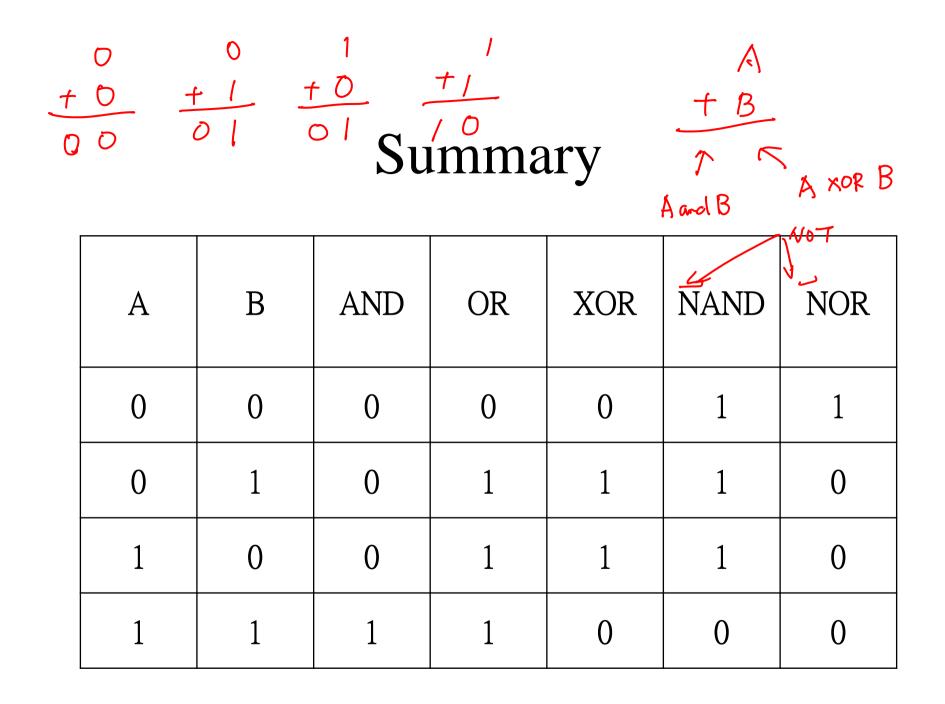
- 0 OR 0 = 0
- 0 OR 1 = 1
- 1 OR 0 = 1
- 1 OR 1 = 1

V exclusive OR The XOR operation

- 0 XOR 0 = 0
- 0 XOR 1 = 1
- 1 XOR 0 = 1
- 1 XOR 1 = 0

The NOT operation

- NOT 0 = 1
- NOT 1 = 0



The hexadecimal coding system $q_{3} q_{3} q_{4} q_{6} = q_{3} \times 2^{3} + q_{2} \times 2^{2} + q_{4} \times 2^{2} + q_{6}$

- 0000 0 1000 8
- 0001 1 1001 9
- 0010 2 1010 10 A
- 0011 3 1011 11 **B**
- 0100 4 1100 12 c
- 0101 5 1101 13 P
- 0110 6 1110 14
- 0111 7

110113P111014E111115F

Figure 1.7: The organization of a byte-size memory cell

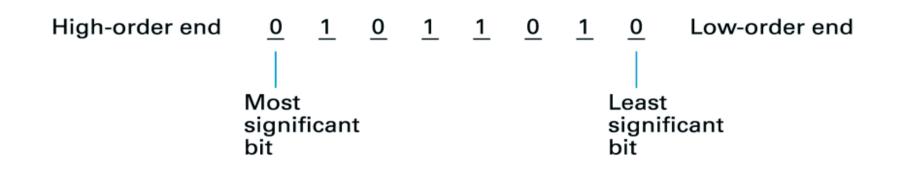
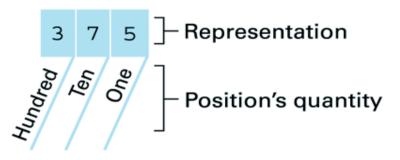


Figure 1.14: The base ten and binary systems

a. Base ten system



b. Base two system

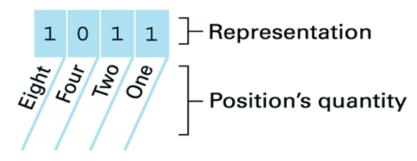
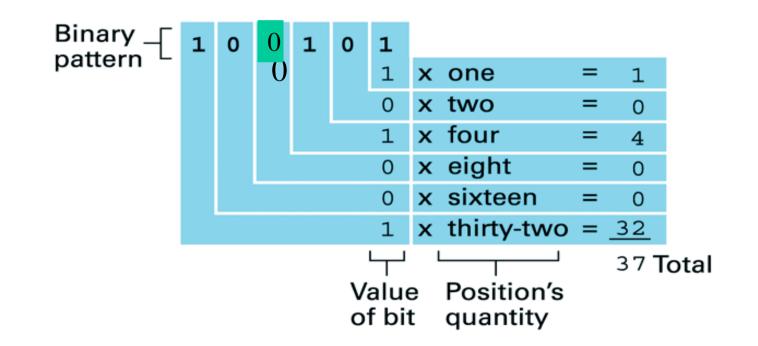


Figure 1.15: Decoding the binary representation 100101



An algorithm for finding the binary representation of a positive integer

- Step 1: Divide the value by two and record the remainder
- Step 2: As long as the quotient obtained is not zero, continue to divide the newest quotient by two and record the remainder.
- Step 3: Now that a quotient of zero has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded.

Figure 1.17: Applying the algorithm in Figure 1.15 to obtain the binary representation of thirteen

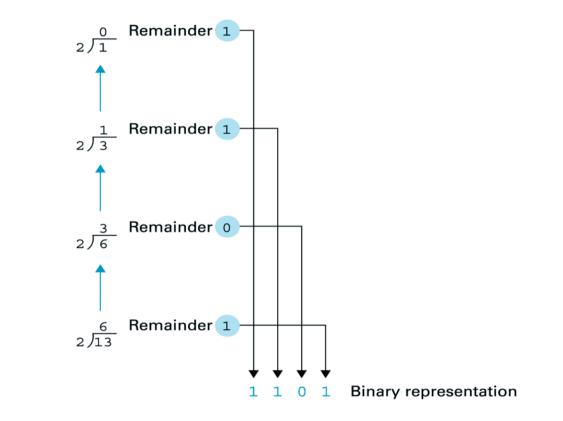
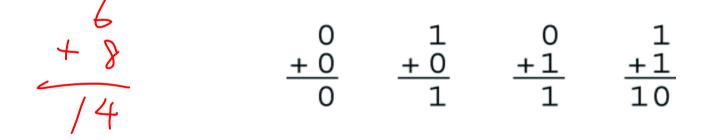


Figure 1.19: The binary addition facts



Complement

- 67 55 = 67 (100 45)
- = 67 + 45 100
- = 12

Figure 1.21: Two's complement notation systems

a. Using patterns of length three

Bit pattern	Value represented
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

b. Using patterns of length four

Bit pattern	Value represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8
$\mathbf{\Lambda}$	

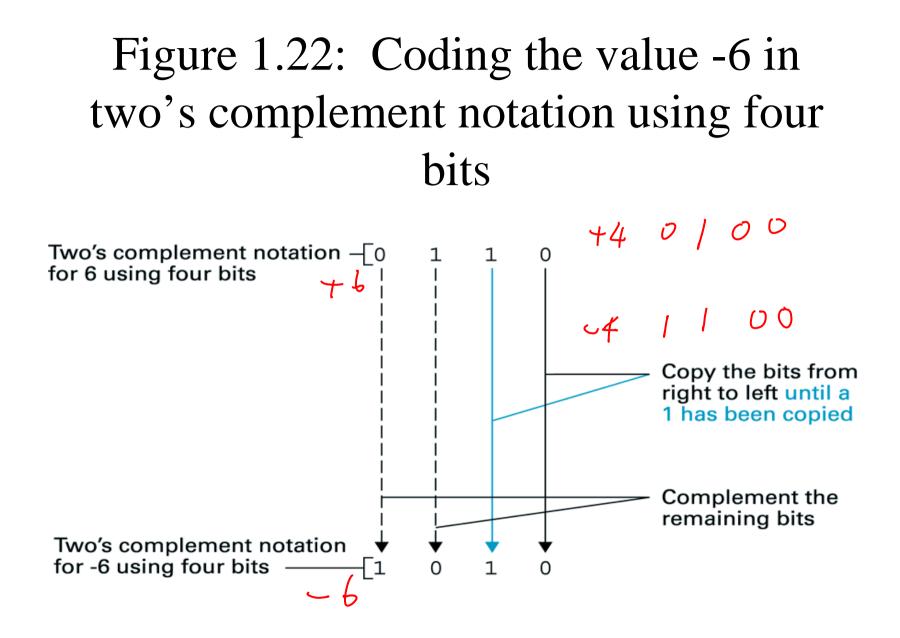
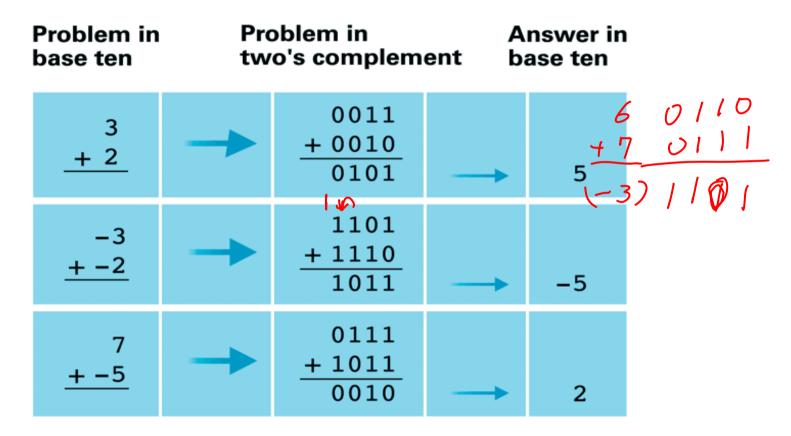


Figure 1.23: Addition problems converted to two's complement notation



Overflow? E.g. 6+7=-3 or -6-8=(-6)+(-8)=+2Machine can make mistakes. It is treated with a special procedure.

Figure 1.24: An excess eight conversion table

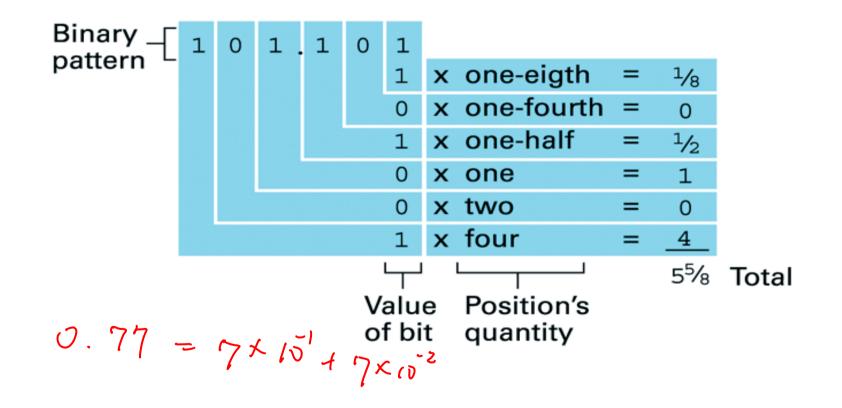
Bit pattern	Value represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111	-1
0110	-2
0101	-3
0100	-4
0011	-5
0010	-6
0001	-7
0000	-8

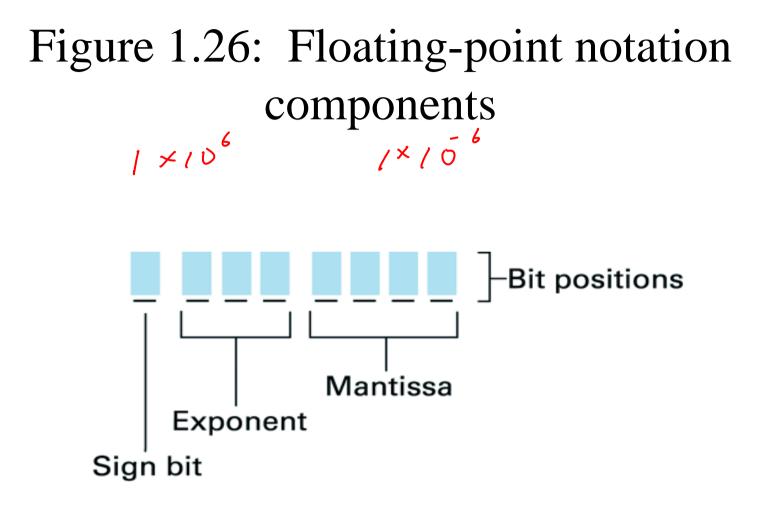
Ship

Figure 1.25: An excess notation system using bit patterns of length three

Bit pattern	Value represented
111	3
110	2
101	1
100	0
011	-1
010	-2
001	-3
000	-4

Figure 1.20: Decoding the binary representation 101.101





 $1768 \ 231, 1097 = 0.1768 \ 231 \ 1097 \ 1.07$ Figure 1.27: Coding the value 2 5/8

