Costly Monitoring, Loan Contracts, and Equilibrium Credit Rationing

Williamson (1987)

November 2011
This paper relies on monitoring costs to exhibit equilibrium credit rationing in a credit market with asymmetric information and costly monitoring.

An advantage of this approach is that debt contracts are derived as optimal arrangements between borrowers and lenders; such contracts economize on monitoring costs.

Given that the optimal contract is a debt contract, the probability that monitoring occurs and the expected cost of monitoring to the lender increase with the loan interest rate.
Model: lenders and entrepreneurs

- 2 periods: (0, 1)
- A countable infinity of agents indexed by i:
 - lenders: α
 - entrepreneurs: $1 - \alpha$, $\alpha > \frac{1}{2}$
- A lender i is endowed with 1 unit of indivisible investment good in period 0.
 - lent to an entrepreneur.
 - invested in a project that yield a certain return t_i units of the consumption good in period 1.
 (Assume lenders face different opportunity returns, to generate an upward-sloping supply of funds.)
An entrepreneur i has no endowment but has access to an investment project that produces a random return \tilde{w}_i units of consumption good in period 1, if funded with 1 unit of investment good.

$$\tilde{w}_i \sim_{iid} f(\cdot). \quad f(\cdot) \text{ is the pdf in } [0, \bar{w}], \quad \bar{w} > 0.$$

The realization of \tilde{w}_i, denoted by w_i is costly observable only to agent i, though all agents know $f(\cdot)$.

A lender can observe a particular w_i by spending γ units of effort in monitoring, with monitoring decision made in period 1.
Let r denote the market expected return faced by the lender who is indifferent between investing at certain return and lending.

Given r, consider an entrepreneur who offers identical contract to potential lenders in exchange for one unit of the investment good.

Features of the contract:
- monitoring in some states
- payments, whether or not monitoring occurs
The contract must satisfy...

(i) the states in which monitoring occurs or not

\[
\begin{cases}
\text{if } w^s \in S \subset [0, \bar{w}], \text{ then monitoring occurs} \\
\text{if } w^s \notin S, \text{ then monitoring does not occur}
\end{cases}
\]

where \(w^s \in [0, \bar{w}] \) is the signal that the entrepreneur emits to the lender, when she observes her return \(w \).

(ii) payment schedule \(R \)

\[
R = \begin{cases}
R(w), & \text{if } w^s \in S \\
K(w), & \text{if } w^s \notin S
\end{cases}
\]

where \(R(\cdot) \) and \(K(\cdot) \) are functions on \([0, \bar{w}]\).

Williamson (1987) Costly Monitoring, Loan Contracts, and Equilibrium Credit Ratio
Payment schedule

- If $w^s \notin S$ (monitoring does not occur)
 \Rightarrow the entrepreneur chooses w^s to minimize $K(w)$
 \Rightarrow a constant payment: x

- When monitoring occurs, the payment, $R(w)$, must be incentive compatible

$$\begin{cases}
 w^s \in S, & \text{if } R(w) < x \\
 w^s \notin S, & \text{if } R(w) \geq x
\end{cases}$$
Let $A = \{ w : R(w) < x \}$ and $B = \{ w : R(w) \geq x \}$.

The optimal contract is a payment schedule, $\{ R(w), x \}$, which maximizes the entrepreneur’s expected utility while giving the lender a level of expected utility of at least r.

$$\max_{\{R(w), x\}} \left\{ \int_A [w - R(w)] f(w)dw + \int_B [w - x] f(w)dw \right\}$$

$$s.t. \int_A [R(w) - \gamma] f(w)dw + \int_B x f(w)dw \geq r.$$
Proof of the Proposition – 1

Proposition: The optimal payment schedule is \(R(w) = w \), independent of \(x \).

Proof

- *Suppose not, and that \([R'(w), x']\) is the optimal contract.*
- *The constraint must hold with equality; otherwise the value of the object function can be increased by reducing \(R(w) \) for some \(w \) such that the constraint still hold.*

Let \(A' = \{ w : R'(w) < x' \} \) and \(B' = \{ w : R'(w) \geq x' \} \). Hence

\[
\int_{A'} [R'(w) - \gamma] f(w) dw + \int_{B'} x' f(w) dw = r.
\]

Williamson (1987)
Costly Monitoring, Loan Contracts, and Equilibrium Credit Rationing
Proof of the Proposition – 2

Since $R'(w) < w$ for some $w \in A'$, there exists another payment schedule $R''(w)$ with $R''(w) \geq R'(w)$ for all w and $R''(w) > R'(w)$ for some $w \in A'$, with $R''(w)$ continuous and monotone increasing on $[0, \bar{w}]$. There is some x'', where $0 < x'' < x'$, such that, with $A'' = \{w : R''(w) < x''\}$ and $B'' = \{w : R''(w) \geq x''\}$,

$$\int_{A''} [R''(w) - \gamma] f(w) \, dw + \int_{B''} x'' f(w) \, dw = r.$$
Proof of the Proposition – 3

The object function can be rewritten as

\[
\int_{A} [w - R(w)] f(w) dw + \int_{B} w f(w) dw - \int_{B} x f(w) dw
\]

\[
= E(w) - \left\{ \int_{A} R(w) f(w) dw + \int_{B} x f(w) dw \right\}
\]

\[
= E(w) - r - \gamma \int_{A} f(w) dw.
\]

Note: \(\int_{A} f(w) dw \) is \(\text{prob}(R(w) < x) \). So the optimal contract is to minimize the expected monitoring cost.
Proof of the Proposition – 4

Because $x'' < x'$ and $R''(w) > R'(w)$ for some $w \in A'$, implying $A'' \subset A'$ and $A' - A'' \neq \emptyset$, the change in the objective function in changing the contract from $[R'(w), x']$ to $[R''(w), x'']$ is then

$$\gamma \left[\int_{A'} f(w)dw - \int_{A''} f(w)dw \right] > 0,$$

a contradiction. Q.E.D.
Optimal contract is a debt contract

- Either the entrepreneur pays the lender a fixed amount x, or he defaults, monitoring occurs, and the lender receives the entire return on the project w.
- The default state can be interpreted as bankruptcy and γ as a cost of bankruptcy.
Optimal contract is completely characterized by x

- For the lender, expected utility is
 \[\pi_l(x) = \int_0^x w f(w)dw + x[1 - F(x)] - \gamma F(x), \]

 and for the entrepreneur is
 \[\pi_e(x) = \int_x^{\overline{w}} w f(w)dw - x[1 - F(x)]. \]

- Note: $\pi_l(x)$ is not monotone increasing in x, because of γ. $\pi_e(x)$ is monotone decreasing in x.

- $\pi_l'(x) = 1 - F(x) - \gamma f(x)$. $\pi_l'(x) < 0$ because $f(x) > 0$ for $x \in [0, \overline{w}]$; i.e. $\pi_l'(x^*) = 0$ for $x^* < \overline{w}$.

Williamson (1987) Costly Monitoring, Loan Contracts, and Equilibrium Credit Ratio
Equilibrium

Definition
An equilibrium is a loan interest rate x^*, a market expected return r^*, and an aggregate loan quantity q^*, which satisfy

(i) x^* solves $\max_x \pi_e(x)$ subject to $\pi_l(x) \geq r^*$

(ii) $q^* = \alpha H(r^*)$

(iii) Either $q^* = 1 - \alpha$

or $q^* < 1 - \alpha$ and $\pi'_l(x^*) = 0$

Note: Offering a higher x implies a higher probability of default, with larger expected monitoring costs for the lender.

Williamson (1987) Costly Monitoring, Loan Contracts, and Equilibrium Credit Rationing