
Online Supplementary Appendix to
�Liquidity and the Threat of Fraudulent Assets"

This supplementary appendix establishes results to complement and extend the main analysis of

the paper. Each section is self-contained and can be read separately.

� Appendix B formulates and solves the model of retention and haircuts outlined in the main

body of the paper.

� Appendix C o¤ers extensions of our benchmark model delivering fraud in equilibrium.

� Appendix D provides a formal proof of the outcome equivalence between the original game

and the reverse-ordered game and it establishes that a milder re�nement generates the same

outcome as the one in the text.
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B Asset retention and haircuts

Our benchmark model assumes that asset portfolios are private information, and that the produc-

tion of fraudulent assets involves only a �xed cost. With this cost structure, private information

is with no loss in generality as asset retention would have no signaling value. In the following we

generalize the model to allow buyer to make their portfolio observable, assuming that �xed and

proportional costs of producing fraudulent assets. Because of the proportional cost, a buyer who

retains an observable amount of some asset in its portfolio, can credibly signal its value. As we will

discuss, retention is a standard incentive mechanism for asset backed securities and, in the context

of collateralized loans, can be interpreted in terms of haircuts.34

B.1 The bargaining game

We consider a variant of our model where, in the DM, agents can issue asset backed securities,

or ABS. The set of assets that can back securities is denoted by f1; :::; Sg. An asset can be a

commodity, like gold, or it can be a �nancial asset such as a mortgage loan. Each asset comes in

two versions: a genuine version, with time t = 2 payo¤ normalized to one, and a fraudulent version

with zero payo¤. At the end of t = 0 a buyer can create ABSs of type s. Each unit of ABS is backed

by one unit of asset s. If s is gold, one can think of the ABS as a banknote. If s is a mortgage loan,

then the ABS is a mortgage-backed security. The extent to which a security is backed by genuine

or fraudulent versions of the asset is not observed by a seller in a match in the OTC market.

As before, fraud involves a �xed cost, kf (s), which is speci�c to the underlying asset and has to

be incurred irrespective of the extent of fraud on an ABS of type s. Di¤erently from before, there

is also a proportional cost, kv(s), to produce a fraudulent asset of type s. Precisely, the variable

cost to generate one unit of type s ABS backed by � 2 [0; 1] units of genuine assets and 1� � units

of fraudulent assets is ��(s) + (1� �)kv(s). Such an ABS pays o¤ � at the end of the period.

The reverse-ordered game has the following timing. First, the buyer posts an o¤er to be executed

in the OTC market at time t = 1 provided a match is formed. This o¤er speci�es, for all possible

34According to Krishnamurthy (2010) haircuts in the repo market have two main justi�cations: (i) the probability
of a borrower defaulting on the repo loan; and (ii) the recovery value when liquidating the collateral if default occurs.
Our model captures the second consideration. According to Krishnamurthy (2010) the �rst of these considerations
is usually quite small while the second consideration has played a dramatic role in the crisis.
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ABS backed by s, whose names are indexed by j 2 J (s), a quantity a(j) � 0 of securities created

by the buyer, and a security transfer d(j) � a(j) to the seller.35 Hence, a(j)�d(j) is the observable

quantity of security j retained by the buyer.36

Second, for each security, j 2 J (s), the buyer chooses �(j), the extent to which the security is

backed by genuine assets. Third, if the buyer is matched with a seller in the OTC market, with

probability �, the seller observes the posted o¤er and chooses whether to accept it or not.

The expected payo¤ of the buyer is:

U b � �
X

s2S;j2J (s)

�
[�(s)� 1] �(j)a(j) + kv(s) [1� �(j)] a(j)

�
� kf (s)IfPj2J (s)[1��(j)]a(j)>0g

+��

24u(q)� X
s2S;j2J (s)

�(j)d(j)

35 : (32)

The payo¤, in (32), has the following interpretation. In the �rst term, for each possible security,

j 2 J (s), the buyer chooses the issue size a(j) and the extent to which the security is backed by the

asset, �(j) 2 [0; 1]. The quantity of genuine asset s purchased by the buyer to back security j is then

�(j)a(j) and the cost of holding those assets is �(s)� 1; the quantity of fraudulent assets produced

is [1� �(j)] a(j) at a unit cost of kv(s). In the second term, the �xed cost of fraud for asset s,

kf (s), is incurred if some asset-s backed securities are not fully backed,
P
j2J (s) [1� �(j)] a(j) > 0.

Finally, in the third term, the buyer is matched with a seller with probability � and the seller

accepts the o¤er with probability �. In that event, the buyer enjoys the utility of consumption,

u(q), but he gives up d(j) units of security j, where each units pays o¤ �(j).

Given an o¤er, o � hfa(j); d(j); s 2 S; j 2 J (s)g; qi, the buyer will choose optimally the extent

35We view J (s) as an exogenously given, �nite, set of names for ABS backed by s. This is without much loss of
generality: for example, J (s) could be the set of all N -letter words, for some large N . If a(j) = 0, the buyer chooses
to issue no security with name j.

36 In principle the asset demand of the buyer could include an unobservable part. That is, the buyer could show
a(j) to the seller and hide some extra amount �a(j), with a total asset demand equal to a(j)+�a(j). As will become
clear later, in the case of interest of a liquidity shortage, �(s) > 1 for all s, and so a buyer will �nd it optimal to
hold �a(j) = 0. When liquidity is abundant, �(s) = 1 for all s, and buyers have no strict incentive to include an
unobservable part in his asset demand. See the discussion at the beginning of Section B.2.
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of fraud for each category of assets, given rational belief about the seller�s acceptance probability:

f�(j)gj2J (s) 2 argmin
�̂(j)

X
s2S;j2J (s)

�
[�(s)� 1] �̂(j)a(j) + kv(s) [1� �̂(j)] a(j) + ���̂(j)d(j)

�
+kf (s)IfPj2J (s)[1��̂(j)]a(j)>0g (33)

Similarly, the seller chooses an acceptance probability given rational beliefs about asset quality:

� 2 argmax
�̂
�̂

24�q + X
s2S;j2J (s)

�(j)d(j)

35 : (34)

De�nition 1 A subgame perfect equilibrium of the reverse-ordered game is a collection of strategies,

ho; �; �i, such that:

(i) The o¤er, o, maximizes U b taking as given � and �.

(ii) Conditional on any o¤er o, the decision to commit fraud, �, solves (33) given �.

(iii) Conditional on any o¤er o, the decision to accept, �, solves (34) given �.

As in the main model, the auxiliary problem is to maximize U b with respect to an outcome

hfa(j); d(j); �(j); s 2 S; j 2 J (s)g; �; qi, subject to the incentive constraints of the buyer, (33), and

that of the seller, (34).

Lemma 1 The solution to the auxiliary problem is such that �(j) = 1 for all j 2 J (s) and all

s 2 S.

Proof. For any feasible outcome, consider the subset of �(j) such that �(j) 2 (0; 1). Because the

outcome satis�es the incentive constraint, (33), the buyer must be indi¤erent between any �(j) 2

(0; 1). Thus, for all such j, one can simultaneously set �(j) = 1 and increase q correspondingly so

that � remains a solution of (34). Because q increases strictly, the payo¤ of the buyer increases

strictly as well. Now consider the subset of �(j) such that �(j) = 0. For all such j, one can

simultaneously set a(j) = d(j) = 0 and �(j) = 1. The incentive constraints of the buyer and the

seller are satis�ed, and the payo¤ of the buyer increases strictly because this saves on the �xed

cost. Therefore, any feasible o¤er in which �(j) < 1 for some j, is strictly dominated by an o¤er

such that �(j) = 1 for all j, establishing the claim.
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Denote d(s) the transfer of all ABS of type s and a(s) the quantity of all ABS of type s publicly

held by the buyer. Then,

d(s) =
X
j2J (s)

d(j)

a(s) =
X
j2J (s)

a(j):

Substituting �(j) = 1 for all j, the seller�s best response, (34), can be reexpressed as a function of

d(s) only:

� 2 argmax �̂
"
�q +

X
s2S

d(s)

#
: (35)

Similarly, the buyer�s objective can also be expressed as a function of a(s) and d(s) only:

U b � �
X
s2S

[�(s)� 1] a(s) + ��
 
u(q)�

X
s2S

d(s)

!
: (36)

Equations (35) and (36) show that only a(s) and d(s), the aggregate quantities of ABS of type s,

matter for the buyer�s expected payo¤ and the seller�s accept/reject decision. Still, the composition

of the o¤er matters in principle for the buyer�s fraud decision. To see this, note that with Lemma

1, the incentive constraints of the buyer writes:

� = f1; : : : ; 1g 2 argmin
�̂(j)

X
j2J (s)

�
[�(s)� 1] �̂(j)a(j) + kv(s) [1� �̂(j)] a(j) + ���̂(j)d(j)

�
+kf (s)IfPj2J (s)[1��̂(j)]a(j)>0g; (37)

for all s 2 S, and so it depends on the composition of the o¤er. We now show that there are no

gain from varying the composition of an o¤er. Namely, a buyer always �nd it optimal to issue at

most one ABS for each type of asset, i.e. a(j) 6= 0 for at most one j 2 J (s).

Lemma 2 Consider any feasible outcome such that �(j) = 1 for all j. Then there is a payo¤

equivalent feasible outcome in which the buyer issues at most one ABS for each type of asset. The

corresponding incentive constraint can be written:

[�(s)� 1� kv(s)] a(s) + ��d(s) � kf (s) for all s 2 S: (38)
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Proof. Given any feasible outcome ! = ha(j); d(j); �(j); q; �i such that �(j) = 1 for all j,

consider the alternative outcome in which the buyer issues at most one security for each type s of

asset: !0 = ha(s); d(s); �; �; qi, with � = 1 and where a(s) =
P
j2J (s)a(j) and d(s) =

P
j2J (s)d(j).

Clearly the alternative outcome !0 has the same payo¤ for the buyer as the outcome !, and is

incentive compatible for the seller. All we need to show is that it is incentive compatible for the

buyer, i.e.,

� = 1 2 argmin
�̂

�
�(s)� 1

�
�̂a(s) +

�
1� �̂

�
kv(s)a(s) + ��̂d(s) + kf (s)If(1��̂)a(s)>0g: (39)

Because of the �xed cost, the argmin is included in f0; 1g, and so the alternative outcome !0 is

incentive compatible if and only if it satis�es (38). But (38) is implied by the incentive compatibility

constraint (37) for the original outcome !: indeed, (38) is equivalent to the observation that the

right-hand side of (37) evaluated at �̂ = f1; : : : ; 1g, is smaller than the right-hand side evaluated

at �̂ = f0; : : : ; 0g.

Lastly, it is clear that any solution of the auxiliary problem must satisfy q =
P
s2S d(s). There-

fore, the auxiliary problem associated with the reverse-ordered game reduces to

max
q;a(s);d(s);�

�
X
s2S

a(s) [�(s)� 1] + �� [u(q)� q] (40)

s.t. d(s) � a(s) (41)

�q +
X
s2S

d(s) = 0 (42)

[�(s)� 1� kv(s)] a(s) + ��d(s) � kf (s) for all s 2 S: (43)

Claim 3 Any solution of the auxiliary problem, (40)-(43), has the property that u0(q) � 1 and

� = 1.

Proof. The �rst claim holds because otherwise one could reduce the quantity produced, increase

the expected utility of the buyer, and satisfy all the constraints. To prove the second claim suppose,

towards a contradiction, that � < 1. Note �rst that the value of the auxiliary problem must be

positive: a small o¤er q0 = d0(s0) > 0 where d0(s0) < kf (s0), d0(s) = 0 for s 6= s0, and �0 = 1 yields

a positive payo¤. This implies that both q > 0 and � > 0. Consider a deviation according to which

the probability of the o¤er being accepted is increased by �� > 0. At the same time, whenever
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d(s) > 0, the transfer is reduced so that the incentive-compatibility constraint (43) continues to

hold. To a �rst order, this implies a change �d(s) = �d(s)
� ��, for all s 2 S. That is, the transfer

is reduced if d(s) > 0, and remains equal to zero otherwise. Thus the output in any bilateral match

is changed by �q = �
P
s2S �d(s) = ���

� q. The expected surplus of the buyer increases by

�U = �
�
[u(q)� q]�

�
u0(q)� 1

�
q
	
�� > 0:

The equality is strict because of two facts: �rst, u(q) is strictly concave and second, q > 0, since

the value of the auxiliary problem is positive.

Lastly we have:

Claim 4 Any equilibrium outcome must solve the auxiliary problem, (40)-(43).

The proof is the same as in the paper and is thus omitted. Using that � = 1, the resalability

constraint, (43), can be reexpressed as

d(s) �
kf (s)
a(s) + kv(s) + 1� �(s)

�
a(s): (44)

To mitigate fraud incentives, the buyer only spend a fraction of his holdings in a match, and retains

the rest in his portfolio. This fraction decreases with the quantity of assets held, it increases with

the �xed and proportional costs of producing fraudulent assets, it decreases with the price of the

asset and the frequency of trading opportunities in the OTC market. As argued in the text, when

interpreting the payment as a collateralized loan, asset retention can be interpreted as a haircut

that the borrower concedes to the lender to signal the quality of his collateral.

B.2 Liquidity structure of asset returns

The demand for assets. Taking stock of the above result, the asset demands an o¤er solve,

when liquidity is scarce and �(s) > 1 for all s:

max
q;a(s);d(s)

�
X
s2S

a(s) [�(s)� 1] + � [u(q)� q] (45)

s.t. d(s) � a(s) (46)

�q +
X
s2S

d(s) = 0 (47)

[�(s)� 1� kv(s)] a(s) + �d(s) � kf (s) for all s 2 S: (48)
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When liquidity is abundant and �(s) = 1 for some s, asset demands continue to solve the

above program. To see this, note �rst that, in case �(s) = 1, one needs in principle to distinguish

explicitly the amount of asset demanded, a(s), and the observable amount of asset shown by the

buyer to the seller, c(s) � a(s). With this distinction in mind, one can show that the auxiliary

problem is the same as before, after replacing the feasibility constraint (41) by d(s) � c(s) � a(s)

and the incentive compatibility constraint (44) by

[�(s)� 1� kv(s)] c(s) + ��d(s) � kf (s):

Next, observe that, when �(s) = 1, showing c(s) = a(s) only relaxes the incentive compatibility

constraint. Therefore, to determine asset prices, we can always assume that c(s) = a(s) and that

optimal asset demands and o¤ers are determined by the problem (45)-(48).

The Lagrangian associated with the auxiliary problem is

L = �
X
s2S

[�(s)� 1] a(s) + � [u(q)� q] + �
"X
s2S

d(s)� q
#

+
X
s2S

�(s)

�
kf (s)� [�(s)� 1� kv(s)] a(s)� �d(s)

�
+
X
s2S

�(s) [a(s)� d(s)] :

The �rst-order conditions are

� = �
�
u0(q)� 1

�
(49)

�(s) = 1 + �(s)� �(s) [�(s)� 1] + �(s)kv(s) (50)

� = ��(s) + �(s): (51)

The �rst equation, (49) is the derivative of the Lagrangian with respect to q and is the same as

in the main model. The second equation, (50), is the derivatives with respect to a(s) and di¤ers

from its counterpart in the main model. The left-hand side is the price. The right-hand side is

the buyer�s marginal value of increasing her observable asset holdings: it re�ects the fundamental

value of the asset, 1, a tightening of the no-fraud constraint because the buyer is making a larger

purchase of genuine assets, ��(s) [�(s)� 1], and a loosening of the no-fraud constraint, �(s)kv(s),

because the cost of producing a corresponding quantity of fraudulent assets increases.
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Equilibrium asset pricing. To derive the three-tier categorization of assets, we impose market

clearing, i.e., a(s) = A(s) for all s 2 S, and we consider the case of a liquidity shortage, q < q�.

Liquid assets (�(s) = 0). Liquid assets are such that only the feasibility constraint, d(s) � a(s),

binds. It follows from (51) that �(s) = � and from (50)

�(s) = 1 + �: (52)

Moreover, �(s) > 0 implies d(s) = A(s). The no-fraud constraint is not binding if

kf (s)

A(s)
+ kv(s) � � + �:

Partially liquid assets (�(s) > 0 and �(s) > 0). Partially-liquid assets are such that both the

incentive-compatibility and the feasibility constraints bind. From �(s) > 0, d(s) = A(s) and from

the no-fraud constraint at equality, (44),

�(s) = (1� �) + kv(s) +
kf (s)

A(s)
: (53)

From (50) and (51), the conditions �(s) > 0 and �(s) > 0 can be rewritten as

�(s) =
� + � � kv(s)� kf (s)

A(s)

kf (s)
A(s)

> 0

�(s) =
�
kf (s)
A(s) � �

h
� + � � kv(s)� kf (s)

A(s)

i
kf (s)
A(s)

> 0;

or, equivalently after some algebra,

kf (s)

A(s)
+ kv(s) < � + � <

kf (s)

A(s)

� + �

�
+ kv(s):

The left-hand-side inequality is equivalent to �(s) > 0, and the right-hand-side inequality to �(s) >

0.

Illiquid assets (�(s) > 0 and �(s) = 0). Illiquid assets are such that the feasibility constraint

does not bind, i.e., buyers spend only a fraction of their assets. From (50) and (51),

�(s) = 1 +
kv(s)�

� + �
: (54)
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Provided that kv(s) > 0 illiquid assets are priced above their fundamental value. The reason why

the asset price exhibits a liquidity premium is because an increase in asset holdings allows the

buyer to raise the quantity of asset he spends. The intuition is that, when the buyer acquires

one more unit of a genuine asset and makes it observable to the seller, he increases his cost of

committing fraud. Because fraud incentives are reduced, he can make a larger transfer d(s) to the

seller. Finally, the condition d(s) � A(s) is equivalent to

kf (s)

A(s)
+
�kv(s)

� + �
� �:

Solving for the equilibrium �. Adding up the payments d(s) over all categories of assets we

de�ne aggregate liquidity is de�ned as before by L =
P
s2S �(s)A(s), where

�(s) = min

�
kf (s)

�A(s)
+
kv(s)

� + �
; 1

�
: (55)
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Figure 4: Liquidity structure

In Figure 4 we represent the three-tier categorization of assets as a function of the �xed and

proportional costs of producing fraudulent assets. The liquid assets are the ones with the largest

costs. For those assets, velocity is maximum, �(s) = 1, and the price is maximum and independent
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of the costs of fraud. Partially-liquid assets are such that the variable cost of fraud is lower than

a threshold, � + �, and the �xed cost is between two thresholds. Velocity is maximum but the

asset price is less than the price of liquid assets. As kv(s) or kf (s) increases, the price of the asset

increases. Finally, illiquid assets are such that both kv(s) and kf (s) are smaller than a threshold.

Only a fraction of those assets are used for payments, � < 1, and their prices are less than the ones

of liquid or partially liquid assets. The asset price increases with kv(s) but it is independent of

kf (s). The liquidity of the asset increases with both kf (s) and kv(s).

Finally, to complete the characterization of the equilibrium we turn to the determination of q.

Consider �rst equilibria where q = q�. Then, from (49), � = 0. The �rst best can be implemented

if
P
s2S �(s)A(s) � q�, which can be rexpressed asX

s2S
min

�
A(s);

kf (s) +A(s)kv(s)

�

�
� q�: (56)

Consider next equilibria where q < q�. From the de�nition of aggregate liquidity, q = L =P
s2S �(s)A(s), which gives

q =
X
s2S

min

�
A(s);

kf (s)

�
+
A(s)kv(s)

�u0(q)

�
:

When (56) does not hold then the intermediate value theorem implies there exists some q < q�

solving the above equation.

B.2.1 Self-ful�lling liquidity shortages

A new feature of the present model is the possibility of multiple equilibria. Some preliminary

intuition can be gained by thinking of an equilibrium in terms of supply and demand of liquidity.

Liquidity demand. Given a shadow price of liquidity, �, the demand is determined by the

familiar �rst-order condition:

� = �
h
u0(qd)� q

i
and is naturally downward sloping.
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Liquidity supply. Now consider the problem of maximizing (45)-(48) with respect to a(s) and

d(s) only, given shadow price �. One can view it as the problem of maximizing the value of liquidity

services using assets as input, subject to feasibility and incentive compatibility. After imposing

equilibrium in the asset market, one obtains that the aggregate amount of liquidity supplied is:

qs =
X
s2S

min

�
A(s);

kf (s)

�
+
A(s)kv(s)

� + �

�
:

Its key novel feature is that, due to the new incentive compatibility constraint, this supply curve

can be downward slopping.

Precisely, for liquid and partially liquid assets, the supply of liquidity is equal to A(s) and so

is inelastic in � > 0. For liquid assets this is because the incentive compatibility constraint does

not bind and so in an asset market equilibrium all the supply of liquid assets is used to produce

liquidity services. For partially liquid assets this is because the asset price adjusts until all the asset

supply is used to produce liquidity services.

Thus, the downward slopping liquidity supply curve arises because of illiquid assets. Indeed,

when � is high even the prices of illiquid assets go up. The incentives to commit fraud go up, the

resalability constraint tightens, and the aggregate supply of liquidity goes down.

A one asset example. For simplicity, we illustrate the possibility of multiple equilibria in the

single-asset case, S = 1. The output in a bilateral match in the DM is determined by:

q = min [q�; A; F (q)] ; (57)

where

F (q) � kf
�
+

Akv
�u0(q)

:

If the resalability constraint is binding, then output is determined by F (q) = q. Otherwise it is the

minimum between the socially-e¢ cient quantity, q�, and the supply of assets, A.

Suppose that F (0) = kf
� < min [q�; A]. It is a necessary condition for the asset to be illiquid.

Moreover, F (1) =1 and F 0(q) > 0 since u00(q) < 0. We distinguish the following cases.

1. Suppose F 00(q) < 0. This condition is satis�ed for u(q) = q1�


1�
 with 
 < 1. Then, the right
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side of (57) is concave. Provided that kf > 0 there is a unique q 2 (0; q�] solution to (57).

See left panel of Figure 5.

2. Suppose next that F 00(q) > 0 and A < q�. This condition is satis�ed for u(q) = (q+b)1�
�b1�

1�


with 
 > 1. Assume F (A) > A, i.e., kfA +
kv
u0(A) > �. If there is a solution to F (q) = q with

q 2 (0; A), then there is a second solution in (0; A). Moreover, q = A is also a solution to

(57). In summary, there are two solutions where the asset is illiquid, and one solution where

the asset is partially liquid or liquid. See right panel of Figure 5. Equilibria with a higher q

are associated with a lower asset price and a higher welfare.

3. Suppose next that F 00(q) > 0 and q� < A. This case is similar as the case above. There can

be multiple equilibria, one of them being such that q = q� and � = 1.

A A

fk
σ fk

σ

is concaveF is convexeF

Figure 5: Left panel: Unique equilibrium; Right panel: Three equilibria including two with a
binding resalability constraint

In the presence of multiple equilibria the high equilibrium corresponds to times of con�dence:

output is high, there are no haircut, and liquidity premia are low. The low equilibrium corresponds

to times of fear: output is low, haircuts are large, and liquidity premia are large.

It is also worth noticing that retention mechanisms also emerge in models with adverse selection

(e.g., DeMarzo and Du¢ e, 1999; Rocheteau, 2011) but typically they do not generate multiple
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equilibria. In our model the fact that agents can choose between genuine and fraudulent assets,

and the price of genuine assets is endogenous, is crucial to obtain the multiplicity of equilibria.
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C More on fraud in equilibrium

In this Appendix we review extensions of our benchmark model that deliver fraud in equilibrium.

First, we provide detailed derivations for the model of Section 3.2. Second, we allow the cost of

fraud to be drawn from a continuous distribution. Third, we introduce a proportional component

to the cost of fraud and we assume observable portfolios.

C.1 Detailed derivations for the model of Section 3.2

We assume that there is uncertainty about the cost of fraud and that o¤ers in the DM are set

before the cost of fraud is realized. We take the reverse-ordered game as the primitive game and

the sequence of moves is as follows. At the beginning of t = 0, buyers set the terms of a contract,

(q; fd(s)g), to be executed in a bilateral match in the DM. For simplicity there are only two possible

realizations for the cost of fraud: k(s) > 0 with probability !(s) 2 (0; 1] and zero with complement

probability, 1�!(s). The realizations for k(s) are independent across assets and across buyers. So

a fraction 1�!(s) of buyers can produce fraudulent assets of type s at no cost. Next, buyers make

their portfolio choices of both genuine and fraudulent assets. At t = 1 a fraction � of buyers and

sellers are matched and they trade according to the posted o¤ers.

In the state where the fraud on asset s is costless the buyer will always �nd it pro�table to

execute his o¤er with fraudulent assets irrespective of the seller�s probability of accepting. In the

state where the fraud on asset s is costly a buyer will acquire fraudulent assets of type s with

probability �(s), where �(s) minimize the cost of �nance, i.e.

f�(s)g 2 arg min
f�̂(s)g

X
s2S

�
k(s) [1� �̂(s)] + [�(s)� 1] �̂(s)d(s) + ���̂(s)d(s)

�
: (58)

Multiplying the buyer�s payo¤ by !(s) > 0 the condition (58) can be reexpressed as

f�(s)g 2 arg min
f�̂(s)g

X
s2S

�
!(s)k(s) [1� �̂(s)] + [�(s)� 1] �̂(s)!(s)d(s) + ���̂(s)!(s)d(s)

�
: (59)

Following an o¤er (q; d) the seller�s strategy is:

�q +
X
s2S

�(s)!(s)d(s)
>
<
=
0) �

= 1
= 0
2 [0; 1]

: (60)
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Finally, given equilibrium decision rules f�(s)g and �, the optimal o¤er, (q; fd(s)g); maximizes the

expected utility of consumption net of the expected cost of �nancing the o¤er:

�
X
s2S

�
!(s)k(s) [1� �(s)] + !(s) [�(s)� 1] �(s)d(s)

�

+ �!(s)�

(
u(q)�

X
s2S

�(s)d(s)

)
+ � [1� !(s)]�u(q): (61)

Recall that with probability 1� !(s) the buyer can produce fraudulent assets at no cost, in which

case he enjoys the utility of consumption if the o¤er is accepted without incurring any cost. Eq.

(61) can be simpli�ed to

�
X
s2S

�
!(s)k(s) [1� �(s)] + !(s) [�(s)� 1] �(s)d(s)

�
+ ��

(
u(q)�

X
s2S

�(s)!(s)d(s)

)
: (62)

It is clear from (59), (60), and (62) that the solution to the auxiliary problem is identical to the

one in the main text d(s) is replaced by !(s)d(s) and k(s) is replaced by !(s)k(s). This leads to

the proposition in Section 3.2.

C.2 Generalized model

In the previous Section we made the assumption that the cost of fraud was randomly drawn from

a two-point distribution, which allowed us to immediately apply all the results of the paper, after

rescaling variables. In this section we generalize the analysis by assuming that the cost of fraud

is drawn from a continuous distribution. We show that fraud continues to occur in equilibrium.

Namely, buyers �nd it optimal to commit fraud if the cost of fraud is lower than some endogenous

threshold, and do not commit fraud otherwise.

Suppose for simplicity there is a single asset (S = 1) with price � � 1. As in Section 3.2, we

take the reverse-ordered game as our primitive game: we assume that buyers commit to a contract

before making portfolios choices and entering the DM. The cost of fraud, k, is random and it is

only realized after terms of trade, (q; d), are set. It is drawn from some continuous distribution,

with cumulative distribution function (cdf) F (k) over the support [0;1). We assume that F (k)

has thin enough tail in that k [1� F (k)]! 0 as k !1. The buyer chooses an o¤er and a decision

to commit fraud conditional on the o¤er and on the realization of k, f�kg. The seller chooses the
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probability of accepting, �, conditional on any o¤er. Following an o¤er, (q; d), the seller�s strategy

is:

�q + d
Z
�kdF (k)

>
=
<

0) �
= 1
2 [0; 1]
= 0

: (63)

Because the seller does not observe the cost of fraud, he forms a rational expectation about the

buyer�s probability of committing fraud, based on the buyer�s strategy f�kg and on the cdf F (k).

Given this probability, the seller accepts an o¤er if the expected value of the asset proposed by the

buyer is greater the cost of producing the output.

Conditional on k, the buyer�s strategy is:

k
>
=
<
[�� 1 + ��] d) �k

= 1
2 [0; 1]
= 0

: (64)

The buyer�s strategy is identical to the one described in the text. The cost of fraud, k, is compared

to the cost of holding and spending d units of genuine assets, [�� 1 + ��] d. If the cost of fraud is

greater than the holding cost, then the buyer acquires genuine assets; otherwise, he commits fraud.

The buyer�s problem. Given the buyer�s and seller�s strategies in the subgame following an

o¤er, (q; d), and a realization of k, the buyer chooses an o¤er that maximizes his expected payo¤.

The buyer�s problem is then

max
q;d;f�kg;�

Z �
� (�� 1)�kd� (1� �k)k + �� [u(q)� �kd]

�
dF (k) (65)

subject to f�kg and � satisfying (63) and (64). The buyer�s objective is the sum of his expected

surplus from trade net of the cost of �nancing the trade for all possible realizations of k. Following

the same reasoning as in the proof of Proposition 1 one can rule out outcomes such that �k 2 (0; 1).

Moreover, for each o¤er, (q; d), there is a threshold for k above which fraud is not optimal. This

threshold is

�k = [�� 1 + ��] d: (66)

This threshold is equal to the cost of carrying d units of genuine asset. Finally, it is easy to check

that the seller�s participation constraint must hold at equality,

q = d
h
1� F (�k)

i
: (67)
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From the results above the buyer�s objective can be reexpressed as:

�
Z �k

0
kdF (k)� (�� 1 + ��) d

h
1� F (�k)

i
+ ��u(q):

Using (67) to eliminate d from the objective and from the constraint, we obtain that the buyer

solves:

max
q;�k;�

�
Z �k

0
kdF (k)� (�� 1 + ��) q + ��u(q)

s.t. �k
h
1� F (�k)

i
= [�� 1 + ��] q:

Using integration by parts the buyer�s problem simpli�es further to

max
q;�k;�

�
Z �k

0
[1� F (k)] dk + ��u(q) (68)

s.t. �k
h
1� F (�k)

i
= (�� 1 + ��) q: (69)

Now we establish that � = 1. Suppose � < 1. From (69) one can reduce q and raise �q so as to keep

�k constant, i.e., �(�q) = � (��1)
� �q. Equivalently, � increases by �� = �

h
��1+��

�

i
�q
q (which is

feasible since � < 1 and provided that �q is small). Given that �k is kept constant we can focus on

the second term in the buyer�s objective, which can be written as ��q u(q)q . This term is increasing

in �q and decreasing in q. Therefore, such a deviation is pro�table and � < 1 is not optimal. The

equilibrium o¤er is chosen so that it is accepted with probability one. The �nal representation of

the buyer�s problem is then

max
q;�k

�
Z �k

0
[1� F (k)] dk + �u(q) (70)

s.t. �k
h
1� F (�k)

i
= (�� 1 + �) q: (71)

The constraint, (71), de�nes q as a continuous function of �k, Q(�k), with Q(0) = limk!1Q(k) = 0.

If the buyer chooses not to never commit fraud then �k = 0, q = Q(0) = 0, no trade can take

place, and the buyer�s expected payo¤ is zero. Alternatively, if chooses to always commit fraud,

then �k = 1, Q(1) = 0, no trade can take place either, and the buyer�s expected payo¤ is �E[k].

Moreover, given u0(0) =1, the buyer�s expected payo¤ increases for low values of �k. Consequently,

it is optimal for the buyer to choose �k 2
�
0; �k
�
. This shows that in equilibrium fraud will occur

when the buyer draws a su¢ ciently low cost of fraud.
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C.3 Fraud with proportional costs and observable portfolios

We now consider the version of the model with both �xed and proportional costs of fraud and

observable portfolios. For simplicity there are only two possible realizations for the cost of fraud:

[kf (s); kv(s)] =
�
�kf (s); �kv(s)

�
> 0 with probability !(s) 2 (0; 1] and [kf (s); kv(s)] = (0; 0) with

complement probability, 1 � !(s). In the state where the fraud on asset s is costless the buyer

will always �nd it pro�table to execute his o¤er with fraudulent assets irrespective of the seller�s

probability of accepting the o¤er. In the state where the fraud on asset s is costly we can follow

the reasoning in the text to show that buyers execute the o¤er with genuine assets only. More-

over, buyers choose o¤ers that are accepted with probability one, � = 1. The equilibrium o¤ers,

(q; fd(s); a(s)g), solve:

max
q;fd(s);a(s)g

�
�
X
s2S

[�(s)� 1]!(s)a(s) + � [u(q)� q]
�

(72)

s.t.
X
s2S

!(s)d(s)� q = 0 (73)�
�(s)� 1� �kv(s)

�
a(s) + �d(s) � �kf (s); for all s 2 S: (74)

The problem (72)-(74) is identical to the one in the text where d(s) is now replaced by !(s)d(s),

a(s) is replaced by !(s)a(s), and kf (s) is replaced by !(s)�kf (s). Notice that the proportional cost

does not need to be rescaled since the expected cost of fraud is the expected �xed cost, !(s)�kf (s),

plus the expected proportional cost, !(s)�kv(s)a(s), and asset holdings are already scaled up by a

factor !(s).

In order to endogenize asset prices we simply have to add the following market clearing condition,

!(s)a(s) = A(s). Therefore, it is clear that the asset pricing implications of the model are una¤ected

once the �xed cost of fraud is scaled up by !(s). The amount of fraud in equilibrium is determined

as follows. Buyers who have an opportunity to commit fraud on asset s at no cost, with probability

1 � !(s), will produce a(s) = A(s)=!(s) units of fraudulent assets. Note the di¤erence with the

case of unobservable portfolio: the buyer must �show" to the seller that he holds a(s) units of

assets and so he may need to fake more than the transfer d(s). Therefore, the occurrence of fraud

is �[1�!(s)]!(s) A(s). The costs of fraud a¤ect asset prices and resalability constraints but they do not

a¤ect the occurrence of fraud. Occurrence of fraud is a decreasing function of !(s).
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Our description for a �ight to liquidity can now be reinterpreted as a decrease in !(s) for a

class of asset, ŝ . This means that buyers receive more opportunities to produce fraudulent versions

of asset ŝ at a very low cost. This e¤ect to this shock for asset prices and aggregate liquidity are

identical to the ones described in the main text. Moreover, in equilibrium the occurrence of fraud

increases.
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D Additional remarks on the bargaining game

In the following we provide a formal argument for the equivalence of the outcomes of the original

game and the reverse-ordered game. We also show that a weaker re�nement than the one used in

the main text, requiring that o¤ers satisfying the resalability constraints are considered as genuine,

delivers the same outcome as the one in Proposition 1.

Sellers and buyers�strategies. The seller�s strategy speci�es a probability of acceptance �(o)

conditional on any o¤er o � (q; fd(s)g). In both the original and the reversed ordered game,

the buyer�s behavioral strategy generates a joint probability distribution �(p; o; t) over portfolios

p = fa(s); ~a(s)g, o¤ers o = (q; fd(s)g) and transfers t = f�(s); ~�(s)g satisfying �(s) + ~�(s) = d(s),

�(s) � a(s), and ~�(s) � ~a(s). Conversely, any joint distribution over (p; o; t) is generated by some

behavioral strategy of the original game. To see this, factor �(p; o; t) = �(p) � �(o; t j p), where

�(o; t j p) can be picked arbitrarily for p outside the support of �(p). By construction, �(p) and

�(o; t j p) form a behavioral strategy of the original game generating �(p; o; t). The same argument,

associated with the factorization �(o) � �(p; t j o), applies to the reverse-ordered game. Taken

together, this discussion shows that, in both the original and the reverse-ordered game, one can

think of the buyer as directly picking a joint probability distribution over p, o, and t. This makes

it clear that, given the sellers�acceptance probability, �(o), the sequence of moves does not matter

for the buyer�s problem.

Simplifying the buyer�s expected payo¤. The buyer�s expected payo¤ is, then:

E�

"
�
X
s

�
k(s)If~a(s)>0g + [�(s)� 1] a(s)

�
+ �� (o)

�
u(q)�

X
s2S

�(s)

�#
:

We can immediately make the following simpli�cations about the buyer�s strategy. First, we can

restrict our attention to portfolios that have the property that either a(s) = 0 or ~a(s) = 0. To

see this, suppose � assigns a positive probability to a portfolio with ~a(s) > 0 and a(s) > 0. If the

subsequent o¤ers are never accepted, then the buyer can increase his payo¤ if he does not commit

fraud, i.e. replacing the portfolio by ~a(s) = a(s) = 0 and making the o¤er q = d(s) = 0. If the

subsequent o¤ers are accepted with positive probability, the buyer can now increase his payo¤ by
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replacing the portfolio with ~a0(s) = ~a(s)+a(s), a0(s) = 0, while keeping the o¤er unchanged. Second,

since �(s) � 1, we can assume without loss that all portfolios and o¤ers in the support of � have

the property that a(s) = d(s) when a(s) > 0, and ~a(s) = d(s) when ~a(s) > 0. With this in mind,

we can represent the buyer�s strategy as a joint probability distribution over (f�(s)g; fd(s)g; q),

where �(s) = 0 if the buyer�s chooses to commit fraud, and �(s) = 1 otherwise.

The buyer�s expected payo¤ becomes:

E�

"
�
X
s

�
k(s) [1� �(s)] + [�(s)� 1]�(s)d(s)

�
+ �� (o)

�
u(q)�

X
s2S

�(s)d(s)

�#
: (75)

The buyer chooses a joint probability distributions � over fraud decisions and o¤ers to maximizes

the above objective given �(o). Note that if we apply the law of iterated expectations and let

�(s j o) � E� [�(s) j o], we can rewrite the the buyer�s objective as:

E�

"
�
X
s

�
k(s) [1� �(s j o)] + [�(s)� 1] �(s j o)d(s)

�
+ �� (o)

�
u(q)�

X
s2S

�(s j o)d(s)
�#
; (76)

where the outer expectation is taken with respect to the marginal distribution over o¤ers, o.

The seller�s payo¤. After observing an o¤er o = (q; fd(s)g), the seller has beliefs 
(s j o) about

the probability that type-s assets are genuine, and chooses to accept with a probability �(o) solving:

�(o) 2 argmax
�̂
�̂

�
� q +

X

(s j o)d(s)

�
: (77)

A PBE of the original game is made up of a joint probability distribution �� over fraud decisions,

f�(s)g, and o¤ers, o � (fd(s)g; q), a probability of accepting conditional on any o¤er �?(o), and

a belief system 
?(s j o) solving the buyer�s and seller�s problems, (75) and (77). Moreover, the

seller�s beliefs have to be consistent with Bayes�rule whenever applicable. Since we can only apply

Bayes�rule on the equilibrium path, the restriction is:


?(s j o) = �?(s j o); (78)

for all o¤ers o in the support of �?. Beliefs are not pinned down for o¤ers out of the support,

because these do not materialize on the equilibrium path.
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Outcome equivalence between the original and the reverse-ordered game. Take as

the belief system of the original game the one speci�ed by the reverse-ordered game. It follows

immediately that the acceptance rule of the seller, �(o), is the same for the two games. But in that

case the solution to (75) is also the solution to the auxiliary problem of the reverse-ordered game,

i.e., both games have the same portfolio choices and the same o¤er. This result corresponds to the

outcome equivalence proposition of In and Wright (2011).

The auxiliary problem gives an upper bound to the buyer�s payo¤ in the original game.

Any candidate PBE must satisfy two necessary conditions. First, from (77) and (78), given any

equilibrium o¤er, o in the support of �?, the seller�s acceptance probability must solve

�(o) 2 argmax
�̂
�̂

�
� q +

X
s

�?(s j o)d(s)
�
: (79)

From (76), for all o¤ers o in the support of �?, the conditional probability of genuine asset of type

s, �?(s j o), has to solve:

�?(s j o) 2 argmin
�̂(s)

k(s) [1� �̂(s)] + [�(s)� 1] �̂(s)d(s) + �̂(s)��(o)d(s): (80)

Maximizing the buyer�s objective over all possible equilibrium outcomes satisfying (79) and (80)�

which corresponds to the auxiliary problem� we obtain an upper bound on the buyer�s payo¤ in

any PBE.

A weaker re�nement. Consider an out-of-equilibrium o¤er, o = hq; fd(s)gi, that has the prop-

erty that, for some asset s0, d(s0) satis�es the resalability constraint with a strict inequality i.e.,

d(s0) <
k(s0)

�(s0)�1+� . Then, for any � 2 [0; 1], [�(s0)� 1] d(s0) + ��d(s0) < k(s0). Therefore, any

strategy with �(s0) < 1 is strictly dominated by the same strategy with �(s0) = 1. Therefore, a

seller who receives the o¤er, o, should not believe that the buyer is playing a strictly dominated

strategy and should view asset s0 as genuine, 
(s 0j o) = 1. To get more intuition for this require-

ment, suppose �(s0) = 1. If the seller receives an o¤er such that the value of the asset is less

than the �xed cost of fraud, �(s0)d(s0) < k(s0), then he should think that no buyer would have

incentives to incur the �xed cost of fraud to make such an o¤er, irrespective of what the buyer

thinks of the seller�s strategy. We will adopt this minimum requirement as our re�nement of 
.
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Re�nement: The seller�s belief system, 
?(s j o), must be such that for any out-of-equilibrium

o¤er, o, which is not in the support of �?and such that d(s0) <
k(s0)

�(s0)�1+� for some asset, s0, then


?(s 0j o) = 1.

This argument implies that any o¤er that satis�es

X
s2S

d(s)� q > 0

d(s) <
k(s)

�(s)� 1 + � ; for all s 2 S

should be accepted with probability one. The system of beliefs generated by the reverse-ordered

game satis�es this condition.

Calculating the maximum buyer�s payo¤ over all o¤ers satisfying the above two constraints, we

obtain a lower bound over the buyer�s payo¤ in any PBE satisfying this re�nement. Note that, by

Proposition 1, this lower bound is equal to the value of the auxiliary problem. But we also know

that the value of the auxiliary problem is an upper bound for the buyer�s expected payo¤ across all

PBE. Therefore, any PBE passing the re�nement solves the auxiliary problem, with asset demands

and o¤ers given as in Proposition 1.
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