Liquidity and the Threat of Fraudulent Assets

Yiting Li, Guillaume Rocheteau, Pierre-Olivier Weill

NTU, UCI, UCLA, NBER, CEPR
fraudulent behavior in asset markets

in this paper:

• Expending effort to sell, or borrow against, some “bad” asset

• Example:

 - counterfeiting money
 - cherry picking bad collateral to secure credit transactions for consumer loans
 for OTC credit derivatives
 - securitizing bad mortgages
what we do

• Setup a model with many assets differing in vulnerability to fraud

• Solve for terms of collateralized trade

 main finding: assets differ in collateralizability or liquidity
 i.e., how much of it can be used as collateral or means of payment

• Solve for asset prices: implications for liquidity premia
results: cross-sectional liquidity premia

- **Liquid assets**, with low vulnerability to fraud
 - sell above fundamental value
 - prices rise with shock to aggregate liquidity demand

- **Partially liquid assets**, with intermediate vulnerability to fraud:
 - sell above fundamental value, but for less than liquid assets
 - prices fall with shock to aggregate liquidity demand
 - however:
 - contribute as much to aggregate liquidity than liquid assets
 - policies targeting these assets can reduce welfare

- **Illiquid assets**, with high vulnerability to fraud
 - sell at fundamental value, irrespective of liquidity demand
 - the same policies targeting these assets increase welfare
related literature

- Macro models in which assets have limited re-salability

- Private information and money
 Williamson Wright (1994), Nosal Wallace (2007) among many others

- Asset pricing when moral hazard generates limited pledgeability
 Holmstrom Tirole (2011) among many others

- Asset pricing with adverse selection
 Rocheteau (2009), Guerrieri Shimer (2011) among many others
the economic environment
a model with monetary frictions

- Two periods, continuum of risk neutral agents, discount $\beta \in (0, 1)$: measure one of buyers, measure one of sellers

- $t = 0$: buyers and sellers trade assets in a competitive market

- $t = 1$: buyers and sellers trade goods in a decentralized market
 - a buyer is matched with a seller with probability σ
 - the buyer likes goods that the seller can produce but lack of commitment, limited enforcement
 - \Rightarrow no unsecured credit
 - \Rightarrow assets become useful as means of payment or collateral

- End of $t = 1$: assets pay off their terminal value
assets and the threat of fraud

Assets come in (arbitrary) finitely many types $s \in S$

- supply of $A(s)$ shares, with terminal value normalized to 1
- type-specific vulnerability to fraud
- at $t = 0$, for a fixed cost $k(s)$, can create type-s fraudulent assets
 - zero terminal value zero
 - may be used in decentralized trades
 - undistinguishable from their genuine counterpart

high cost $k(s) \Rightarrow$ low vulnerability to fraud
some interpretations

- **Counterfeiting of money**

 \[k(s) = \text{cost of printing equipment} \]

- **Fraudulent or bad collateral**

 houses used as collateral in consumer loans
 assets used as collateral for credit derivative contracts

 \[k(s) = \text{cost of stealing identity} \]

 or informational cost to identify bad assets

- **Securitization fraud**

 bad mortgages bundled inside mortgage-based securities

 \[k(s) = \text{fee and/or bribe to rating agencies} \]

 or cost of producing false documentation
bilateral trade under the threat of fraud
For now take asset prices $\phi(s) \geq \beta$ as given

- $t = 0$: buyer chooses a portfolio of assets
 - genuine assets of type s at price $\phi(s)$
 - fraudulent assets of type s at fixed cost $k(s)$

- $t = 1$: buyer matches with seller and makes an offer specifying that
 - the seller produces q units of goods for the buyer
 - the buyer transfers a portfolio $\{d(s)\}$ of assets to the seller

- The seller accepts or rejects. If accepts:
 - the buyer enjoys $u(q)$
 - the seller suffers $c(q) = q$
equilibrium concept and refinement

- Perfect Bayesian equilibrium
- A standard difficulty: PBE puts little discipline on sellers’ beliefs
 ... lots of equilibria, some of them arguably unreasonable
- In and Wright’s (2011) refinement: the “reverse order game”
 the buyer first commits to an offer \((q, \{d(s)\})\)
 then the buyer chooses:
 - how much genuine and fraudulent assets to bring
 subject to offer \(\{d(s)\}\) feasible
- This pins down beliefs
- And this selects the best equilibrium for the buyer
equilibrium asset demands and offers

After an equilibrium offer:

- no fraud in equilibrium
- the seller accepts the offer with probability one

Moreover, equilibrium asset demand and offer maximize

\[- \sum_{s \in S} [\phi(s) - \beta] a(s) + \beta \sigma [u(q) - \sum_{s \in S} d(s)]\]

with respect to \(q, \{a(s)\}, \{d(s)\} \geq 0\), and subject to

- Seller’s IR: \(q \leq \sum_{s \in S} d(s)\)
- Buyer’s no-fraud IC: \([\phi(s) - \beta + \beta \sigma] d(s) \leq k(s)\), for all \(s \in S\)
- Feasibility: \(d(s) \leq a(s)\), for all \(s \in S\)
No fraud IC constraints

- Eliminates buyers’ incentives to bring fraudulent assets
 \[
 (\phi(s) - \beta + \beta \sigma) d(s) \leq k(s)
 \]
 net cost of offering \(d(s)\) genuine assets \quad cost of fraud

- Asset specific

- Create endogenous limits to assets resalability
 foundations for the constraints in Kiyotaki Moore (2001)
asset prices and liquidity
asset prices at $t = 0$

- $k(s)/A(s) = \text{cost of fraud per unit of asset}$
asset prices at $t = 0$

- illiquid
- partially liquid
- liquid

- $k(s)/A(s) =$ cost of fraud per unit of asset
asset prices at $t = 0$

\[k(s) / A(s) = \text{cost of fraud per unit of asset} \]

\[\xi = \beta \sigma (u'(q) - 1) \]
asset prices at $t = 0$

- $k(s) = \text{cost of fraud per unit of asset}$
- $\xi = \beta\sigma (u'(q) - 1)$
asset prices at $t = 0$

- $k(s)/A(s) = \text{cost of fraud per unit of asset}$
- $\xi = \beta \sigma (u'(q) - 1)$
asset prices at $t = 0$

- $k(s)/A(s) = \text{cost of fraud per unit of asset}$
- $\xi = \beta \sigma (u'(q) - 1)$
liquidity at $t = 1$

output = $q = \text{aggregate liquidity}$, $L \equiv \sum_{s \in S} \theta(s)A(s)$

as long as $L < q^*$ s.t. $u'(q^*) = 1$, otherwise $q = q^*$

- Liquid assets: $\theta(s) = 1$

 IC constraint doesn't bind when buyers hold and spend $A(s)$

- Partially liquid assets: $\theta(s) = 1$

 IC constraint binds when buyers hold and spend $A(s)$

- Illiquid assets: $\theta(s) = \frac{k(s)}{\beta \sigma} < 1$

 IC constraint binds, buyers hold $A(s)$ but spend less
partially liquid assets

- Have the same \(\theta(s) \) as liquid assets!
- Yet, they have a lower price

\[\text{partially liquid asset prices} < \text{social value of their liquidity services} \]

Why?
partially liquid assets

- Have the same $\theta(s)$ as liquid assets!
- Yet, they have a lower price

\[\text{partially liquid asset prices} < \text{social value of their liquidity services} \]

Why?
- Because: pecuniary externality running through the IC constraint
 - a high price reduces asset demand in two ways
 - through the budget constraint (no externality with that one)
 - through the IC constraint, b/c raise incentive to commit fraud
- Welfare calculations in reduced-form models are inaccurate
some applications
balanced budget open market operations

think of quantitative easing:
the NY Fed sells Treasuries from its portfolio to purchase MBS

- Using liquid assets to purchase partially liquid assets
 liquid assets have higher prices
 ⇒ one share of liquid asset ...
 ... buys more than one share of partially liquid assets
 marginally liquid and partially liquid assets contributes equally to L
 ⇒ $L, q, \text{ interest rates, and welfare go down}$

- Using liquid assets to purchase illiquid assets
 marginally illiquid assets do not contribute to L
 $L, q, \text{ interest rates, and welfare go up}$
regulatory measures

retention requirement:

• in the time $t = 1$ market, have to retain $\rho(s) \%$ of assets offered

• for this exercise: assume cost of fraud is $k_f(s) + k_v(s)d(s)$

the trade off:

• the bad: mechanical reduction in asset re-salability

• the good: increases the cost of committing fraud

... b/c, for any given offer, need to produce more fraudulent assets
regulatory measures (cont’d)

• Negative impact on liquid assets
 the no-fraud IC constraint is not binding

• Negative impact on partially liquid assets
 partial equilibrium: relax the no-fraud IC constraint
 general equilibrium: offer ↑, asset demand ↑, asset price ↑
 ⇒ tightens back IC constraint
 in the end... just a reduction in resalability

• Positive impact on illiquid assets
 general eq effect does not operate
 because offer < asset demand
flight to liquidity

congestion of demand towards liquid assets, widening of yield spreads

- Increase in σ the frequency of trade in the $t = 1$ market
 interpretation: need for collateral \uparrow

- Two effects going in opposite directions
 - liquidity demand increases: dominates for liquid assets, price increase
 - fraud incentives increase: dominates for partially liquid assets price decrease so no-fraud IC constraint binds

- The set of liquid assets shrinks
 The set of partially liquid and illiquid assets expands
flight to liquidity

asset price

illiquid partially liquid liquid

$\beta + \xi$

β

0

$\beta\sigma$

$\beta\sigma + \xi$

$k(s) / A(s)$
time varying liquidity

- with quasi-linear preferences à-la Lagos Wright

- model easily extendable to a multiperiod-multiple assets economy
 terminal value becomes cum dividend price next period

- expectations of future liquidity premia matter
 they feed back into current liquidity premia

- our main result: excess volatility
 self-fulfilling fluctuations can arise
 but they are confined to liquid assets
• A fraud-based model of liquidity premium
• An explanation for price and liquidity differences
• Implications
 open-market operations
 regulatory measures
 flight to quality
 time varying liquidity