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Shape-Memory Micropumps
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Motivated by many experimental efforts to develop suitable shape-memory micropumps, we propose a multiscale framework to study the
behavior of pressurized films. We use recoverable deflection as a measure to design large stroke micropumps and develop a model to estimate
it. We show that the recoverable deflection of a polycrystalline shape-memory film depends on the transformation strain of the underlying
martensitic transformation, the texture and especially on the size effects. We find that flat grains are preferable to long grains in columnar films
concerning the purpose of large recoverable strain. We also show that common sputtering texture is not ideal for recoverable deflection in both
Ti–Ni and Cu-based shape-memory films. It turns out that {100} Cu-based films may have better behavior than Ti–Ni films. We conclude with
comparison with experiment.
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1. Introduction

The interest in microelectromechanical system (MEMS)
applications has recently motivated many experimental
efforts to develop suitable microactuators and micropumps.
These devices have a wide range of applications in fields such
as drug delivery, inkjet printing and cooling systems of elec-
tronic circuits. However, common MEMS-integrated actua-
tion scheme has enjoyed limited success in delivering a rea-
sonable work output from the extremely small size of devices,
and therefore both high stroke and force are the key require-
ment for selecting actuating materials. Shape-memory alloys
show great promise in this aspect since their work density is
significantly higher than that of other types of materials.26)

These alloys are able to recover large strain and are capable
of high force, which in turn directly transmit large stoke and
high pressure in micropumps. In addition, the disadvantage of
low response rate caused by cooling and heating bulk shape-
memory alloys can be greatly improved at small scales be-
cause of the increase in the surface area to volume ratio. This
makes these alloys in the form of thin films ideal for use in
MEMS-integrated actuation scheme, and we seek to develop
a micromechanical model to understand the behavior of film
at an extremely small thickness.

In this paper, we propose a framework to study the behavior
of pressurized shape-memory thin films with intended appli-
cation to large stoke micropumps. Our work was motivated
by the recent experiment on the fabrication of SMA actuated
micropumps.16, 17, 26) They have reported that a Ti–Ni microp-
ump exhibits the largest work out per cycle per unit volume
amongst various common actuator systems.26) However, the
ratio of the deflection to the half-edge length of diaphragm
has been observed around several values from 0.04 to 0.12
which only correspond to 0.2%–1.4% small strain. Our the-
oretical prediction is around 0.15 which is larger than these
experimental observations, and the discrepancy is not com-
pletely understood here. We believe there should be a plenty
of room to improve this critical ratio to design large stroke mi-
cropumps. In particular, we show that {100} Cu-based shape-
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memory thin films may have better behavior than Ti–Ni films
in view of large recoverable deflection.

We present the general framework of pressurized films fol-
lowing Shu21, 22) in Sec. 2. We consider a film released from
the substrate in some chosen region, but attached to it outside
as shown in Fig. 1. The film considered here consists of mul-
tiple layers, each of which contains many grains. The lay-
ered material can be martensitic. Therefore, there are three
length scales: the film thickness, grain size and microstruc-
ture length scale as seen in Fig. 1. We assume that all these
length scales are much smaller than the lateral extent of the
film. Depending on the deposition technique, the size of
grains within the film can be larger than, comparable to or
smaller than the thickness of film. Furthermore, depending
on the material, the length scale of microstructure can also
be larger than, comparable to or smaller than that of grains.
Thus, the behavior of the heterogeneous film shows strong
size effects, and we seek to understand it by introducing the
effective theory. We use the framework of Γ -convergence to
show that the limiting behavior of the film is determined by
an effective two-dimensional theory which depends crucially
on ratios between these three length scales. We use the ef-
fective theory and the Taylor bound to estimate recoverable
strain in Sec. 3. We study the effect of texture and grain size
on recoverable strain in Sec. 4. We show that flat grains are
preferable to long grains in columnar films and find that sput-
tering textures in both Ti–Ni and Cu-based films are not fa-
vorable for large recoverable strain. We also use our theory to
explore multilayered films and the novel properties that they
may possess.

We apply our results to the design of large stroke shape-
memory micropumps in Sec. 5. The stroke of a micropump
determines the volume pumped per cycle, and therefore we
use the ratio of central deflection to the half-edge length of the
diaphragm as our design criterion. We use the assumption of
von Kármán membrane to approximate the finite strain mea-
sure to estimate deflection of the symmetric diaphragm. We
demonstrate with an example that the result obtained using
simplified kinematics agrees very well with that estimated us-
ing the fully nonlinear kinematics developed by Bhattacharya
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Fig. 1 Prototype of a micropump using shape-memory material. The film
is heterogeneous and contains three different length scales h, d and κ . It
is released from the substrate in the chosen region S, but attached to it
outside.

& James.3, 10) We then extend the analysis to estimate recov-
erable deflection for polycrystalline shape-memory films. We
consider columnar films with grain size much larger than film
thickness. Table 2 lists our main prediction for recoverable
deflection for various films with different textures. It shows
that recoverable deflection is not sensitive to common film
textures in Ti–Ni films while it is sensitive in Cu-based shape-
memory films. It turns out that {100} texture is ideal for both
recoverable deflection and extension in Cu-based films. We
compare our prediction with experiment in Sec. 6 and con-
clude in Sec. 7 with a discussion.

2. Theory

Consider a heterogeneous (possibly multilayered) thin film
released from the substrate in a well-defined region S, but
constrained on its lateral boundaries as shown in Fig. 1. Since
we anticipate large strain for shape-memory materials, we
use the setting of finite deformations. Let x = (x1, x2, x3)

be the material point of the film relative to an orthonormal
basis {e1, e2, e3}. The deformation of the film is denoted by
y = (y1, y2, y3) which is the function of the material point
x. Let h be the film thickness and d be the period of the
in-plane texture (in other words, d is the typical length scale
of the representative area element in the film plane). Let the
in-plane variables x1 and x2 be normalized by d and the out-
of-plane variable x3 by h. Thus, the elastic energy density of
this heterogeneous film is

ϕ = ϕ
(

F,
x1

d
,

x2

d
,

x3

h

)
,

Fi j (x) = ∂yi (x)

∂x j
for i, j = 1, 2, 3, (1)

where F is the deformation gradient. In Wechsler-
Lieberman-Read (WLR) theory,25) F is the distortion matrix
which is the measure of the crystal deformation.

To design a micropump, pressure is usually applied from
either above or below depending on the actuation method. It
includes the evacuation and pressurization types.16) Suppose
a hydrostatic pressure p(h) is applied on the lower surface of
the film. The total energy of such a film per unit film thickness

is

e(h)
1 [y] = 1

h

∫
S×(0,h)

{
κ2|∇2 y|2

+ ϕ
(
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d
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h

)}
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)
dx1dx2, (2)

where P = p(h)

h is assumed to be a constant. Above ∂ y
∂xi
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.

Further, a · b and a× b are the standard notations for the inner
and cross products of two vectors a and b. The term

1

3

∫
S×{0}

y ·
(

∂ y
∂x1

× ∂ y
∂x2

)
dx1dx2

is the volume enclosed between the plane yA(S ×{0}) and the
deformed lower surface of the film y(S×{0}) where yA(x) :=
Ax and A is a constant 3 × 3 matrix (see Ref. 12)) for the
detailed discussion). Note that if the film is not stretched as
deposited, A = I where I is the identity matrix.

The interpretation of eq. (2) is as follows. The first term is
the van der Waals type of interfacial energy which penalizes
changes in the deformation gradient. Minimizers of the en-
ergy eq. (2) have oscillations on a length scale that scale with
κ and hence we call κ the length scale of the microstructure.
The second term is the elastic energy with density ϕ. It de-
pends on deformation gradient F which is the measure of the
distortion of the crystal lattice. The dependence of ϕ on the
material point x reflects the fact that the film is not homoge-
neous. The final term is interpreted as the energy of a fluid
under the film with pressure P .

To understand the behavior of this film, we need to min-
imize its energy eq. (2) amongst all possible deformations
y at pressure P . This is a rather difficult problem since ϕ

is not a convex function of deformation gradient F. For
a shape-memory material ϕ is nonconvex, with multi-well
structure—one well for each phase or variant. This creates
serious problems because of the difficulty in nonconvex min-
imization. Another difficulty arises from size effects due to
inhomogeneity of the film. We assume that the film is hetero-
geneous and contains three length scales: the film thickness
h, the typical grain size d and the microstructure length scale
governed by κ . The properties of the film are crucially de-
termined by the different ratios of these three length scales.
Fortunately, we know that the lateral extent (i.e., the in-plane
dimensions) of the film is much larger than any of the length
scales κ , d or h. The macroscopic behavior of the film does
not depend on every detail of the grains and multilayers, but
only on some average features. Thus, one can find an effec-
tive theory for this heterogeneous film in the limit when all
length scales tend to zero, but with possibly different limiting
ratios. Shu21) has used the framework of Γ -convergence to
show that the average behavior of the film is determined by
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an effective two-dimensional theory. The limiting theory im-
plies that the overall deformation y has three components y1,
y2 and y3 which depend only on the in-plane variable x1 and
x2. In addition, the deformation y of the film is determined
by minimizing the effective potential energy

e0
1[y] =

∫
S

{
ϕ̄

(
∂ y
∂x1

,
∂ y
∂x2

)

− P

3
y ·
(

∂ y
∂x1

× ∂ y
∂x2

)}
dx1dx2, (3)

where ϕ̄ is the effective, macroscopic or overall energy den-
sity of the heterogeneous film.12, 22) Note that the density ϕ̄

depends only on the in-plane deformation gradient F̄ which
is a 3 × 2 distortion matrix

F̄iα(x1, x2) = ∂yi (x1, x2)

∂xα

,

for i = 1, 2, 3 and α = 1, 2. (4)

The interpretation and determination of ϕ̄ for various condi-
tions are given in Sec. 3 and Sec. 4.

3. Recoverable Deformation and Energy Minimization

3.1 Recoverable deformation
Consider a shape-memory alloy on the high temperature

austenite phase and choose this as the reference configuration.
As it is cooled, it transforms to martensite with cubic lattice
structure changed to less symmetric structure such as tetrag-
onal, trigonal, orthorhombic or monoclinic symmetry. This
gives rise to k symmetry-related variants of martensite. Each
variant has its own transformation or Bain matrix U i , which
describes the distortion of the lattice. For example, an alloy
of Cu–Zn–Al undergoes a cubic to monoclinic-II transforma-
tion. The number of martensitic variants is 12 (so k = 12
in this case) for such an alloy and one of the distortion matri-
ces is

U1 =

 p q 0

q r 0

0 0 s


 , (5)

where p = 1.089, q = 0.025, r = 1.007 and s = 0.9093
for Cu–17 at%Zn–15 at%Al.7) Other transformation matri-
ces U2, · · · , U12 can be determined from U1 by symmetry:
U i = Ri U1 RT

i where Ri is an orthogonal matrix in the point
group of austenite. Since deformation associated with these
distortion matrices are stress-free, the elastic density ϕ has the
lowest energy states at these well points U i for i = 1, · · · , k.
We may therefore assume that the density ϕ(F) is nonnega-
tive, and is zero at well points U i . Note that if Q is a proper
rotation matrix, then ϕ( QU i ) = 0 by frame-indifference.

When a bulk shape-memory alloy is cooled below the crit-
ical temperature, it can from microstructures by coherently
mixing the variants of martensite to accommodate deforma-
tion. When it is subsequently heated, each variant goes back
to the austenite and all the deformation is recovered. Thus, F
is recoverable if the material can accommodate it by making
some microstructure of martensite. It turns out that recover-
able deformations are not restricted only to those wells points

QU i where Q is any proper rotation; instead, they include
all possible combination of these wells as long as the fine-
scale mixtures of variants are coherent. Thus, the behavior
of a shape-memory alloy is governed not by the microscopic
energy density ϕ, but the effective density ϕ̄ determined by
energy minimization. In our energetic point of view, energy
minimization with multi-well density ϕ leads to minimizing
sequences which we interpret as microstructure or fine-scale
mixtures of variants. Physically, ϕ̄(F) is the average stored
energy density of the alloy when the average deformation gra-
dient is F after taking into account the martensitic microstruc-
ture. Finally, the effective density ϕ̄ has a very important
property that it vanishes on the set P b

Pb = {F ∈ M3×3 : ϕ̄(F) = 0} (Bulk Materials), (6)

where M3×3 is the set of all 3 × 3 matrices. Any F ∈ Pb

is recoverable since material can accommodate it by making
a mixture of martensitic variants and ϕ( QU i ) = 0 for each
variant U i and for any proper rotation Q.

Returning to thin films. We use the same notation ϕ̄ for the
effective density of the film. It determines the overall behav-
ior of the film. From the limiting theory eq. (3), ϕ̄ = ϕ̄(F̄)

where F̄ is a 3 × 2 distortion matrix eq. (4). Therefore, the
set of recoverable deformation is not eq. (6), but replaced by

P f = {F̄ ∈ M3×2 : ϕ̄(F̄) = 0 (Thin Films) (7)

for the film. Above note that M3×2 is the set of all 3 × 2
matrices.

3.2 Taylor bound
We wish to determine which deformation is recoverable on

heating. This is equivalent to finding the sets Pb for bulk
materials and P f for thin films. However, it is in general a
very difficult problem. The determination of the sets Pb or
P f is largely an open problem in literature. We do not know
these two sets, except in some very special cases. Saburi and
Nenno20) have given a qualitative but very insightful discus-
sion on recoverable deformation. Bhattacharya1) has used the
framework of geometrically linear theory to determine recov-
erable linear strains for most martensitic single crystals.

The problem becomes even harder for polycrystals. A
polycrystal is made up of a number of subregions called
grains. Each grain is made up of identical crystals with dif-
ferent orientations. So F0 is recoverable if there exists a
compatible field F(x) with average equal to F0 and is re-
coverable for each grain. However, the grains are constrained
one another by their neighbors. Thus, this field can be quite
complicated and therefore it is very difficult to calculate the
set Pb. Bhattacharya & Kohn4, 5) and Shu & Bhattacharys23)

have used the framework of geometrically linear theory and
the Taylor bound to estimate recoverable strain in a general
polycrystal. The idea of Taylor bound is that each grain is
assumed to undergo identical deformation to avoid intergran-
ular incoherence. Further, the overall deformation is recov-
erable if it is recoverable for every grain of the polycrystal.
Shu and Bhattacharya23) have demonstrated that the results
obtained from the Taylor bound are surprisingly good in es-
timating recoverable strain and agree very well with experi-
ment. Bhattacharya and Kohn5) have derived rigorous results
to support this argument. So from now on, we will use the
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Taylor bound as our fundamental tool for evaluating the ef-
fect of texture.

4. Effective Behavior

4.1 Single crystal film
We consider a single crystal film first. Suppose the film

is homogeneous; i.e., the bulk density depends only on de-
formation gradient: ϕ = ϕ(F). In this case, the effective or
relaxed density of the film can be shown to be8)

ϕ̄(F̄) = Qϕ0(F̄), ϕ0(F̄) = min
b

ϕ(F̄|b), (8)

where F̄ is the 3 × 2 distortion matrix defined by eq. (4) and
Qϕ0 is the relaxation of density ϕ0. The notation F = (F̄|b)

means that the first two columns and final column of the 3×3
matrix F are replaced by F̄ and b, respectively. The exact
definition of Qϕ0 can be found in6, 8) and is not shown here as
it requires advanced mathematical analysis which is beyond
the purpose of this paper.

The major difference between bulk materials and thin films
is that the relaxation process is associated with the density
ϕ0 given by eq. (8) for films. The deformation of the film
is determined by two vector fields y(x1, x2) and b(x1, x2)

which depend only on the in-plane variables x1 and x2. The
vector field y determines the deformation of a middle sur-
face while the vector field b describes the transverse shear
and normal compression. Since the last column of the 3 × 3
distortion matrix F is relaxed by b, the out-of-plane compati-
bility becomes insignificant. The requirement of coherence is
therefore weakened in thin films than in bulk materials. This
allows a variety of deformation such as “paper-folding” de-
formations, “tunnels” and “tents” in single crystal films.3)

We wish to determine the set of recoverable deformation
defined by eq. (7) for single crystal films with density ϕ̄ given
by eq. (8). However, it is not an easy task and the determi-
nation of this set can be found only in some special cases.2)

We then look for the following approximation. The frame-
indifference implies that the energy density ϕ0 has to satisfy
ϕ0(F̄) = ϕ0( Q F̄) for all possible 3 × 2 distortion matrices
F̄ and for all 3 × 3 proper rotations Q. This also implies that

there exists a function W such that ϕ0(F̄) = W (
√

C̄) where
C̄ = F̄

T
F̄ is a 2 × 2 positive semi-definite symmetric ma-

trix.8) It follows that the effective density ϕ̄ also depends only

on C̄ or ϕ̄(F̄) = W̄ (
√

C̄) for some function W̄ .
Let u1, u2 and η be the in-plane displacement and out-of-

plane deflection of the film. They are defined by u1 = y1 −
x1, u2 = y2 − x2, y3 = η. For pressurized shape-memory
films, the out-of-plane deflection η is expected to be much
larger than the film thickness: η � h. Further, the film is
constrained on the boundary. We then assume |u1,αu1,β | �
1, |u2,αu2,β | � 1 for α, β = 1, 2, but retain the nonlinear
contribution coming from gradients of deflection. It follows

that the finite strain measure
√

C̄ can be approximated to√
C̄ − I ≈ Ē = Ē[u, η] = ε1[u] + ε2[η],

ε1
αβ[u] = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
,

long grains

flat grains

h

d

_
d
h

R

Fig. 2 The recoverable extension εR versus aspect ratio h
d of the film thick-

ness to grain size. The polycrystalline film has a periodic texture contain-
ing two orientations: “grey” and “white” columnar grains.

ε2
αβ[η] = 1

2

∂η

∂xα

∂η

∂xβ

(9)

for α, β = 1, 2. The microscopic energy density of the film

is then approximated to ϕ0(F̄) = W (
√

C̄) ≈ W (Ē) which
satisfies

W (Ē)

{
= 0 Ē ∈ Ē

(1) ∪ Ē
(2) ∪ · · · ∪ Ē

(k)
,

> 0 otherwise,
(10)

where

Ē
(i) =

√
Ū

T
i Ū i − I p, i = 1, · · · , k, (11)

I p is the 2 × 2 identity matrix, and Ū i is a 3 × 2 matrix
obtained by deleting the last columnar of the 3 × 3 distortion
matrix U i such as that given by eq. (5).

Our task is to determine recoverable strains using approx-
imate kinematics given by eq. (9). Recalling eq. (7), we see
that it is equivalent to finding the set

S f = {Ē : W̄ (Ē) = 0}, (12)

where the effective density ϕ̄(F̄) is approximated by W̄ (Ē)

for certain function W̄ . Note that we have used the symbol S f

in eq. (12) instead of P f given by eq. (7) to emphasize that the
film considered here is a single crystal. If the out-of-plane de-
flection η is neglected and only the in-plane displacements u1

and u2 are considered, this set S f can be determined for most
shape-memory films undergoing cubic to tetragonal, trigonal
and orthorhombic transformations as well as certain oriented
Ti–Ni and Cu-based films.3) However, the problem becomes
hard if the out-of-plane deflection is retained such as the case
in pressurized films. In that situation, the determination of the
set S f is complicated and we refer to22) for detailed analysis.

4.2 Heterogeneous Films
4.2.1 Columnar films

Shape-memory thin films are usually made by sputter-
ing.9, 11, 14, 18, 24) The grains in these films are typically colum-
nar (e.g., see Fig. 2 of Ref. 11)). Further, the microstructure is
usually smaller than the grains (e.g., see Fig. 5 in Ref. 13)). So
we may assume that the elastic density ϕ = ϕ(∇ y, x1, x2) in
eqs. (1) and (2) and d � κ . We can show that the elastic en-
ergy dominates the interfacial energy and materials can form
microstructures freely. As a result, the macroscopic energy
density ϕ̄ is impervious to the presence of interfacial energy.
We can further show that the behavior of the film depends on
the ratio of the film thickness h to the typical size of grains
d. Table 1 contrasts the behavior of films with long or rod-
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Table 1 The predicted uniaxial recoverable extension for various textures
in Ti–Ni and Cu-based thin films.

Texture
Uniaxial recoverable strains (%)

Ti–Ni Cu–Zn–Al

Long grains Flat grains Long grains Flat grains

Random 2.3 2.3 1.7 1.7

{111} film 5.3 8.1 1.9 5.9

{100} film 2.3 2.3 7.1 7.1

{110} film 2.3 2.3 1.7 1.7

like (h � d) grains and films with flat or pan-cake shaped
(h � d) grains. It lists the predicted recoverable extension
for films with different textures in Ti–Ni and Cu–Zn–Al. Note
that they are larger for flat grains compared to long grains. We
also note here that neither the random nor {110} texture which
is common for BCC materials9, 24) are ideal textures for large
recoverable extension. The ideal textures appear to be {100}
for Cu–Zn–Al (this texture can be produced by melt-spinning)
and {111} for Ti–Ni. We now briefly explain the ideas behind
these results.

1. Flat columnar grains
Consider a columnar film with flat grains (d � h). The
grains are flat and thin and have “pan-cake” shape. The
intergranular constraints are now only in-plane and this
allows a wider class of microstructures formed in thin
films than in bulk materials. Any out-of-plane incompat-
ibility is easily overcome with very small elastic energy.
Further, within each grain the interface condition is an
“invariant line” rather than an “invariant plane” condi-
tion. Therefore, the effective behavior of the film is ob-
tained by passing to the two-dimensional limit first and
then homogenizing in the plane of the film. Specifically,
let Ē be the 2 × 2 strain matrix obtained by approximat-
ing the nonlinear strain measure in eq. (9) and ϕ0 be the
energy density of each grain with variants given by

ϕ0(Ē, x1, x2)

{
= 0 Ē ∈ Ē

(1) ∪ Ē
(2) ∪ · · · Ē

(k)
,

> 0 otherwise,
(13)

where

Ē
(i) = �R E(i) RT �T ,

E(i) =
√

U T
i U i − I, � =

(
1 0 0

0 1 0

)
, (14)

where U i is the 3 × 3 distortion matrix such as that in
eq. (5), I is the 3 × 3 identity, and R = R(x1, x2) is the
rotation matrix describing the orientation of the grains.
The effective density ϕ̄ = W̄ (Ē) of the polycrystalline
film is then obtained by homogenizing the inhomogene-
ity x1, x2 in eq. (13). The overall strain Ē is recover-
able if W̄ (Ē) = 0. We use the Taylor bound described
in Sec. 3.2 to estimate recoverable extension for various
cases and the results are listed in Table 1.

2. Long columnar grains
We now turn to another extreme case h � d. The
grains are now long and rod-like; and it is no longer pos-

sible to overcome out-of-plane constraints. Therefore,
the intergranular constraints are fully three-dimensional.
Consequently, the effective behavior is obtained by ho-
mogenizing in three dimensions and then passing to the
two-dimensional limit. As a result, the estimation of re-
coverable strains for such films is basically similar to
bulk materials. Table 1 lists predicted recoverable ex-
tension for Ti–Ni and Cu–Zn–Al films with various tex-
tures. Recoverable extension is smaller than that for the
same films but with flat grains since the intergranular
constraints are weakened in films with flat grains.

3. Comparable grains
While these extreme cases are instructive, the film thick-
ness and the grain size are on the same order of magni-
tude in sputtered films. The analysis is then difficult but
reflects the trends suggested by the extreme cases. Let us
use the following example to demonstrate it. Consider a
two-dimensional polycrystalline film with a texture con-
taining two orientations (“grey” and “white” grains) as
shown in Fig. 2. Assuming that the martensite has two
variants, we can calculate the recoverable extension ex-
actly for any value of the ratio h

d . The result is shown
schematically in Fig. 2. The dependence is striking, and
the recoverable strain is maximum at h

d = 0 (flat grains)
and minimum at h

d = ∞ (long grains) as expected.
4.2.2 Extremely small grains

We now consider the effect of the ratio κ
d of the size of the

microstructure to that of the grain. Above, we took this ratio
to be zero; however, this may not be true when the grain size
becomes very small (on the order of tens of nanometer). We
can show that if κ � d, it costs materials more energy to form
microstructure inside each grain and consequently strains can
not be recovered unless the texture is exceptional. Our re-
sult21) shows that the effective behavior of the film is obtained
by averaging the properties of small grains, then passing to
the two-dimensional limit. Finally, the analysis on the case
of comparable κ and d is difficult but it interpolates the two
extreme cases.
4.2.3 Multilayers

Consider a multilayered film made up of a finite number of
alternating layers of a martensitic material and a purely elas-
tic material. Let λ be the volume fraction of the martensitic
material and εI be the strain due to some internal stress of the
elastic material relative to the austenite phase of the marten-
sitic material. The effective behavior is some combination of
the behavior of these two materials; however, the nature of
the behavior depends on the ratio κ

h of the microstructure size
to the thickness. We demonstrate with an example assuming
a two-variant martensite with transformation strains −εM and
εM for simplicity. At high temperature, the multilayer con-
sists of alternating layers of two elastic materials. The overall
strain of this multilayer is ε0 which is pretty close to zero since
the austenite has a strong modulus. At low temperature, Fig. 3
contrasts the behavior of multilayers with small κ

h and multi-
layers with large κ

h . The thin continuous line is the energy
of the martensitic material and the thin dashed line is the en-
ergy of the elastic material. The behavior of the multilayer is
shown by thick continuous line. For small κ

h , the martensitic
material freely forms microstructure and the multilayer is like
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I M

_
h

>>1_
h

<<1

M

multilayered film multilayered film

Fig. 3 The effective behavior of a multilayered film is determined by the
energies above for small and large values of κ

h of the microstructure size
to the thickness. Note that ε0 is not shown above and 0 < ε0 < εI since
the austenite has null transformation strain.

an elastic material with soft modulus. Further, the internal
strain εI is completely accommodated by forming martensitic
microstructure at low temperature. As a result, this layered
film will show a two-way shape-memory effect by cycling
temperature to obtain strain ε0 (high temperature) and strain
εI (low temperature). But the effect is weak as the difference
between ε0 and εI is small and the overall modulus of the
multilayer is soft at low temperature.

For large κ
h on the other hand, the multilayer behaves like a

phase transforming material: it has two variants with transfor-
mation strains which may be different from that of the origi-
nal martensitic material, and one variant is preferred over the
other. The preferred variant of the multilayer has an over-
all strain ε̄M which is close to εM . Hence, this multilayered
film will display a strong two-way shape-memory effect: cy-
cling temperature leads to strain to cycle between ε0 and ε̄M as
shown in Fig. 3. Note that the difference between ε0 and ε̄M

is large since the martensite has large transformation strain
and εM ≈ ε̄M . Further notice that the multilayer is inter-
nally stressed so that the minimum energy is not zero. Fi-
nally, the multilayer can form “macroscopic twins”: these are
not twins confined to the martensitic material but encompass
both the elastic and the martensitic material. Thus, multilay-
ers promise to be a means of making apparently new materi-
als.

5. Application to Micropumps

We now apply our theory to the design of shape-memory
micropumps with pumping volume as much large as possi-
ble. Consider a film deposited on the substrate in the austen-
ite state. Assume that the film is unstressed as deposited and
is constrained to the boundary so that the in-plane displace-
ments u1, u2 and out-of plane deflection η are zero on the
boundary. Minimizing the effective energy eq. (3) with re-
spect to all possible recoverable deformations gives

min e(0)
1 [u1, u2, η] = −P max

∫
S
η(x1, x2)dx1dx2, (15)

where the minimization is taken over all possible recoverable
deformations such that eq. (7) holds. The right-hand-side of
eq. (15) is the change of the volume of the film subjected to
constant pressure P . To maximize this term, we may resort
to maximizing the deflection η over all possible recoverable
deformation. Therefore, we use the ratio m of the central de-
flection to the half-edge length of the diaphragm as a criterion
of ability to recover large strain.

e1

e2

e3

m=_
L

L

Fig. 4 A square tent.

5.1 Single crystal micropumps
Consider a pressurized film made of a shape-memory sin-

gle crystal. The exact effective density is in general unavail-
able due to various causes, and this makes it difficult to deter-
mine recoverable deflection for this film. Fortunately, we can
use eq. (15) to estimate it with needed information only for
well points or variants given by eq. (10).

Consider a square diaphragm and assume that the deformed
shape is a tent as shown in Fig. 4. Let m be the ratio of the cen-
tral deflection of the film to the half-edge length of the square
domain. We use simplified kinematics Ē defined by eq. (9) to
approximate the finite strain measure. Further, to satisfy the
fixed end boundary condition, we assume the “macroscopic”
in-plane displacement u(x1, x2) = 0 for (x1, x2) ∈ S. The
gradients of the deflection η of the tent are


∂η

∂x1
∂η

∂x2


 =

(
m

0

)
,

(
0

−m

)
,

(
−m

0

)
,

(
0

−m

)
.

(16)

Using eqs. (9), eq. (12) and (16) gives the condition for stress-
free strain

Ē =

 1

2
m2 0

0 0


 ,


 0 0

0
1

2
m2


 ∈ S f , (17)

where S f given by eq. (12) is the set of all recoverable strains
for the single crystal film.

Consider a 4-well problem which arises in the cubic to
monoclinic-II transformation. Let the transformation strains
be

Ē
(1) =

(
α δ

δ γ

)
, Ē

(2) =
(

α −δ

−δ γ

)
,

Ē
(3) =

(
γ δ

δ α

)
, Ē

(4) =
(

γ −δ

−δ α

)
,

where α > 0, γ > 0, δ > 0. In this case, it can be shown
that the recoverable set S f contains the convex combination

of Ē
(1)

, · · · , Ē
(4)

.22) However, one can show that eq. (17) can
not be satisfied unless the crystal basis is rotated with some
angle θ with respect to the film basis e3. Indeed, choosing
cos 2θ = α−γ

α+γ
, we obtain

m = √
2(α + γ ). (18)

For Cu–Zn–Al, α = 0.089, δ = 0.025, γ = 0.007, we have
m = 0.438 and θ = 15.7◦. Note that Hane10) has used the
fully finite deformation kinematics and Bhattacharya-James
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Table 2 The predicted ratio of the maximum recoverable deflection to the
radius of the circular diaphragm for various films with different textures.
Ni–Al, Cu–Al–Ni, Ti–Ni and Cu–Zn–Al alloys undergo cubic to tetrag-
onal, to orthorhombic, to monoclinic-I and to monoclinic-II transforma-
tions, respectively.

Texture
m: maximum deflection/radius

Ni–Al Cu–Al–Ni Ti–Ni Cu–Zn–Al

{100} film 0.18 0.19 0.15 0.20

{111} film — 0.08 0.13 0.09

{110} sputtered film — 0.10 0.15 0.09

thin film theory3) to obtain m = 0.45 and θ = 15.6◦.

5.2 Polycrystalline micropumps
We turn to practical cases—polycrystalline thin films with

common {100}, {110} or {111} textures. In this situation, the
properties of the film are basically transversely isotropic. So
we consider a circular diaphragm and set m be the ratio of the
maximum central deflection to the radius of the circular do-
main. We assume that the grains are columnar and the grain
sizes are much larger than the film thickness (d � h). The
result of Sec. 4.2.1 suggests that the effective energy density
of films is obtained by first passing to the two-dimensional
limit and then homogenizing in-plane heterogeneity. Unfor-
tunately, the exact form of effective density is not easy to be
found for a general polycrystalline film. Therefore, we have
to resort to the Taylor bound described in Sec. 3.2 for estimat-
ing recoverable deflection. We can show that22)

m = η0

r0
∝ max

i

√
Ē (i)

11 + Ē (i)
22 − εI (19)

where η0 and r0 are the central deflection and radius of the
diaphragm, Ē

(i)
is i th transformation strain given by eq. (14),

εI is the internal or misfit tensile strain exerted from the re-
maining part of the film adhered to the substrate. Above in
eq. (19) the maximum is over all possible variants.

Table 2 shows the ratio m for a variety of shape-memory
films with certain common textures. We assumed εI = 0 in
our calculation. We see that the ratio m for {110} sputtered
Ti–Ni film is about 0.15, and is almost the same for other
textured Ti–Ni films. So recoverable deflection is insensitive
to texture for Ti–Ni film. It is surprising to see relatively small
recoverable deflection for {111} Ti–Ni films which are able
to recover large uniaxial tensile strain as seen from Table 1.
This is due to the fact that the diaphragm is sustained to bi-
axial tensile strain simultaneously instead of one-dimensional
extension. Next we find that the ratio m is large for {100} Cu-
based shape-memory film and is sensitive to texture for other
Cu-based films. It follows that {100} Cu-based film can have
better behavior than Ti–Ni film in view of large recoverable
deflection. Finally, we may apply our result to the design of
pizeoelectricly actuated micropumps. For example, PbTiO3

is a ferroelectric material with crystal structure undergoing
cubic to tetragonal transformation. It can be shown that m =
0.1 for {100} PbTiO3 textured film.

Table 3 The comparison of the prediction with several experimental obser-
vations for Ti–Ni films.

Prediction
Wolf & Miyazaki Makino

Heuer26) et al.17) et al.16)

m = deflection

radius
0.15 0.12 0.07 0.04

6. Comparison with Experiment

Wolf and Heuer26) have deposited a Ti–Ni film on a sili-
con substrate by RF sputtering. They have used microfabri-
cation technique to create Ti–Ni square diaphragms, which
exhibited fair shape-memory behavior and other desired me-
chanical properties. They have reported that the work den-
sity of Ti–Ni diaphragm is at least 5 × 106 J/m3, which is
higher than any other type of microactuation. The ratio of
maximum recoverable deflection to the half-edge length of
the square diaphragm is about 0.12 as shown in Table 3. Our
predicted value is slightly higher than their experimental ob-
servation and there are various reasons for it. First, the maxi-
mum recoverable deflection defined here refers to stress-free
deformation which maximizes the change of volume of the
diaphragm eq. (15). Ideally, the maximum ratio m is inde-
pendent of the magnitude of the applied pressure. However,
in reality, a suitable magnitude of pressure is needed to ini-
tiate the movement of martensitic variants to achieve large
deflection. Wolf and Heuer26) have claimed to expect larger
recoverable deflection by increasing pressure while they did
not perform it due to the limitation of the experimental fa-
cility. Second, we assume that the film has a perfect {110}
texture with grain size much larger than the film thickness
(d � h). We are not clear whether this assumption holds or
not for their experiment. Finally, there is a shape anisotropy
since the predicted value is obtained for a circular diaphragm
while the diaphragm used in experiment is a square.

Miyazaki et al.17, 19) have deposited a Ti–Ni film on a
Si substrate with SiO2 surface by RF magnetron sputtering
method. A diaphragm has been fabricated by applying Si
photoetching, leaving a free standing multilayer with Ti–Ni
on the top and SiO2 on the bottom. They have cleverly created
a two-way shape-memory diaphragm by taking advantage of
different thermal expansion coefficients among Ti–Ni, SiO2

and Si. The reference state has been set up in the high tem-
perature phase. As a result, the in-plane dimension of SiO2

is relative wider than that of Si at low temperature, causing
the buckle of SiO2 layer. The buckle is upward since the in-
plane dimension of Ti–Ni is smaller than that of SiO2 at low
temperature. The ratio of the central deflection to the half-
edge length of the diaphragm has been measured to be around
0.07 which is smaller than what we predict theoretically. The
difference is explained as follows. Their idea to develop a
two-way shape-memory effect is somewhat similar to that us-
ing multilayers consisting of alternating layers of elastic and
martensitic materials as explained in Sec. 4.2.3. The change
of the shape of multilayer described in Sec. 4.2.3 is primar-
ily due to membrane stretching while the shape change in the
experiment of17) is due to the combination of stretching and
bending at low temperature. The stretching can be relieved
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by forming martensitic microstructure while the bending re-
sulting from some internal stress provides a less significant
role to produce large deflection. Further, if the ratio κ

h of the
microstructure size to the thickness is small in experiment,17)

the two-way shape-memory effect obtained by cycling ther-
mal strain is weak as explained in Sec. 4.2.3.

Finally, Makino et al.15, 16) have successfully fabricated a
Ti–Ni actuated micropump with pumping pressure up to sev-
eral hundreds of kPa. The measured ratio of deflection to
the half-edge length of the Ti–Ni diaphragm is about 0.04.
Clearly, from Table 3, our theoretical prediction is larger than
this value. The discrepancy is not completely understood
here. The theoretical calculation is based on the {110} sput-
tering texture while the Ti–Ni film made in experiment is pro-
duced by flash evaporation method. So the texture we use in
the calculation may not be the one in experiment. Next, we
assume that the film is unstressed as deposited in our calcu-
lation. However, an internal tensile stress may exist during
deposition (for example, see13, 26)). If that happened, the Ti–
Ni diaphragm is subject to bi-axial pre-tensile stress resulting
from the remaining part of the film adhered to Si substrate.
In that case, the central recoverable deflection will decrease
significantly due to eq. (19). However, there is no evidence
to see the existence of internal stresses in the experiment of
Makino et al.15, 16)

7. Conclusion

We have investigated the behavior of pressurized shape-
memory films with application to the design of large stroke
micropumps. We start with a theoretical framework account-
ing in detail for the underlying microstructure, grain size, film
thickness as well as their interactions. We show that the be-
havior of thin film is different from that of bulk material. We
also point out that a heterogeneous film shows strong size ef-
fects and its behavior depends crucially on the different ratios
of length scales including film thickness, grain size and mi-
crostructure length scale. We demonstrate with an example
that the recoverable extension is very different for thin films
with flat or long columnar grains. We also show that a two-
way shape-memory effect can be developed by multilayers
made up of alternating layers of a martensitic and a purely
elastic material.

We use recoverable deflection as a measure to design large
stoke micropumps and develop a model to estimate it. We
approximate the finite strain measure using the assumption
of von Kármán membrane. We show that the recoverable
deflection of a polycrystalline film depends on the transfor-
mation strain of the underlying martensitic transformation,
the texture and especially on the size effects. Table 2 lists
our predictions for recoverable deflection for various shape-
memory films with different common textures. We show that
the estimation of recoverable deflection is very different from
that of recoverable extension since the former is due to bi-
axial tensile strain simultaneously while the latter is due to
one-dimensional tensile strain. We compare the prediction
of maximum recoverable deflection with several experimen-
tal observations of Wolf & Heuer,26) Miyazaki et al.17) and
Makino et al.16) The following is a list of our main conclu-

sions and suggestions.
• Flat grains are preferable to long grains in columnar

films concerning the purpose of large recoverable deflec-
tion and extension.

• Common sputtering {110} texture is not ideal for recov-
erable deflection and extension in both Ti–Ni and Cu-
based shape-memory films.

• Recoverable deflection is not sensitive to common film
textures in Ti–Ni films while it is sensitive in Cu-based
shape-memory films.

• It turns out that {100} texture is ideal for both recover-
able deflection and extension in Cu-based films.

• Multilayered thin films provide a promising avenue for
making materials with novel properties.
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