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A B S T R A C T   

Objective: High-resolution ultrasound is an emerging tool for diagnosing carpal tunnel syndrome caused by the 
compression of the median nerve at the wrist. This systematic review and meta-analysis aimed to explore and 
summarize the performance of deep learning algorithms in the automatic sonographic assessment of the median 
nerve at the carpal tunnel level. 
Methods: PubMed, Medline, Embase, and Web of Science were searched from the earliest records to May 2022 for 
studies investigating the utility of deep neural networks in the evaluation of the median nerve in carpal tunnel 
syndrome. The quality of the included studies was evaluated using the Quality Assessment Tool for Diagnostic 
Accuracy Studies. The outcome variables included precision, recall, accuracy, F-score, and Dice coefficient. 
Results: In total, seven articles were included, comprising 373 participants. The deep learning and related al-
gorithms comprised U-Net, phase-based probabilistic active contour, MaskTrack, ConvLSTM, DeepNerve, 
DeepSL, ResNet, Feature Pyramid Network, DeepLab, Mask R-CNN, region proposal network, and ROI Align. The 
pooled values of precision and recall were 0.917 (95 % confidence interval [CI], 0.873–0.961) and 0.940 (95 % 
CI, 0.892–0.988), respectively. The pooled accuracy and Dice coefficient were 0.924 (95 % CI, 0.840–1.008) and 
0.898 (95 % CI, 0.872–0.923), respectively, whereas the summarized F-score was 0.904 (95 % CI, 0.871–0.937). 
Conclusion: The deep learning algorithm enables automated localization and segmentation of the median nerve at 
the carpal tunnel level in ultrasound imaging with acceptable accuracy and precision. Future research is expected 
to validate the performance of deep learning algorithms in detecting and segmenting the median nerve along its 
entire length as well as across datasets obtained from various ultrasound manufacturers.   

1. Introduction 

Median nerve compression in the wrist region, i.e., carpal tunnel 
syndrome (CTS), is the most prevalent entrapment neuropathy [1]. Its 
diagnosis is traditionally established based on the electrophysiological 
findings such as slowed nerve conduction velocity, delayed distal motor 

latency, and abnormal thenar muscle electromyography [2]. Recently, 
high-resolution ultrasound imaging has been considered an alternative 
tool for diagnosing CTS owing to its explicit depiction of neural fascicles 
and surrounding connective tissues. The sonographic criteria for CTS 
diagnosis include increased cross-sectional area of the nerve [3], flat-
tened nerve configuration [4], and increased nerve stiffness [5] and 
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intra-neural vascularity [6]. Furthermore, ultrasound allows dynamic 
examination, which can be used to assess the median nerve mobility 
along with CTS severity [7]. 

Among all the sonographic diagnostic criteria of CTS, the cross- 
sectional area of the nerve appears to be the most validated param-
eter, which can be applied in the general population [3] and in patients 
with pre-existing diabetes mellitus [8]. However, correct identification 
of the median nerve may be challenging for inexperienced examiners, 

not to mention the standardized assessment of its size. Moreover, it 
would be labor-intensive and time-consuming if the investigators intend 
to conduct serial manual measurements using dynamic images. 
Recently, artificial intelligence has been developed to assist nerve 
identification using ultrasound images. In 2016, Hadjerci et al. [9] 
constructed a computer-aided system for the automatic detection and 
segmentation of the median nerve. Nevertheless, the preliminary 
framework required multiple stages, such as the implementation of 

Fig. 1. Flow diagram of the literature search.  

Table 1 
Summary of the included studies.  

Author/ 
year 

Participant 
number 

Ultrasound machine/ 
setting 

Data set Focused task Deep learning (related) 
algorithm 

Ground truth 
definer 

Performance metric 

Hafiane 
et al. 
(2017)  

10 Unknown manufacturer 
with linear transducer of 
5–12 MHz 

10 videos with 500 
frames per video 

Localization and 
segmentation 

CNN and phase based 
probabilistic active 
contour 

Anesthesiology 
specialist 

Precision, recall, F- 
score and disc 
coefficient 

Horng 
et al. 
(2020)  

6 Siemens ACUSON S2000 
ultrasound system with 
an 18L6 HD transducer 

Not mentioned Localization and 
segmentation 

U-Net, MaskTrack, 
ConvLSTM, and 
DeepNerve 

Not mentioned Precision, recall, F- 
score, accuracy and 
disc coefficient 

Wang 
et al. 
(2020)  

50 Not mentioned 180 continuous 
imaging slices for each 
hand 

Localization DeepSL and Resnet Expert of 
sonography 

Accuracy 

Cosmo 
et al. 
(2020)  

53 Esaote MyLab Class C 
with a 6–18 MHz linear 
transducer 

Not mentioned Localization and 
segmentation 

Resnet, Feature Pyramid 
Network and Mask R-CNN 

Not mentioned Precision and disc 
coefficient 

Festen 
et al. 
(2021)  

99 Philips iE33 with a L15- 
7io linear transducer 

A total of 5560 frames 
from 505 videos 

Segmentation U-Net Not mentioned Disc coefficient 

Wu et al. 
(2021)  

52 Canon Aplio 500 with a 
line transducer of 13–18 
MHz 

15,215 frames for 
training and 3410 
frames for testing 

Segmentation U-Net, DeepLab, Feature 
Pyramid Network and 
Mask R-CNN 

Physiatrist Intersection over 
union 

Smerilli 
et al. 
(2022)  

103 Esaote MyLab Class C 
with a linear 6–18 MHz 
probe 

157 images for 
training, 40 images for 
validation, and 49 
images for testing 

Localization and 
segmentation 

ResNet, Feature Pyramid 
Network, region proposal 
network, ROI Align and 
Mask R-CNN 

Rheumatologist Precision, recall and 
disc coefficient 

CNN, convolutional neural network. 
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various despeckling filters, extraction of different features, and selection 
of the best feature subset, which prevented it from being an end-to-end 
process. Deep learning, inspired by the structure of the human brain, 
enables the automatic selection of features from the given data and is 
being increasingly used in biomedical analysis [10]. 

Among all the deep learning algorithms, the convolutional neural 
network (CNN) is one of the most powerful frameworks for investigating 
visual imagery [11]. Recent studies have applied CNN for identifying 
neural vascular structures over the axillary [12] and femoral regions 
[13]. Owing to the clinical importance of CTS, several studies have 
investigated the feasibility of deep learning algorithms in the sono-
graphic evaluation of the median nerve in the wrist region. Therefore, 
this systematic review and meta-analysis aimed to explore and sum-
marize the performance of deep learning in the automatic localization 
and segmentation of the median nerve at the carpal tunnel level. 

2. Methods 

2.1. Protocol registration 

This meta-analysis was conducted in compliance with the guidelines 
of the Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) program, with the protocol registered on Inplasy. 
com (INPLASY202250074). 

2.2. Literature search 

The following electronic databases were searched from their incep-
tion to May 2022: PubMed, Medline, Embase, and Web of Science. 
Studies investigating the utility of deep neural networks in the evalua-
tion of the median nerve at the carpal tunnel level were targeted. Key 
terms used for the literature search included “median nerve,” “carpal 
tunnel syndrome,” “ultrasonography,” “sonography,” “ultrasound,” 
“artificial intelligence,” “deep learning,” “machine learning,” and 
“convolutional neural network.” The following algorithm was used: 
(“median nerve” or “carpal tunnel syndrome”) and (“ultrasonography” 
or “ultrasound” or “sonography”) and (“artificial intelligence” or “deep 
learning” or “machine learning” or “convolutional neural network”). No 
language restrictions were imposed during the search process. In 

addition, relevant narratives and systematic reviews were inspected for 
potentially eligible studies. 

2.3. Inclusion and exclusion criteria 

The population, intervention, comparison, and outcome setting 
(commonly called PICO) of the current systematic review and meta- 
analysis comprised: (1) P: human; (2) I: evaluation of the cross- 
sectional ultrasound images of the median nerve using deep learning; 
(3) C: manually labelled region as the ground truth; and (4) O: perfor-
mance metrics, such as precision, recall, accuracy, F-score, and Dice 
coefficient. 

The inclusion criteria were as follows: (1) observational studies 
recruiting adult participants aged ≥20 years; (2) use of ultrasound im-
aging to assess the median nerve; and (3) application of CNN for the 
localization and segmentation of the median nerve. 

The exclusion criteria were as follows: (1) studies using animals or 
computer simulation only; (2) evaluation of the median nerve using 
modalities other than sonography; (3) focusing on the peripheral nerve 
outside the carpal tunnel; and (4) lack of application of any deep 
learning algorithm. 

2.4. Quality Assessment 

The quality of the included studies was evaluated using the second 
version of the Quality Assessment Tool for Diagnostic Accuracy Studies 
(QUADAS-2) [14]. This tool comprises four major domains of patient 
selection, index test, reference standard, and flow of timing regarding 
the index test and reference standard. For the patient selection domain, 
the authors focused on whether CTS was diagnosed using clearly defined 
criteria. For the index test domain, the authors evaluated whether the 
deep learning algorithm for appraising the median nerve was explicitly 
described. For the reference standard domain, the authors checked 
whether the ground truth (manually labelled nerve regions) was deter-
mined by experienced specialists. Finally, as training of the deep 
learning model was conducted after the completion of manual marking, 
clarity of the research flow was confirmed for all the included studies. 

Table 2 
Summary of Quality Assessment as regards the included studies. 

Risk of Bias Application Concern 

Study name Patient 

Selection

Index

Test

Reference 

Standard

Flow 

Timing

Patient 

Selection

Index

Test

Reference 

Standard

Hafiane et al. 

2017

Horng et al. 

2020

Wang et al. 

2020

Cosmo et al. 

2020

Festen et al. 

2021

Wu et al. 

2021

Smerilli et al. 

2022

Green; low risk of bias, Red; high risk of bias, Yellow; unclear risk of bias. 
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2.5. Data extraction and outcome evaluation 

The data extraction was conducted by two independent authors, and 
the following information was retrieved: authors, year, study design, 
participant characteristics, ultrasound machine, details of the dataset, 
models or architecture of artificial neural networks, and related per-
formance metrics. The outcome variables comprised precision, recall, 
accuracy, F-score, Dice similarity coefficient, and intersection over 
union (IOU) [15]. 

Precision =
TP

TP + FP
(1)  

Recall =
TP

TP + FN
(2)  

Accuracy =
TP + TN

TP + TN + FP + FN
(3)  

F − score =
2 × Precision × Recall

Precision + Recall
(4)  

Dice similarity coefficient =
∑n

i=1

2|GTi ∩ SRi|

|GTi| + |SRi|
(5) 

Here, TP, TN, FP, and FN denote true positive, true negative, false 
positive, and false negative, respectively. GTi and SRi indicate the 
manually labelled region (ground truth) and the result derived from the 
deep learning algorithm in the ith frame, respectively. Finally, IOU de-
notes the overlapped region between the anticipated segmentation and 
the manually defined area divided by the region of union of both the 
parts. 

2.6. Statistical analysis 

A random effects model was used to pool the retrieved data consid-
ering the variations in participants' demographics [16]. The continuous 
variables are presented as means and standard errors. Data from the 
model proposed by the authors for meta-analysis were retrieved if 
several deep-learning algorithms were applied in the same study. The 
level of heterogeneity was assessed using I2 and Cochran's Q statistics. 
An I2 value > 50 % indicated moderate to high heterogeneity [17]. 
Publication bias was evaluated by the distribution of each effect size in 

Fig. 2. Forest plot of the summarized precision (A) and recall (B) of the included studies.  
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the funnel plot and Egger's test [18]. All analyses were conducted using 
Comprehensive Meta-Analysis software, version 3 (Biostat, Englewood, 
NJ, USA); p-values < 0.05 were considered statistically significant. 

3. Results 

3.1. Study selection 

The flow of the literature search is presented in Fig. 1. The full texts 
of 63 articles were retrieved for eligibility evaluation after removing 
duplicated and irrelevant articles by surveying their titles and abstracts. 
We further excluded two papers due to lack of application of deep 
learning algorithms [19,20], two for not focusing on the ultrasound 
images of the median nerve [13,21], and one for investigating periph-
eral nerves in rat models [22]. Our systematic review and meta-analysis 
included seven articles [23–29] comprising 373 participants. 

3.2. Study characteristics 

All the included studies employed a cross-sectional design. The 
number of recruited participants ranged from 6 to 103 (Table 1). The 
ultrasound systems used for imaging were ACUSON S2000 (Siemen 
Medical Solutions, Mountain View, CA, USA), MyLab Class C (Esaote 
Spa, Genoa, Italy), Philips iE33 (Philips Ultrasound, Inc., Bothell, WA, 
USA), and Aplio 500 (Canon Medical Systems Europe B.V., The 
Netherlands). The deep learning and related algorithms used comprised 
U-Net [24,27,28], phase-based probabilistic active contour [23], 
MaskTrack [24], ConvLSTM [24], DeepNerve [24], DeepSL [25], ResNet 
[25,26], Feature Pyramid Network (FPN) [26,28,29], DeepLab [28], 
Mask R-CNN [26,28,29], region proposal network [29], and ROI Align 
[29]. Regarding the target tasks for processing the nerve imaging, one 
study [25] focused on localization, two studies [27,28] focused on 
segmentation and four studies [23,24,26,29] focused on both localiza-
tion and segmentation. The reported performance metrics included 
precision, recall, accuracy, F-score, Dice coefficient, and IOU. The 

Fig. 3. Forest plot of the summarized accuracy (A) and Dice coefficient (B) of the included studies.  
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application of CNN for measuring circularity, cross-sectional area, 
perimeter, and vertical/horizontal displacement of the median nerve 
during finger motions was specifically reported in three studies 
[24,25,28]. Only one study addressed the influence of the anatomic 
variations on the performance metrics [29]. 

3.3. Methodological quality of included studies 

The appraisal of the methodological quality of the included studies is 
presented in Table 2. Among the seven items of the QUADAS-2 tool, the 
most commonly failed item was the applicability concern regarding 
patient selection. The main reason for this was that only two studies 
[27,28] included patients diagnosed with CTS using clearly defined 
criteria, which might limit the clinical applicability of our meta-analysis. 
The second most commonly failed item was the risk of bias for the 
reference standard, because majority of the enrolled studies did not 
clarify the qualifications of the experts labelling the location and con-
tour of the median nerve. 

3.4. Performance metrics for localization and segmentation of the median 
nerve 

The pooled values of precision and recall from four studies 

[23,24,26,29] were 0.917 (95 % confidence interval [CI], 0.873–0.961; 
I2 = 61.08 %; p = 0.052) and 0.940 (95 % CI, 0.892–0.988; I2 = 70.03 %; 
p = 0.001), respectively (Fig. 2). The pooled value of accuracy from 
three studies [23–25] was 0.924 (95 % CI, 0.840–1.008; I2 = 97.83 %; p 
< 0.001). The pooled Dice coefficient from five studies [23,24,26,27,29] 
was 0.898 (95 % CI, 0.872–0.923; I2 = 63.14 %; p < 0.028) (Fig. 3). The 
summarized F-score from two studies [23,24] was 0.904 (95 % CI, 
0.871–0.937; I2 < 0.01 %; p = 0.049) (Fig. 4). Only one study [28] re-
ported IOU, with the average value between 0.7873 and 0.8216 across 
different deep learning algorithms. 

3.5. Publication bias 

The analysis of publication bias was performed only for the Dice 
coefficient, because the number of available studies for the other 
outcome parameters was largely insufficient (n < 5) (Fig. 4). The p-value 
of the Egger's test was 0.153, indicating no significant publication bias. 

4. Discussion 

This meta-analysis is possibly the first to explore and show that deep 
learning algorithms have acceptable accuracy and precision in the 
localization and segmentation of the median nerve near the carpal 

Fig. 4. Forest plot of the summarized F-score (A) and funnel plot of the Dice coefficient (B) of the included studies.  
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tunnel. Our investigation revealed the potential of deep learning algo-
rithms in motion metrics, i.e., the assessment of the median nerve during 
finger flexion and extension. The impact of anatomical variations on the 
detection of the median nerve was also investigated in this review. 

Different strategies have been applied for localization, which is the 
process of identifying the region of interest (ROI) that contains the 
median nerve. Hafiane et al. [23] took the advantage of the spatial and 
temporal consistency of the median nerve while mobilizing the trans-
ducer over the wrist. A sliding window was applied to the target frames, 
and the CNN helped to classify whether the ROI included the median 
nerve. An area overlapped spatially by several ROIs with high proba-
bility of including the nerve would be the candidate. Furthermore, if the 
candidate zone was consistently recognized in different frames, the area 
where the median nerve was located was determined by employing the 

rule of temporal consistency. Similarly, Wang et al. [25] developed a 
learning model by comparing the similarity between the target ROI and 
the candidate regions using two convolutions, two maximal pooling, and 
one difference layer. ResNet [30] was employed for similarity differ-
entiation. In our meta-analysis, precision, recall, accuracy, and F-score 
were used to evaluate the performance metrics for the localization of the 
median nerve. All the pooled values of the aforementioned parameters 
were >0.9. Our results demonstrate the capability of deep learning al-
gorithms in correctly identifying the location of the median nerves on 
the given ultrasound images. 

Clinically, segmentation of the nerve (demarcating the nerve 
boundary) is more important than localization. Segmentation of the 
median nerve is crucial for the measurement of its cross-sectional area 
and determination of its shape, which have been widely used for CTS 

Fig. 5. Illustration of Mask R-CNN (A) and U-net (B) for segmentation of the median nerve.  
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diagnosis [3,4]. Likewise, through our review, we identified different 
approaches for segmenting the median nerve. Hafiane et al. [23] used a 
CNN to first localize the median nerve and then segment it using a phase- 
based probabilistic active contour [31], whose feasibility was first 
examined using ultrasound imaging of the sciatic nerve. U-Net and Mask 
R-CNN emerged as the mainstream methods for nerve segmentation in 
later studies (Fig. 5) [24,27–29]. U-Net [15], with a symmetric U-shaped 
structure, is capable of restoring the extracted feature map to its input 
size by concatenating the convolution and transposed convolution 
layers. This counteracts the gradual loss of feature resolution when the 
framework deepens. On the other hand, Mask R-CNN [15] is a powerful 
model for instance segmentation, i.e., detecting the object's class and 
predicting its boundary box. It also incorporates an FPN [32], facili-
tating feature extraction on various scales. In our meta-analysis, the 
summarized Dice coefficient from five studies [23,24,26,27,29] reached 
0.898, and the highest IOU from one study [28] was approximately 
0.8216. All findings supported the application of deep learning algo-
rithm for segmenting the median nerve on ultrasound imaging. 

The strength of ultrasound imaging is its dynamic scanning capa-
bility. The transducer can be moved back and forth to track the median 
nerve and examine its continuity [33]. In our review, we noticed that 
Hafiane et al. [23] adjusted the movement of the transducer to capture 
different views of the median nerve in videos. Strictly speaking, this 
might not be categorized as dynamic imaging because there was little 
change in the location of the footprint. It is worth emphasizing that the 
median nerve in the distal forearm appears similar to the adjacent finger 
flexor tendons [33]; therefore, nerve localization could prove chal-
lenging for the deep learning algorithm. However, although the per-
formance metrics for nerve localization seemed satisfactory in the study 
by Hafiane et al., [23] whether the outcome can be transferred to real- 
time dynamic tracking of the median nerve along the entire upper 
limb should be validated in future research. 

On the other hand, Wu et al. [28] obtained dynamic images of the 
median nerve by inviting the participants to repetitively flex and extend 
their fingers. Facilitated by a deep learning algorithm, they identified 
that the cross-sectional area and perimeter of the median nerve 
increased during finger flexion and decreased upon finger extension. 
Disproportionation of the centroid displacement of the nerve on the 
horizontal and vertical axes was also observed. Their study 

demonstrated the usefulness of automated segmentation in continuously 
extracting the motion metrics of the median nerve during finger 
movements, which could be beneficial in determining whether 
abnormal nerve excursion exists owing to adhesion [34]. 

Anatomic variants such as persistent median arteries and bifid me-
dian nerves are commonly encountered during ultrasound imaging of 
the wrist region. According to an antecedent study investigating 1026 
wrists of 513 manual laborers, the prevalence of bifid median nerve was 
approximately 8.6 % [35]. In patients with bifid median nerves, the 
diagnosis of CTS based on ultrasound images requires the additional 
measurement of the cross-sectional area of the nerve from different 
compartments [36]. This would definitely increase the difficulty in 
correctly recognizing the separate nerve parts with deep learning algo-
rithms. Our meta-analysis revealed that Smerilli et al. [29] specifically 
addressed the aforementioned issue and found that the accuracy rate of 
nerve localization improved from 83.7 % to 95.3 % after removing the 
cases with anatomic variants. They also found that the deep learning 
algorithm might only classify one compartment or misrecognize the 
adjacent persistent median artery as the second nerve part (Fig. 6). 
Considering that a bifid median nerve has an increased association with 
CTS [36], future deep learning algorithms might need a difference layer 
to recognize the existence of normal anatomic variants before pro-
ceeding to subsequent nerve localization and segmentation. 

This systematic review and meta-analysis has several limitations. 
First, regarding manual labelling of the nerve circumference, none of the 
included studies provided details of whether the boundary lines were 
drawn on the epineurium or outside the epineurium of the median 
nerve. The most commonly used criterion for diagnosing CTS is based on 
the cross-sectional area of the nerve inside the epineurium [37]. 
Therefore, we believe that it would be more clinically relevant if future 
investigators could elaborate on how they perform hand-operated seg-
mentation. Second, the majority of the enrolled studies used only one 
ultrasound imaging system for the median nerve. It is known that the 
same nerve would have distinct sonographic presentations with 
different settings/machines. The model trained by the images obtained 
from one system may show different performance metrics based on the 
data of another system. Therefore, future studies are warranted to 
validate the performance of deep learning algorithms across imaging 
datasets derived from various ultrasound manufacturers. Third, through 

Fig. 6. The bifid median nerve is manually labelled 
by an expert (A). Only one portion of the bifid nerve is 
recognized by the deep learning algorithm (B). A 
persistent median artery (black arrowhead) is located 
beside the median nerve marked by an expert (C). The 
persistent median artery is misrecognized and 
included as part of the median nerve by the deep 
learning algorithm (D). 
Red circle region, the ground truth of the median 
nerve; green square area, the predicted boundary box 
containing the median nerve; green circled area, the 
result of segmentation for the median nerve. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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our systematic review, we found that simultaneous identification of the 
anatomic landmarks adjacent to the median nerve was hardly achieved 
by using conventional deep learning algorithms. Multi-scale deep 
learning algorithms that integrate information at the receptive fields of 
various scales could be employed to overcome the aforementioned 
drawbacks in the future [38,39]. Furthermore, a manually defined ROI 
was usually needed in advance for some early deep learning models for 
nerve localization and segmentation. This process appeared time- 
consuming and was dependent on the reliability of labelling experts. 
Recently, a fully automatic Mask R-CNN, trained by an end-to-end 
approach without needing the definition of ROI, has been developed 
and it would be helpful to compensate the above quoted shortcoming 
[40]. 

5. Conclusion 

The deep learning algorithm enables automatic localization and 
segmentation of the median nerve at the wrist on ultrasound imaging 
with acceptable accuracy and precision. The motion metrics of the 
median nerve under dynamic ultrasound imaging can be automatically 
extracted using a deep-learning algorithm. It is recommended that 
future researches validate the performance of deep learning algorithms 
in the detection and segmentation of the median nerve along its entire 
length as well as across datasets obtained from various ultrasound 
manufacturers. 
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