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Abstract
Power harvesting refers to the practice of acquiring energy from the
environment which would be otherwise wasted and converting it into usable
electric energy. Much work has been done on studying the optimal AC power
output, while little has considered the AC–DC output. This article
investigates the optimal AC–DC power generation for a rectified piezoelectric
device. In contrast with estimates based on various degrees of approximation
in the recent literature, an analytic expression for the AC–DC power output is
derived under steady-state operation. It shows that the harvested power
depends on the input vibration characteristics (frequency and acceleration),
the mass of the generator, the electrical load, the natural frequency, the
mechanical damping ratio and the electromechanical coupling coefficient of
the system. An effective power normalization scheme is provided to compare
the relative performance and efficiency of devices. The theoretical predictions
are validated and found to be in good agreement with both experimental
observations and numerical simulations. Finally, several design guidelines
are suggested for devices with large coupling coefficient and quality factor.

1. Introduction

The development of wireless sensor and communication node
networks has received a great deal of interest in research
communities over the past few years. Applications envisioned
from these node networks include building structural health
monitoring and environmental control systems, smart homes
and tracking devices on animals in the wild [23, 32]. However,
as the networks increase in number and the devices decrease
in size, the proliferation of these autonomous microsensors
raises the problem of an effective power supply. The
conventional solution is to use electrochemical batteries for
power. However, batteries can not only increase the size and
weight of microsensors but also suffer from the limitations
of a brief service life and the need for constant replacement,
which is not acceptable or even possible for many practical
applications.

On the other hand, simultaneous advances in low-
power electronic design and fabrication have reduced power
requirements for individual nodes. It has been predicted that

1 Author to whom any correspondence should be addressed.

power consumption could be reduced to tens to hundreds of
microwatts depending on the application [3]. This opens the
possibility for self-powered sensor nodes, and the need to
power remote systems or embedded devices independently
has motivated many research efforts focused on harvesting
electrical energy from various ambient sources. These include
solar power, thermal gradients and vibration [37]. Among
these energy scavenging sources, mechanical vibration is a
potential power source that is abundant enough to be of use,
is easily accessible through microelectromechanical systems
(MEMS) technology for conversion to electrical energy, and
is ubiquitous in applications from small household appliances
to large infrastructures [36, 41].

Vibration energy can be converted into electrical
energy through piezoelectric, electromagnetic and capacitive
transducers. Among them, piezoelectric vibration-to-
electricity converters have received much attention, as they
have high electromechanical coupling and no external voltage
source requirement, and they are particularly attractive for
use in MEMS [13, 30, 39]. As a result, the use of
piezoelectric materials for scavenging energy from ambient
vibration sources has recently seen a dramatic rise for power
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harvesting. For example, early work at the MIT Media Lab
investigated the feasibility of harnessing energy parasitically
from various human activities [45]. It was later confirmed
that energy generated by walking can be collected using
piezoelectric ceramics [40]. Since then, piezoelectric elements
used for power harvesting in various forms of structure have
been proposed to serve specific purposes. Elvin et al [6, 7]
and Ng and Liao [27] have used the piezoelectric element
simultaneously as a power generator and a sensor. They
have evaluated the performance of the piezoelectric sensor to
power wireless transmission and validated the feasibility of the
self-powered sensor system. Roundy and Wright [38] have
analysed and developed a piezoelectric generator based on a
two-layer bending element and used it as a basis for generator
design optimization. Similar works based on cantilever-based
devices using piezoelectric materials to scavenge vibration
energy include [4, 25, 26, 51, 53].

Instead of 1-D design, Kim et al [16, 17] and Ericka
et al [8] have modeled and designed piezoelectric plates
(membranes) to harvest energy from pulsing pressure sources.
Other harvesting schemes include the use of long strips of
piezoelectric polymers (energy harvesting eel) in ocean or
river-water flows [1, 46], the use of piezoelectric ‘cymbal’
transducers operated in the {3-3} mode [14, 15] and the
use of a piezoelectric windmill for generating electric power
from wind energy [31]. Jeon et al [13] have successfully
developed the first PZT MEMS power-generating device.
Related works on modeling and design considerations for
MEMS-scale piezoelectric-based energy harvesters can be
found in [5, 24, 33].

Most published results have reported measurements of
output voltage or power, while few have quantified the
efficiency of their devices. Umeda et al [48, 49] and Goldfarb
and Jones [9] have studied the efficiency of electric power
generation with piezoelectric elements operated in the {3-
1} and {3-3} modes, respectively. Recently, Richards et al
[34] have provided an analytic formula to predict power
conversion efficiency, and showed that it depends on the
electromechanical coupling coefficient and quality factor of the
device. Roundy [35] has further provided a general theory
of the effectiveness of vibration-based energy harvesting
which can be applied to electromagnetic, piezoelectric,
magnetostrictive and electrostatic transducer technologies. In
addition, when a power harvester is applied to a system, it gives
rise to an additional damping effect. Lesieutre et al [22] have
pointed out that the damping added to a vibrating structure is
due to the removal of electrical energy from the system. They
have shown that the power harvesting system works similarly
to a shunt damping system, except that the energy is stored
instead of dissipated [20, 44].

The research works cited above focus mainly on
developing optimal energy harvesting structures. However,
the electrical outputs of these devices in many cases are too
small to power electrical devices directly. Thus, the methods
of accumulating and storing parasitic energy are also the key to
developing self-powered systems. Sodano et al [42, 43] have
investigated several piezoelectric power harvesting devices
and the methods of accumulating energy by utilizing either
a capacitor or a rechargeable battery. Ottman et al [28, 29]
have developed highly efficient electrical circuits to store the

generated charge or present it to the load circuit. They have
claimed that at high levels of excitation the power output can
be increased by as much as 400%. In contrast to the linear
load impedance adaptation by [28, 29], Guyomar et al [10]
and Lefeuvre et al [18, 19] have developed a new power flow
optimization principle based on the extraction of the electric
charge produced by a piezoelectric element, synchronized
with the mechanical vibration operated at the steady state.
They have claimed that the harvested electrical power may be
increased by as much as 900% over the standard technique.
Badel et al [2] have extended their work to the case of pulsed
excitation.

In this paper, we propose an analysis of AC–DC power
output for a rectified piezoelectric harvester. Many published
results studying the conversion of energy from the oscillating
mass to electricity have adopted a simple model proposed
by Williams and Yates [5, 13, 36, 39, 52]. It is based on
the assumption that the electrical damping term is linear and
proportional to the velocity; however, this hypothesis may
not be strictly valid in many cases. In addition, much work
has been done on studying the optimal AC power flow, while
little has considered the AC–DC power output. The former
includes [5, 24, 25, 30, 34, 38, 44], while the latter has
been studied recently in [10, 19, 28]. As the electronic load
requires a stabilized DC voltage while a vibrating piezoelectric
element generates an AC voltage, the desired output needs
to be rectified, filtered and regulated to ensure electrical
compatibility. Thus, it is of importance to investigate the
optimal AC–DC power output to reflect the real electrical
performance in many practical applications.

Specifically, we study the steady-state response of a
piezoelectric generator connected to an AC–DC rectifier
followed by a filtering capacitance and a resistor. This problem
has recently been studied by Ottman et al [28] and Guyomar
et al [10]. The former assumed that the vibration amplitude is
not affected by the load resistance while the latter hypothesized
that the periodic external excitation and the speed of mass
are in phase. In contrast with estimates based on these two
approaches, we take into account the global behaviour of
the electromechanical system and derive a completely new
analytic expression of AC–DC power output in section 2. We
show that the harvested power depends explicitly on a number
of non-dimensionless parameters. With it, an effective power
normalization scheme is provided and can be used to compare
power harvesting devices of various sizes and with different
vibration inputs to estimate efficiencies. In section 3, we
derive the criterion for optimal load and power and study the
asymptotic behaviour of power output for devices operated at
the short and open circuit resonances, respectively. We show
that selection of the correct operation frequency is important
for achieving the maximal power flow, while this effect has
been neglected in many other approaches. We next validate
our theoretical predictions by both experimental results and
numerical simulations and find good agreement in section 4.
In addition, we find that the discrepancies among these
approaches become significant when the coupling coefficient
and quality factor of the system are large. Finally, several
design guidelines are recommended from our predictions. We
conclude in section 5 with a discussion.
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Figure 1. An equivalent model for a piezoelectric vibration energy
harvesting system.

2. Harvesting model

2.1. Governing equations

A piezoelectric energy harvester is often modeled as a
mass + spring + damper + piezo structure together with
an energy storage system schematically shown in figure 1
[19, 28, 34]. It consists of a piezoelectric element coupled
to a mechanical structure and is connected to a storage circuit
system. In this approach, an effective mass M subjected to
an applied forcing function F(t) is bounded on a spring of
effective stiffness K , on a damper of coefficient η, and on a
piezoelectric element characterized by effective piezoelectric
coefficient � and capacitance Cp . For example, consider
a triple-layer bender mounted as a cantilever beam with
polarization poled along the thickness direction as shown in
figure 2. The electric field is generated through the direction
of thickness of the piezoelectric layers while strain is in
the axial direction; consequently, the transverse, or {3-1},
mode is utilized. The effective coefficients related to material
constants and structural geometry can be derived using the
modal analysis [11, 50]

M = βM(m p + mb) + ma,

K = βK S

{(
2

3

t3

L3
+ ht2

L3
+ 1

2

th2

L3

)
C E

p11
+ 1

12

h3

L3
C E

b11

}
,

� = β�

S(h + t)

2L
e31,

Cp = SL

2t
εS

33,

where βM , βK and β� are constants derived from the
Rayleigh–Ritz approximation, e31 and εS

33 are the piezoelectric
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Figure 2. A common piezoelectric-based power generator: a cantilever triple-layer bender operated in the {3-1} mode. The base is excited
with acceleration z̈(t).

and clamped dielectric constants, S and L are the width
and axial length of the cantilever beam, t and h, C E

p11
and

C E
b11

, m p and mb are the thicknesses, elastic moduli and
masses of the piezoelectric and central passive layers, and
ma is the attached mass. We have performed a series of
experiments on a PZT triple-layer bender with configuration
similar to figure 2 to validate our prediction in section 4.2.
Another less common piezoelectric power generator operated
in the longitudinal or {3-3} mode has been developed recently
by [13]. The advantage of utilizing this mode is that the
longitudinal piezoelectric effect is usually much larger than the
transverse effect (d33 > d31).

A vibrating piezoelectric element generates an AC voltage
while the electrochemical battery needs a stabilized DC
voltage. This requires an energy harvesting circuit to ensure
electrical compatibility. In figure 1, an AC–DC rectifier
followed by a filtering capacitance Ce is added to smooth the
DC voltage. A controller placed between the rectifier output
and the battery is included to regulate the output voltage.
A simplified energy harvesting circuit shown in figure 3 is
commonly chosen for design analysis. Note that the regulation
circuit and battery are replaced with an equivalent resistor R
and Vc is the rectified voltage across it. The rectifying bridge
is assumed to be perfect in the following study.

Let u be the displacement of the mass M and Vp the
voltage across the piezoelectric element. The governing
equations of the vibrator can be obtained by the conventional
modal analysis [5, 44]:

Mü(t) + ηu̇(t) + K u(t) + �Vp(t) = F(t), (1)

−�u̇(t) + Cp V̇p(t) = −I (t). (2)

An AC–DC harvesting circuit is connected to the power
generator, as shown in figure 3, I (t) is the current flowing into
this circuit and is related to the rectified voltage Vc by

I (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ce V̇c(t) + Vc

R
if Vp = Vc,

−Ce V̇c(t) − Vc

R
if Vp = −Vc,

0 if |Vp| < Vc.

(3)
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Figure 3. A typical AC–DC harvesting circuit.

A sinusoidal mechanical excitation

F(t) = F0 sin wt (4)

is applied to the system with F0 the constant magnitude and
w (in rad s−1) the angular frequency of vibration. Note that in
most vibration-based power harvesting systems the source of
F(t) is due to the excitation of the base with acceleration z̈(t)
as shown in figure 2.

Equation (3) is explained as follows. The rectifying bridge
is open circuited if the voltage |Vp| is smaller than the rectified
voltage Vc. As a result, the current flowing into the circuit
vanishes. On the other hand, when |Vp| reaches Vc, the bridge
conducts and the piezo voltage is kept equal to the rectified
voltage; i.e. |Vp| = Vc. Finally, the conduction in the rectifier
diodes is blocked again when the absolute value of the piezo
voltage |Vp(t)| starts decreasing.

As most applications require the output DC voltage Vc to
be stable, the common approach to achieving this is to assume
that the filter capacitor Ce is large enough so that the output
voltage Vc is essentially constant [28]. Specifically, Vc(t) =
〈Vc(t)〉 + Vripple where 〈Vc(t)〉 and Vripple are the average
and ripple of Vc(t), respectively. This average 〈Vc(t)〉 is
independent of Ce provided that the time constant RCe is much
larger than the oscillating period of the generator [10]. The
magnitude of Vripple, however, depends on Ce and is negligible
for large Ce . Under this hypothesis, Vc(t) ≈ 〈Vc(t)〉, and
therefore in the following, we use Vc, instead of 〈Vc(t)〉, to
represent the average of Vc(t) for simplicity of notation.

To solve (1)–(4) under steady-state operation, we first
determine the relation between the average value of the
rectified voltage and displacement magnitude. From (2) and (3)
the piezo voltage Vp(t) varies proportionally with respect to
the displacement u(t) if the rectifying bridge is blocked and
the outgoing piezoelectric current is zero. Therefore, solutions
of u(t) and Vp(t) are assumed to take the following forms:

u(t) = u0 sin (wt − θ), Vp(t) = g(wt − θ), (5)

where u0 is the constant magnitude of displacement and g(t)
is a periodic function with period 2π and |g(t)| � Vc. Let
T = 2π

w
be the period of vibration, and a and b be two time

instants (b − a = T
2 ), such that the displacement u goes

from the minimum −u0 to the maximum u0. Assume that
V̇p � 0 during the semi-period from a to b. It follows that∫ b

a V̇p(t) dt = Vc − (−Vc) = 2Vc. Note that Ce V̇c(t)+ Vc
R = 0

for a < t < t∗ during which the piezo voltage |Vp| < Vc and
the rectifier conducts when t∗ � t < b. This gives from (3)

∫ b

a
I (t) dt = T

2

Vc

R
(6)

CpCpΘu(t)

I(t)I(t)

V (t)pV (t)p

_

+

Figure 4. An equivalent circuit for the uncoupled model.

since the average current flowing through the capacitance Ce

is zero; i.e.
∫ b

a Ce V̇c(t) dt = 0 for steady-state operation. The
integration of (2) from time a to b is therefore

−2�u0 + 2Cp Vc = −T

2

Vc

R
,

or

Vc = w�R

wCp R + π
2

u0. (7)

Notice that (7) is identical to that derived by [10, 28].
The average harvested power can also be obtained in terms

of the magnitude of displacement

P = V 2
c

R
= w2�2 R(

wCp R + π
2

)2 u2
0. (8)

Thus, we need to find out u0 to determine Vc and P . There
are two approaches in the literature for estimating this [10, 28].
We propose here another method for determining u0, and show
that this new estimation is more accurate than the other two
in section 4. Before showing that, we introduce the following
non-dimensionless parameters which will be used to simplify
the analysis

wn =
√

K

M
, k2

e = �2

K Cp
, ζ = η

2
√

K M
,

	 = w

wn
, r = Cpwn R,

(9)

where wn is the natural frequency of short circuit, k2
e is the

alternative electromechanical coupling coefficient2, ζ is the
damping ratio and 	 and r are the normalized frequency and
electric resistance. Finally, there are two resonances for the
system since the piezoelectric structure exhibits both short
circuit and open circuit stiffness. They are defined by

	sc = 1, 	oc =
√

1 + k2
e , (10)

where 	sc and 	oc are the frequency ratios of short circuit
and open circuit, respectively. Note that the frequency shift
is pronounced if the coupling factor k2

e is large.

2.2. Uncoupled analysis

Piezoelectric devices are frequently modeled as the current
source in parallel with their internal electrode capacitance Cp

as shown in figure 4 [6, 7, 13, 27, 28]. This model is based on

2 The definition of k2
e here is slightly different from that used by [21].
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the assumption that the internal current source of the generator
is independent of the impedance of the external load. This is
equivalent to assuming that the coupling is very weak and the
term �Vp can be dropped from (1). As a result, the governing
equations (1) and (2) are simplified to be

Mü(t) + ηu̇(t) + K u(t) = F(t), (11)

−�u̇(t) + Cp V̇p(t) = −I (t). (12)

As the displacement u(t) can be solved independently
from (11) using a simple harmonic analysis, �u̇(t) can be
treated as the known current source shown schematically in
figure 4. The rectified voltage Vc and the average harvested
power P are therefore determined by (7) and (8). Finally, the
normalized displacement u0, voltage V c and power P in terms
of non-dimensionless parameters (9) are described by

u0 = u0
F0
K

= 1

{4ζ 2	2 + (1 − 	2)2} 1
2

, (13)

V c = Vc
F0
�

=
(

r	

r	 + π
2

)
k2

e

{4ζ 2	2 + (1 − 	2)2} 1
2

, (14)

P = P
F2

0
wn M

= 1

(r	 + π
2 )2

k2
e	

2 r

{4ζ 2	2 + (1 − 	2)2} . (15)

2.3. In-phase analysis

The uncoupled model assumes that the electromechanical
coupling is very weak or the vibration amplitude is independent
of the equivalent resistive load R. If the coupling is not so
weak, Guyomar et al [10] have provided a new approach for
estimating the average harvested power. Indeed, they have
assumed that the external forcing function and the velocity of
the mass are in phase. Precisely, (5) is changed to

F(t) = F0 sin wt, u̇(t) = u0w sin wt . (16)

As the derivation of the harvested power can be found in [10],
we here only list their main results for future comparison.
The normalized displacement u0, voltage V c and power P
are summarized in terms of the non-dimensionless system
parameters

u0 = u0
F0
K

= 1{
2ζ + 2k2

e r
(r	+ π

2 )2

}
	

, (17)

V c = Vc
F0
�

=
(

r

r	 + π
2

)
k2

e{
2ζ + 2k2

e r
(r	+ π

2 )2

} , (18)

P = P
F2

0
wn M

= 1

(r	 + π
2 )2

k2
e r{

2ζ + 2k2
e r

(r	+ π
2 )2

}2
. (19)

2.4. Analytic analysis

For a non-piezoelectric mechanical structure vibrating around
resonance, the in-phase assumption between F(t) and u̇(t) is a
fairly reasonable approximation in the case of low damping.
However, we are not aware whether this assumption still

holds when non-small electromechanical coupling is taken into
account. Hence, it is worth investigating this in detail here.

Let (1) be multiplied by u̇(t) and (2) be multiplied by
Vp(t). Integration of the addition of these two equations from
time a to b gives the equation of the energy balance∫ b

a
F(t)u̇(t) dt =

∫ b

a
ηu̇2(t) dt +

∫ b

a
Vp(t)I (t) dt

+ 1
2 Mu̇2(t)|ba + 1

2 K u2(t)|ba + 1
2 Cp V 2

p (t)|ba . (20)

Suppose that F(t), u(t) and Vp(t) are given by (4) and (5). Let
T = 2π

w
and a and b be two time instants (b − a = T

2 ) such
that the displacement u goes from the minimum −u0 to the
maximum u0. The balance of energy (20) in this case becomes∫ b

a
F(t)u̇(t) dt =

∫ b

a
ηu̇2(t) dt +

∫ b

a
Vp(t)I (t) dt. (21)

We assume that V̇p � 0 during this semi-period from a
to b. Note that Ce V̇c(t) + Vc

R = 0 for a < t <

t∗ during which the piezo voltage |Vp| < Vc. This
also gives (Ce V̇c(t) + Vc

R )Vc = 0 for a < t < t∗.
The rectifier conducts later when the piezo voltage Vp

reaches the rectified voltage Vc, and from (3) Vp(t)I (t) =
Vc(Ce V̇c(t) + Vc

R ) during the conduction t∗ � t < b.
These arguments listed above suggest

∫ b

a
I (t)Vp(t) dt = V 2

c

R

T

2
(22)

for steady-state operation. Next, substituting (4) and (5) into
the equation of energy balance (21) results in

π

2
ηwu2

0 + π

w

V 2
c

R
= π

2
F0u0 sin θ. (23)

Right now we have two equations (7) and (23) and three
unknowns u0, Vc and θ . We need a third one to solve them.
From (2), we have

�V̇p(t) = �

Cp
[−I (t) + �u̇(t)]. (24)

Differentiating (1) with respect to time t and substituting (24)
into it, we find

M
d

dt
ü(t) + η

d

dt
u̇(t) +

(
K + �2

Cp

)
d

dt
u(t) − �

Cp
I (t)

= d

dt
F(t). (25)

Integrating (25) with respect to time t from a to b and using (5)
and (6) provides(

K − Mw2 + �2

Cp

)
u0 − π�

2CpwR
Vc = F0 cos θ. (26)

Finally, we are in a position to determine u0 in terms of
system parameters. Combining both (23) and (26) gives
{
ηwu0 + 2

wR

V 2
c

u0

}2

+
{(

K − Mw2 + �2

Cp

)
u0 − π�

2CpwR
Vc

}2

= F2
0 . (27)
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As the magnitude of displacement u0 is related to the rectified
voltage Vc by (7), the above equation (27) can be further
simplified to find u0. The result is

u0 = F0{(
ηw + 2w�2 R

(CpwR+ π
2 )2

)2 +
(

K − w2 M + w�2 R
CpwR+ π

2

)2
} 1

2

.

The following summarizes our main findings:

u = u0
F0
K

= 1{(
2ζ + 2k2

e r
(r	+ π

2 )2

)2
	2 +

(
1 − 	2 + 	k2

e r
r	+ π

2

)2
} 1

2

, (28)

V c = Vc
F0
�

=
(

r	

r	 + π
2

)

× k2
e{(

2ζ + 2k2
e r

(r	+ π
2 )2

)2
	2 +

(
1 − 	2 + 	k2

e r
r	+ π

2

)2
} 1

2

, (29)

P = P
F2

0
wn M

= 1(
r	 + π

2

)2

× k2
e	

2r{(
2ζ + 2k2

e r
(r	+ π

2 )2

)2
	2 +

(
1 − 	2 + 	k2

e r
r	+ π

2

)2
} , (30)

where (30) is interpreted as follows. Suppose the source of
the forcing function comes from the vibration of the base
of the structure, then this gives F0 = M A where A is the
magnitude of acceleration of the exciting base. It follows that
the harvested average power per unit mass is described by

P

M
= A2

wn
P(r,	, ke, ζ ).

This shows that the harvested average power per unit mass
depends on the characteristics of the input vibration (frequency
	 and acceleration A), the normalized electric resistance r ,
the short circuit resonance wn , the mechanical damping ratio
ζ , and the overall electromechanical coupling coefficient k2

e
of the system. Thus, the scheme to optimize the power
either by tuning the electric resistance, selecting suitable
operation points or adjusting the coupling coefficient by
optimal structural design can be guided completely by (30).

3. Optimal resistance and power

Suppose 	, ke and ζ are fixed. The design criterion for
reaching the maximal power flow under steady-state operation
can be obtained by tuning the load impedance according to

∂

∂r
P(r,	, ke, ζ )|	,ke,ζ = 0. (31)

We use the notation r opt to represent the solution of (31), and
r opt = r opt(	, ke, ζ ) in general. Besides, the superscript ‘opt’
denotes functions evaluated at the optimal load resistance r opt.
For example,

P
opt = P(r opt,	, ke, ζ ); etc.

The selection of the suitable operation frequency is also
important to maximize the average harvested power, and we
will discuss this in section 3.3.

3.1. Uncoupled analysis

Substituting (15) into (31), we find the optimal load is

r opt = π

2	
or Ropt = π

2Cpw
. (32)

It follows from (13), (14) and (15) that the normalized
displacement, voltage and power evaluated at the optimal load
are

uopt
0 = uopt

0
F0
K

= 1

{4ζ 2	2 + (1 − 	2)2} 1
2

, (33)

V
opt
c = V opt

c
F0
�

= 1

2

k2
e

{4ζ 2	2 + (1 − 	2)2} 1
2

, (34)

P
opt = Popt

F2
0

wn M

= 1

2π

k2
e	

{4ζ 2	2 + (1 − 	2)2} . (35)

In the uncoupled model the optimal harvested power flow can
be achieved by tuning the load impedance to match the internal
impedance of the piezoelectric generator, i.e. Ropt = π

2Cpw
.

In addition, the rectified voltage V opt
c = 1

2 Voc where Voc is
the maximum voltage at the open circuit condition for the
uncoupled model [28].

3.2. In-phase analysis

Lefeuvre et al [19] have questioned the soundness of the
uncoupled model and proposed a modified estimation of the
optimal load based on the in-phase assumption. The results are

classified according to the inequality of k2
e
ζ

−2π	 and are listed
below for future comparison.

Case 1: k2
e
ζ

− 2π	 � 0. The optimal normalized load,
displacement, voltage and power evaluated at the optimal
condition are

r opt
o = π

2	
, (36)

uopt
0 = uopt

0
F0
K

= 1

{2ζ	 + k2
e

π
}
, (37)

V
opt
c = V opt

c
F0
�

= 1

2

k2
e

{2ζ	 + k2
e

π
}
, (38)

P
opt = Popt

F2
0

wn M

= 1

2π

k2
e	

{2ζ	 + k2
e

π
}2

. (39)

Note that the optimal resistance (36) is the same as (32), and

the optimal power in (39) is close to (35) provided that k2
e
ζ

� 1
and 	 ≈ 1.
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Case 2: k2
e
ζ

− 2π	 � 0. Suppose the electromechanical

coupling factor k2
e is large and the damping is small. The

optimal resistance r opt
o in (36) turns out to be the one

minimizing the power flow. There are two new optimal
resistances called r opt

a and r opt
b to maximize the power in this

case, and the corresponding normalized displacement, voltage
and power are

r opt
a = 1

2	2

⎧⎨
⎩

(
k2

e

ζ
− π	

)
−

√(
k2

e

ζ
− π	

)2

− (π	)2

⎫⎬
⎭ ,

(40)

r opt
b = 1

2	2

⎧⎨
⎩

(
k2

e

ζ
− π	

)
+

√(
k2

e

ζ
− π	

)2

− (π	)2

⎫⎬
⎭ .

(41)

uopt
0 |r=ropt

a
= uopt

0
F0
K

∣∣∣∣∣
r=ropt

a

= uopt
0 |r=ropt

b
= uopt

0
F0
K

∣∣∣∣∣
r=ropt

b

= 1

4ζ	
,

(42)

V
opt
c |r=ropt

a
= V opt

c
F0
�

∣∣∣∣∣
r=ropt

a

= k2
e

8ζ	

⎧⎨
⎩1 −

√√√√1 − 2π	

k2
e
ζ

⎫⎬
⎭ , (43)

V
opt
c |r=ropt

b
= V opt

c
F0
�

∣∣∣r=ropt
b

= k2
e

8ζ	

⎧⎨
⎩1 +

√√√√1 − 2π	

k2
e
ζ

⎫⎬
⎭ , (44)

P
opt|r=ropt

a
= Popt

F2
0

wn M

∣∣∣∣∣∣
r=ropt

a

= P
opt|r=ropt

b
= Popt

F2
0

wn M

∣∣∣∣∣∣
r=ropt

b

= 1

16ζ
. (45)

Note that r opt
a < r opt

o < r opt
b . It is interesting to see

that the harvested average power has two identical maxima
and depends only on the internal damping of the generator.
Lefeuvre et al [19] have interpreted the appearance of two
optimal resistances as characteristic of a strongly coupled
system. However, this has to be taken with caution since there
are always two optimal loads for each applied frequency in the

in-phase model provided that k2
e
ζ

− 2π	 � 0. We will discuss
it in section 3.3.

3.3. Analytic analysis

The power derived from the analytic analysis is given by (30).
Although it extensively describes the characteristics of the
harvesting system, the complicated nature of (30) makes it
difficult to derive the closed form solution of the optimal
resistance from (31). Alternatively, we discuss the functional
behaviour of (30) according to the different ranges of the

parameter k2
e
ζ

. We study the small and medium ranges of k2
e
ζ

in sections 4.1 and 4.2, respectively. Here we provide an
analysis to show that the harvested power can be maximized at
two different electrical loads at the respective operating points

provided that k2
e
ζ

� 1. However, we are not aware under
exactly what condition there exist two optimal pairs. But if
the AC–DC harvesting circuit shown in figure 3 is changed to

an AC circuit, it can be shown that two optimal pairs appear
whenever

k2
e

ζ
� 4(ζ + 1).

Returning to the standard AC–DC circuit, our results of
numerous numerical simulations suggest

k2
e

ζ
� 10 (46)

as the rule of thumb for the appearance of two optimal pairs,
and we will use it as a criterion for designing a strongly coupled
electromechanical system.

Case 1: Short circuit resonance. The power P in (30) for
	 = 	sc = 1 can be expressed as

P
F2

0
wn M

= 1

ζ

r x

{4[(r + π
2 ) + rx

(r+ π
2 )

]2 + r 2x2} , (47)

where x = k2
e
ζ

. Suppose the parameter x � 1. To optimize the
power in (47), r has to be small or proportional to the inverse
of x ; otherwise, the power will tend to zero for non-small r
while x remains extremely large. This gives

P
F2

0
wn M

≈ 1

ζ

r x

{4[π
2 + 2

π
r x]2 + r 2x2} (48)

for small r and x � 1. The optimal power flow can be obtained
by differentiating (48) with respect to r . It follows that

r opt
sc ≈

(
π2

√
16 + π2

)
1
k2

e
ζ

if x = k2
e

ζ
� 1. (49)

The corresponding normalized displacement, voltage and
power are

uopt
0 = uopt

0
F0
K

≈
√

16 + π2

32 + 2π2 + 8
√

16 + π2

1

2ζ
, (50)

V
opt
c = V opt

c
F0
�

≈ π√
32 + 2π2 + 8

√
16 + π2

, (51)

P
opt = Popt

F2
0

wn M

≈
(

1

8 + 2
√

16 + π2

)
1

ζ
. (52)

Case 2: Open circuit resonance. We set x = k2
e
ζ

again.
The power P in (30) for the applied frequency operated at
	oc = √

1 + k2
e can be expressed as

P
F2

0
wn M

= 1

ζ

r x	2
oc{

4
[
(r	oc + π

2 ) + rx
(r	oc+ π

2 )

]2
	2

oc + π 2

4 x2

} . (53)

To estimate the optimal power in (53) for the case of x � 1,
r has to be proportional to x by examining the term r x in the
numerator and π 2

4 x2 in the denominator. This shows that r has
to be large to maximize (53). Hence, we may rewrite (53) as

P
F2

0
wn M

≈ 1

ζ

r x	2
oc{

4
[
r	oc + x

	oc

]2
	2

oc + π 2

4 x2

} (54)
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Table 1. The relation between the system parameters k2
e and ζ and

the normalized electric resistance, displacement, voltage, current and
power designed at the maximal power flow operated at the short
circuit (	sc) and open circuit (	oc) resonances. The normalized

current is defined as I = V c
r . Note that the condition k2

e
ζ

� 1 is
implied in the analysis.

Optimal conditions 	sc 	oc

Resistance ropt
sc ∝ 1

k2
e
ζ

< ropt
oc ∝ 1

(1+k2
e )

k2
e
ζ

Displacement uopt
0 ∝ 1

ζ
> uopt

0 ∝ 1

ζ(

√
1+k2

e )

Voltage V
opt
c ∝ 1 < V

opt
c ∝ 1√

1+k2
e

k2
e
ζ

Current I
opt ∝ k2

e
ζ

> I
opt ∝ √

1 + k2
e

Power P
opt ∝ 1

ζ
= P

opt ∝ 1
ζ

provided x � 1. The optimal power flow can be obtained by
differentiating (54) with respect to r . This gives

r opt
oc ≈

√
16 + π2

4

k2
e
ζ

1 + k2
e

if x = k2
e

ζ
� 1. (55)

The corresponding normalized displacement, voltage and
power are

uopt
0 = uopt

0
F0
K

≈
√

16 + π2

32 + 2π2 + 8
√

16 + π2

1

2ζ
√

1 + k2
e

, (56)

V
opt
c = V opt

c
F0
�

≈
√

16 + π2

32 + 2π2 + 8
√

16 + π2

k2
e

2ζ
√

1 + k2
e

, (57)

P
opt = Popt

F2
0

wn M

≈
(

1

8 + 2
√

16 + π2

)
1

ζ
. (58)

Discussions: In the case of large k2
e
ζ

, we find that for each
applied frequency there is only one optimal load to maximize
the power output. In addition, we have shown that the
harvested power has two identical peaks, but is optimized at
different resistances and operation frequencies; i.e.

P(r opt
sc ,	sc, ke, ζ ) = P(r opt

oc ,	oc, ke, ζ )

provided that k2
e
ζ

� 1. These results are in contrast with those
obtained by the in-phase assumption. There always exist two
optimal resistances given by (40) and (41) for every frequency

in the in-phase model whenever k2
e
ζ

− 2π	 � 0 (see also
figure 9(f)). Besides, the in-phase model predicts the identical
displacement evaluated at two optimal loads (see (42)) while
our analytic analysis predicts unequal peaks of displacement;
c.f. (50) and (56). This result is crucial in the design of micro-
scale power generators [5].

Next, (49) and (55) suggest r opt
sc ∝ 1

(k2
e /ζ )

� 1 while

r opt
oc � 1

ζ
. Therefore, r opt

sc can be made as small as possible

by increasing the electromechanical coupling coefficient k2
e

while r opt
oc has an upper bound. Finally, table 1 summarizes

the relation between the system parameters k2
e and ζ and the

normalized load, displacement, voltage, current and power
designed at the maximal power flow operated either at the short
circuit (	sc) or open circuit (	oc) resonances.

4. Comparisons

We now show that in section 4.1 the various forms of
power derived from different approaches are almost the same

provided that the parameter k2
e
ζ

is small, and we will use
examples including experimental validation to demonstrate
that the discrepancies among these analyses become large

when the parameter k2
e
ζ

is increasing. In section 4.3 we find
that the average harvested power is maximized at two optimal

loads operated at different frequencies in the case of large k2
e
ζ

.

4.1. Small k2
e
ζ

Suppose that k2
e � 1 and k2

e
ζ

� 1. Thus, the shift in frequency

from 	sc to 	oc is not pronounced for small k2
e . Let the applied

frequency ratio 	 be operated between 	sc and 	oc. We may
set

	2 = 1 + f k2
e , 0 � f � 1.

Set x = k2
e
ζ

. The power P derived from the analytic analysis
in (30) can be expressed as

P
F2

0
wn M

= r

4ζ
(
r	 + π

2

)2

× x{(
1 + xr

(r	+ π
2 )2

)2 + x2

4	2

(
− f + 	r

r	+ π
2

)2
}

≈ r x

4ζ
(
r	 + π

2

)2 {1 + O(x)}

≈ k2
er

4ζ 2
(
r	 + π

2

)2 (59)

provided that x � 1 and 	 ≈ 	sc ≈ 	oc ≈ 1. The
notation O(x) denotes the higher order terms which tend to
zero as x tends to zero. Comparing (59) with the power derived
from the uncoupled assumption (15) and that from the in-phase
assumption (19) justifies our assertion. Figures 5(a) and (b)
are the normalized rectified voltage and average harvested
power versus the normalized resistance around resonance in
the case of ke = 0.05 and ζ = 0.03. The solid, dashed
and long-dashed lines are results derived from the analytic,
in-phase and uncoupled solutions. These three lines are
almost coincident. We therefore conclude that the conventional
uncoupled solution is suitable if k2

e
ζ

� 1.

4.2. Medium k2
e
ζ

The discrepancies among these approaches become significant

when the ratio k2
e
ζ

increases. For piezoelectric generators

operated in the {3-1} mode, k2
e can approach e2

31

C E
11ε

S
33

if the

structure is made up entirely of piezoelectric materials [5].
Most electromechanical structures are made up of both
piezoelectric and non-piezoelectric materials. The factor k2

e
is then usually less than the theoretical value. On the other
hand, the coupling coefficient k2

e can approach its upper bound
for micro-scale devices since the contribution of piezoelectric
elements to the overall structural stiffness is significant in this
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Figure 5. Comparisons in the case of small k2
e
ζ

. We use ke = 0.05 and ζ = 0.03 (
k2

e
ζ

= 0.083). (a) Normalized rectified voltage versus
normalized resistance. (b) Normalized harvested power versus normalized resistance.

case [5]. We then investigate it in detail here. We assume

ke = 0.4 and ζ = 0.03(
k2

e
ζ

= 5.33) in the following analysis.
The normalized displacement, voltage and power against

the normalized electric resistance are plotted in figures 6(a)–
(c) operated at the short circuit resonance and in figures 6(d)–
(f) operated at the open circuit resonance. The long-dashed,
dashed and solid lines are results calculated based on the
uncoupled, in-phase and analytic solutions. As expected,
predictions from the uncoupled analysis are far away from
those predicted by either analytic or in-phase solutions since
the electromechanical coupling is not small in this case. We
then conclude that the uncoupled solution is not suitable for

medium or even large k2
e
ζ

.
Figure 6 also reveals substantial differences between our

analytic and the in-phase analyses. We therefore use both
simulation and experiment to determine which approaches
predict more accurate behaviour of the energy harvesting
system. Consider the numerical simulation first. Notice that (1)
and (2) can be transformed to an equivalent RLC circuit with
R = η

�2 as resistance, L = M
�2 as inductance and C = �2

K
as capacitance. We use the software PSpice to simulate this
equivalent circuit connected to the AC–DC harvesting circuit
shown in figure 3. The results are illustrated in figure 7
where we plot the normalized power versus electric resistance
at short circuit and open circuit resonances. The numerical
results are marked in figure 7 using open circles. Apparently,
the numerical simulations favor results predicted based on
our analytic solutions. In particular, our approach accurately
predicts the optimal electric load resistance maximizing the
average harvested power. The optimal load r opt

sc (analytic) =
0.45 is smaller at 	sc while r opt

oc (analytic) = 4.64 is larger
at 	oc. However, the optimal resistances predicted by the in-
phase solutions at 	sc and 	oc are very close: r opt

sc (in-phase) =
1.57 and r opt

oc (in-phase) = 1.46, and therefore are not suitable
for the design.

Finally, we validate the analytic solution by our recent
experiment. The specimen is a piezoelectric triple-layer bender
with the overall dimension 40 mm × 20 mm × 0.36 mm (L ×

S × (h + 2t)) as shown similarly in figure 2. The overall
mass of the beam is m p + mb = 2.2509 g and an attached
mass ma = 0.4207 g is put at the tip. The measured open
circuit and short circuit resonances are 52.9 and 53.7 Hz,
respectively. This gives a coupling factor ke around 0.17.
The mechanical damping ratio is measured at about 0.01, and

therefore k2
e
ζ

= 2.89. The applied acceleration is around

1.856 m s−2 and is slightly dependent on electrical resistances.
The power harvesting circuit is chosen using the standard AC–
DC circuit illustrated in figure 3. The values of rectified voltage
Vc are measured at the open circuit resonance for various
electrical resistances and are marked in figure 8(a) using
dark circles •. The corresponding values of harvested power
are also plotted against the various electrical resistances in
figure 8(b). The optimal electrical resistance can be determined
from figure 8(b) and is around Ropt

exp ≈ 200 k	. The predicted
results from the uncoupled, in-phase and analytic solutions
are represented by long-dashed, dashed and solid lines in
figure 8. As expected, the uncoupled solutions are not able
to reflect the electrical performances of the system. The in-
phase solutions also overestimate the measured voltage and
power, and underestimate the optimal load (Ropt

in-phase ≈ 88 k	).
On the other hand, the analytic solutions are close to the
experimental observations and the predicted optimal load is
around Ropt

analytic ≈ 210 k	 which is pretty close to the measured
one. The deviations between the experimental results and the
analytic solutions are believed to be due to diode loss which
has not been incorporated in the current analysis.

4.3. Large k2
e
ζ

The shift in frequency is significant if either the piezoelectric
constant or the contribution of the piezoelectric element
to the overall stiffness is large; i.e. k2

e is large. In
particular, a piezoelectric power generator operated in the
{3-3} (longitudinal) mode can have high coupling coefficient

k2
e approaching e2

33

C E
33ε

S
33

if the piezoelectric element constitutes

the whole structure [5]. Besides, if the mechanical damping
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Figure 6. Comparisons for medium k2
e
ζ

. We use ke = 0.4 and ζ = 0.03 (
k2

e
ζ

= 5.33): (a)–(c) are the normalized displacement, voltage and
power versus normalized resistance operated at 	sc while (d)–(f) are those operated at 	oc.

ratio is small, or the factor k2
e
ζ

is large, the selection of the
correct operating frequency is very important for achieving the
maximal power. Recently, much experimental effort has been
made to fabricate small-scale piezoelectric cantilever beams
with interdigitated electrodes on the beam surface to produce
the {3-3} mode using various materials [12, 13, 47]. Some of
their chosen materials such as PZN-PT and PMN-PT relaxor

ferroelectrics can have even higher piezoelectric constants
than conventional PZT. As a result, the shift in resonance is
expected to be pronounced due to large k2

e in these micro-scale
devices, and we study this effect on power harvesting now.

We assume ke = 1.14 and ζ = 0.03. This gives

	sc = 1,	oc = 1.52,
k2

e
ζ

= 43.3. As illustrated in
section 4.2, results predicted from the uncoupled analysis are
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Figure 7. Numerical validation for medium k2
e
ζ

. We use ke = 0.4 and ζ = 0.03 (
k2

e
ζ

= 5.33). The normalized power versus normalized
resistance is plotted in (a) operated at 	sc and in (b) operated at 	oc.
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Figure 8. Experimental validation for medium k2
e
ζ

. The structure is excited at its open circuit resonance. The parameters ke and ζ are

measured to be 0.17 and 0.01 (
k2

e
ζ

= 2.89). (a) Rectified voltage versus resistance. (b) Harvested power versus resistance.

not realistic if k2
e
ζ

is not small. We then omit them here.
The normalized displacement, voltage and power are plotted
against the normalized electric resistance and frequency in
figures 9(a)–(c) calculated based on the analytic solutions as
well as in figures 9(d)–(f) calculated based on the in-phase
solutions. In figure 9(c) we see clearly that the harvested
power has two optimal values of equal amount evaluated at
two different resistances and frequencies; i.e. P is maximized
at

(r opt
1 ,	

opt
1 ) = (0.062, 1.025),

(r opt
2 ,	

opt
2 ) = (17.299, 1.492).

(60)

Note that (60) confirms our theoretical predictions made in
section 3.3 which shows that r opt

1 � 1 and 	
opt
1 ≈ 	sc and

r opt
2 � 1 and 	

opt
2 ≈ 	oc. However, the in-phase approach

fails to predict the optimal operating frequencies since there are
always two optimal electric loads for each applied frequency

as shown in figure 9(f). The effect of the optimal selection
of operating frequency in generating the desired properties
is neglected in the in-phase analysis, which turns out to be
important in the design criterion.

Switching between these two peaks can be achieved
by varying the electric loads along the curve r opt(	, ke, ζ )

obtained from (31). The implication of this result can be
applied to enhancing the efficiency of charging a battery.
Indeed, Ottman et al [28] have shown that the efficiency of
direct charging of a battery without a suitable controller is
pretty slow. The main reason for this is that the equivalent
electrical resistance of a battery is much smaller than the
optimal electrical resistance. Turning the load impedance
needs a special power converter [29], which in turn may
consume additional extracted energy and make the circuitry
unrealistic (see the discussion of [43]). Alternatively, if the
piezoelectric generator has a pronounced frequency shift and
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Figure 9. Comparisons for large k2
e
ζ

. We use ke = 1.14 and ζ = 0.03 (
k2

e
ζ

= 43.3). The normalized displacement, voltage and power are
plotted against the normalized electric resistance and frequency in (a)–(c) calculated based on the analytic solutions as well as in (d)–(f)
calculated based on the in-phase solutions.
(This figure is in colour only in the electronic version)

large k2
e
ζ

, the equivalent impedance of a battery can be matched
to the optimal load by selecting a suitable operating point close
to 	sc since the harvested power has a peak around there.

Next, unlike the power, the displacement and voltage
evaluated at these two optimal conditions (60) differ
significantly (compare figures 9(a) and (b) with (c)). The
displacement has two hills with one chain concentrated at 	sc

and the other at 	oc. But unlike the power, it is larger at 	sc

than at 	oc since the overall damping of system is higher at
the open circuit resonance (see also the predictions in table 1).
The advantage of operating at the second peak close to 	oc is
space-saving if the smaller device is preferred.

Finally, figure 9(b) clearly demonstrates that the
normalized rectified voltage evaluated at (r opt

2 ,	
opt
2 ) is one

order of magnitude higher than that evaluated at (r opt
1 ,	

opt
1 ). It

is thus advantageous to operate at the open circuit resonance to
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overcome the minimum voltage requirement of the rectifying
bridge in the micro-scale device. On the other hand, the
steady-state current evaluated at the first peak of power around
	sc is one order of magnitude higher than that evaluated at
the second peak of power around 	oc, since P = I V and
the optimal power is identical at these two peaks. We may
apply this result to charging batteries. Indeed, optimizing the
power flowing into the battery is equivalent to maximizing the
current into it as the battery voltage is essentially constant
or only changes slowly. Hence, operating at the short circuit
resonance together with the corresponding optimal load could
enhance the efficiency of charging the battery directly without
adjustable convectors.

5. Conclusions

We study the optimal AC–DC power output for a vibrating
piezoelectric generator connected to an energy harvesting
circuit. In contrast with estimates proposed by the uncoupled
and in-phase approaches [10, 28], we show that the power
extraction depends on the input vibration characteristics
(frequency and acceleration), the mass of the generator, the
electrical load, the natural frequency, the mechanical damping
ratio, and the electromechanical coupling coefficient of the
system. An expression for average harvested power that
incorporates all of these factors is analytically developed
by (30). Thus, the scheme to optimize the power either
by tuning the electric resistance, selecting suitable operation
points, or adjusting the system coupling coefficient by optimal
structural design can be guided completely by (30). Further,
it is also highly recommended that all these parameters be
provided in all future publications to facilitate the relative
comparison of various devices.

We compare our approach to others proposed based on
the uncoupled and in-phase assumptions. We show that
the conventional uncoupled solution is suitable provided that

the ratio k2
e
ζ

� 1, while the discrepancies between these

distinct approaches become significant when k2
e
ζ

increases.
Figures 6 and 9 highlight the striking contrast in normalized
displacement, voltage and power output calculated based on
the uncoupled, in-phase and analytic solutions for non-small

ratio k2
e
ζ

. We perform a series of experiments and numerical
simulations to evaluate these approaches. We find our analytic
solutions are in good agreement with both experiments and
simulations as shown in figures 7 and 8. The in-phase
solutions, however, overestimate the measured voltage and
power and underestimate the optimal load compared with
experimental observations.

We make a particular study of the important case when the
shift in device natural frequency is pronounced and the quality
factor of the system is large, since this has been neglected
by most current optimization schemes, as pointed out by [5].
The effect of this frequency shift is expected to be more
pronounced for micro-scale harvesters, since the contribution
of piezoelectric elements to the overall structural stiffness is
much larger than for bulk generators. In this situation, the
harvested power is shown to have two optima evaluated at
(r opt

1 ,	
opt
1 ) and (r opt

2 ,	
opt
2 ), where 	

opt
1 is close to 	sc and the

electric load r opt
1 is very small, while 	

opt
2 is close to 	oc and

r opt
2 is large. Table 1 sheds light on the conspicuous contrast

in the normalized displacement, electric resistance, voltage,
current and power evaluated at these two power optimal pairs.
Finally, for devices with strong electromechanical coupling,
several design guidelines including enhancing the efficiency of
charging a battery directly are recommended.
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