Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2010 Smart Mater. Struct. 19 125009
(http://iopscience.iop.org/0964-1726/19/12/125009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 111.240.226.181
The article was downloaded on 23/10/2010 at 02:19

Please note that terms and conditions apply.
Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting

I C Lien1, Y C Shu1,3, W J Wu2, S M Shiu1 and H C Lin1

1 Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan, Republic of China
2 Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 106, Taiwan, Republic of China

E-mail: yichung@iam.ntu.edu.tw

Received 11 June 2010, in final form 20 September 2010
Published 22 October 2010
Online at stacks.iop.org/SMS/19/125009

Abstract
SSHI (synchronized switch harvesting on inductor) techniques have been demonstrated to be capable of boosting power in vibration-based piezoelectric energy harvesters. However, the effect of frequency deviation from resonance on the electrical response of an SSHI system has not been taken into account from the original analysis. Here an improved analysis accounting for such an effect is proposed to investigate the electrical behavior of a series-SSHI system. The analytic expression of harvested power is proposed and validated numerically. Its performance evaluation is carried out and compared with the piezoelectric systems using either the standard or parallel-SSHI electronic interfaces. The result shows that the electrical response of an ideal series-SSHI system is in sharp contrast to that of an ideal parallel-SSHI system. The former is similar to a strongly coupled electromechanical standard system operated at the open circuit resonance, while the latter is analogous to that operated at the short circuit resonance with different magnitudes of matching impedance. In addition, the performance degradation due to non-ideal voltage inversion is also discussed. It shows that a series-SSHI system avails against the standard technique in the case of medium coupling, since its peak power is close to the ideal optimal power and the reduction in power is less sensitive to frequency deviation. However, the consideration of inevitable diode loss in practical devices favors the parallel-SSHI technique, since the frequency-insensitive feature is much more pronounced in parallel-SSHI systems than in series-SSHI systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Power harvesting refers to energy retraction from ambient surroundings and converting it into useful electric energy. With advances in wireless technology and low-power electronics, energy harvesting from environmental resources has the potential to power mobile and wireless microsystems where battery replacement is either practically impossible or prohibitively expensive[7, 26, 31, 48]. Due to the ubiquitous presence of ambient vibrations, extensive research efforts have been made for converting mechanical energy into electrical power through piezoelectric, electromagnetic and capacitive transducers[36, 40]. Amongst them, piezoelectric vibration-to-electricity converters have been viewed as being superior to other means, as they have high electromechanical coupling, no external voltage source requirement and they are particularly attractive for use in MEMS[15, 20, 40] and nanosystems[28, 38]. As a result, the use of piezoelectric materials for scavenging energy from ambient vibration sources has recently witnessed a dramatic rise for power harvesting[5, 13, 24, 25, 49, 56]. A vibration-based piezoelectric energy harvesting system includes three essential components: an oscillator, a
piezoelectric medium and an energy storage circuit, as demonstrated in figure 1. An oscillator is designed to transmit ambient vibrations into mechanical strain energy which is converted into electrical energy via the direct piezoelectric effect. The generated charges are accumulated through an interfacing circuit for AC/DC conversion and presented to a load circuit. Precisely, the power generator is typically designed as a resonant oscillator since the peak power is achieved when the driving frequency matches the device’s resonance [40]. The transducer materials for energy conversion include PZT, PVDF and the newly emerged ferroelectric relaxors such as PMN-PT [30, 50]. They have been used in various types of structures to serve specific purposes, such as cantilever beams in transverse excitation bases [1, 16, 35] and plates (diaphragms) in pressure-loaded environments [17, 32]. The layout of electrodes on the plate’s surfaces has to be carefully patterned to avoid charge cancellation [18, 41]. The design of generators based on non-resonant excitations has also received considerable recent attention [3, 37, 42, 52].

The circuit design is required for electrical compatibility and maximum power transfer to the load. It consists of AC/DC interfacing electronics connecting the piezoelectric element to the terminal electric load. Power optimization schemes therefore depend not only on the mechanical solicitation, but also on the specific types of interfacing circuits. This motivates a variety of research efforts for proposing appropriate electronic interfaces. The most common one is the standard interface which includes an AC/DC rectifier followed by a filtering capacitance, as shown in the middle of figure 1. Ottman et al [33] have studied the electrical behavior of this standard system based on the uncoupled model which simplifies the vibrating piezoelectric structure as the current source in parallel with its internal capacitance. They further developed adaptive DC-/DC converters for impedance matching [34]. Shu and Lien [44] subsequently proposed an improved analysis for optimizing AC/DC power extraction without the uncoupled assumption. They also investigated the relation between electrically induced damping and conversion efficiency for a rectified piezoelectric device [45] (cf [22, 23, 39]). The result shows that optimization criteria vary according to the relative strength of electromechanical coupling to mechanical damping ratio. Guan and Liao [10, 11] analyzed the charge/discharge efficiencies for several different energy storage devices. Wu et al [54] and Wickenheiser et al [53] investigated the transient behavior of a storage capacitor under charging. Liu et al [27] used the switch-mode power electronics to develop a scheme for active energy harvesting. Based on the beam model, Hu et al [14] numerically studied the interaction between the piezoelectric vibrating structure and the storage circuit.

Another recently emerged energy harvesting circuit is the ‘synchronized switch harvesting on inductor’ (SSHI) interface which is added to the piezoelectric element together with the standard DC technique, as also illustrated in the middle of figure 1. This technique was proposed by Guyomar and his co-workers [2, 12, 19, 21, 29] who have shown that power is boosted significantly in a weakly coupled electromechanical system. However, the effect of frequency deviation from resonance on the electrical behavior of an SSHI system is not taken into account in the original analysis. Instead, Shu et al [46] have proposed several improved estimates for the parallel-SSHI circuit accounting for this effect. They have shown that the electrical response of a parallel-SSHI system is similar to that of a strongly coupled electromechanical standard system operated at the short circuit resonance. Furthermore, this technique improves the scavenger’s bandwidth significantly in comparison to the standard technique. Here, we provide another improved analysis for electrical performance evaluation of a series-SSHI system. It takes into account the full electromechanical coupling response and vibration phase-shift effect, and therefore the analysis is capable of revealing the system characteristics in the vicinity of resonance. The results show that the electrical behaviors of these two ideal SSHI systems are conjugate with each other in comparison to the standard technique. However, they exhibit a dissimilar response if the effect of diode loss is considered. It turns out the feature of broadband could be lost in practical devices endowed with series-SSHI circuits. Finally, some of our preliminary results have been reported in a conference paper [47]. Here, we systematically derive the main results with numerical validation and provide discussions concerning electrical loss in detail.

This paper is organized as follows. First a piezoelectric transducer is modeled as a lumped single-degree-of-freedom system undergoing periodic forcing in section 2. A number of research efforts based on the distributed parameter methods have been made for analyzing a vibrating piezoelectric structure connected to a single resistor [4, 8, 9, 16, 43]. They show advantages in predicting the model shapes, strain distribution and energy harvesting performance based on geometry and material properties of a structure. However, difficulties arise if the nonlinear interfacing circuits are taken into account in analysis [14]. Limited success has been achieved by bridging structural modeling and circuit
simulation such as coupled FEM–SPICE models [6,55]. Hence, if the focus is the overall electrical behavior rather than the detailed response at each specific point of a structure, the reduced model suffices the need for harvesting circuit design. Subsequently, an energy harvester using the standard circuit is introduced in section 2.1 and the electrical response of a series-SSHl system is analyzed in detail in section 2.2. The harvested power is derived and expressed explicitly in terms of several dimensionless system parameters. The operating points for achieving optimal power is also discussed there. For the purpose of comparison, the electrical behavior of a parallel-SSHl system is briefly reviewed in section 2.3. Next, the results are numerically validated in section 3.1 and are discussed under the case of non-ideal voltage inversion in section 3.2 and the case of diode loss in section 3.3. The conclusions are made in section 4.

2. Energy harvesting interfacing circuits

Consider a piezoelectric structure whose modal density is assumed to be widely separated. Suppose it is vibrating at around its resonance frequency. In this case, the resonator is modeled as a mass + spring + damper + piezo structure shown in figure 1. It consists of a piezoelectric element coupled to a mechanical structure with governing equations described by [44]

\[M\ddot{u}(t) + \eta_m\dot{u}(t) + Ku(t) + \Theta V_p(t) = F(t), \]
\[-\Theta\dot{u}(t) + C_p V_p(t) = -I(t), \]

where \(u \) is the displacement of the mass \(M \), \(V_p \) the voltage across the piezoelectric element, \(F(t) \) the forcing function applied to the system and \(I(t) \) the current flowing into the specified circuit. In addition, in equations (1) and (2), \(\eta_m \) is the mechanical damping coefficient, \(K \) is the stiffness of the structure, \(\Theta \) is the piezoelectric coefficient and \(C_p \) is the clamped capacitance. The explicit expressions of these effective coefficients depending on the material constants and the design of harvesters can be obtained using the standard modal analysis [51]. In addition, most applications of piezoelectric materials for power generation involve the use of periodic straining of piezoelectric elements. Thus, the excitation considered here is assumed to be harmonic with

\[F(t) = F_0 \sin \omega t, \]

where \(F_0 \) is the constant magnitude and \(\omega \) (in radians per second) is the angular frequency of vibration.

Besides the piezoelectric structure designed for transmitting and converting ambient vibrations to electrical energy, it is imperative to include a suitable circuit system for charge storage, as also shown in figure 1. First, the electric compatibility has to be guaranteed since a vibrating piezoelectric element generates an AC voltage rather than DC output. To achieve this goal, a rectifier followed by a filtering capacitance \(C_c \) is added for AC/DC conversion. Next, an adapter between the rectifier output and the battery is included for impedance matching. Typically, the analysis is simplified by replacing the regulation circuit and battery with an equivalent resistor \(R \) as shown in figure 2(a), where \(V_r \) is the rectified voltage across the electrical load. It therefore comprises a standard energy harvesting circuit commonly used for design analysis. In addition to the passive rectifier, certain semi-active rectifying techniques have also been proposed recently for power boosting, as schematically shown in the middle of figure 1. It consists of a synchronized switch-mode control for piezoelectric voltage inversion by monitoring system displacement. Examples including the series and parallel-SSHl techniques are illustrated in figures 2(b) and (c) [2,12,21]. Since the electrical behavior is significantly influenced by the electronic interface connecting the piezoelectric element and terminal load, these different harvesting circuits are analyzed now.

2.1. Standard interface

Consider the case of a standard circuit shown in figure 2(a). Typically, the filter capacitor \(C_c \) is chosen to be large enough so that the rectified voltage \(V_r \) is essentially constant to have a stable DC output voltage [33]. Besides, the rectifying bridge used here is assumed to be perfect so that it is open circuited if the piezoelectric voltage \(|V_p| < V_r \). As a result, the current flowing into the circuit vanishes. On the other hand, when \(|V_p| \) reaches \(V_r \), the bridge conducts and the piezoelectric voltage is kept equal to the rectified voltage, i.e. \(|V_p| = V_r \). Finally, the conduction in the rectifier diodes is blocked again when \(|V_p(t)| \) starts decreasing. The typical waveforms of \(u(t) \) and \(V_p(t) \) are schematically illustrated in figure 3(a) under the harmonic excitation of a single signal. The steady-state response of the piezoelectric system has been studied by various approximations such as uncoupled and in-phase models. The former models the piezoelectric device as the current source in parallel with its internal capacitance \(C_p \) [33], while the latter assumes that the external forcing function and the velocity of the mass are in-phase [12]. An improved analysis accounting for the full electromechanical behavior of the system and the phase-shift effect has been proposed by Shu and Lien [44,45]. They showed that the displacement magnitude \(|u(t)|_{\text{Standard}} \), rectified voltage \(V_r \), and harvested average power \(P_{\text{Standard}} \) can be expressed in terms of several dimensionless variables by (see

![Figure 2](image-url)
Let Ω_1 structure exhibits both short circuit and open circuit stiffness. there are two resonances for the system since the piezoelectric coefficient, u_1, the parallel-SSHI interface. Typical waveforms of displacement and piezoelectric voltage for (a) the standard interface, for (b) the series-SSHI interface and (c) the parallel-SSHI interface.

Figure 3. Typical waveforms of displacement and piezoelectric voltage for (a) the standard interface, for (b) the series-SSHI interface and (c) the parallel-SSHI interface.

equations (28)–(30) in [44])

$$u_0^\text{Standard} = \frac{u_0^\text{Standard}}{u_0^\text{Standard}} = \frac{1}{\left\{\left(2\zeta_m + \frac{k_2^2\Omega_0}{r\Omega + \frac{\pi}{2}}\right)^2\Omega^2 + \left(1 - \Omega^2 + \frac{k_2^2\Omega_0}{r\Omega + \frac{\pi}{2}}\right)^2\right\}^{\frac{1}{2}}}.$$

(4)

$$V_c^\text{Standard} = \frac{V_c^\text{Standard}}{V_c^\text{Standard}} = \left(\frac{r\Omega}{r\Omega + \frac{\pi}{2}}\right)^2 \frac{k_2^2\Omega^2}{\left\{\left(2\zeta_m + \frac{k_2^2\Omega_0}{r\Omega + \frac{\pi}{2}}\right)^2\Omega^2 + \left(1 - \Omega^2 + \frac{k_2^2\Omega_0}{r\Omega + \frac{\pi}{2}}\right)^2\right\}^{\frac{1}{2}}}.$$

(5)

$$P^\text{Standard} = \frac{P^\text{Standard}}{P^\text{Standard}} = \left(\frac{r\Omega}{r\Omega + \frac{\pi}{2}}\right)^2 \frac{k_2^2\Omega^2}{\left\{\left(2\zeta_m + \frac{k_2^2\Omega_0}{r\Omega + \frac{\pi}{2}}\right)^2\Omega^2 + \left(1 - \Omega^2 + \frac{k_2^2\Omega_0}{r\Omega + \frac{\pi}{2}}\right)^2\right\}^{\frac{1}{2}}}.$$

(6)

where u_0^Standard, V_c^Standard and P^Standard are normalized displacement, voltage and power, and

$$k_2^2 = \frac{\Theta^2}{KC_p}, \quad \zeta_m = \frac{\eta_m}{2\sqrt{KM}}, \quad w_{\infty} = \sqrt{\frac{K}{M}}, \quad \Omega = \frac{w}{w_{\infty}}, \quad r = C_p w_{\infty} R.$$

(7)

Above, k_2^2 is the alternative electromechanical coupling coefficient, ζ_m the mechanical damping ratio, w_{∞} the natural frequency of the short circuit, and Ω and r the normalized frequency and electrical resistance [5, 24, 25, 35]. Notice that there are two resonances for the system since the piezoelectric structure exhibits both short circuit and open circuit stiffness.

Let Ω_{sc} and Ω_{oc} be the frequency ratios of short circuit and open circuit. They are defined by

$$\Omega_{sc} = 1, \quad \Omega_{oc} = \sqrt{1 + k_2^2}.$$

(8)

An important feature from this improved analysis is that the electrical behavior of the piezoelectric system is significantly influenced by the ratio of electromechanical coupling factor to mechanical damping ratio, i.e. $\frac{k_2^2}{\zeta_m}$. Harvested power is small if this ratio is much smaller than one, while it achieves a saturation value if this ratio is much larger than one. Indeed, if the shift in device natural frequency is pronounced or the mechanical damping ratio of the system is small, i.e. $\frac{k_2^2}{\zeta_m} \gg 1$, there are two optimal operating points. The first optimal pair is designed at the short circuit resonance Ω_{sc} with the optimal load $r_{sc}^{\text{opt}} \propto \frac{1}{\zeta_m}$ (equation (49) in [44]), while the second one is designed at the open circuit resonance Ω_{oc} with the optimal load $r_{oc}^{\text{opt}} \propto \frac{1}{\zeta_m}$ (equation (55) in [44]). Both gives the identical value of maximum harvested power which depends only on the damping ratio ζ_m and is independent of the coupling coefficient k_2^2. Indeed, the dependence of average DC power on the electrical load and applied frequency is schematically shown in figure 4(a) for a strongly coupled electromechanical standard system ($k_2^2 = 1.0$, $\zeta_m = 0.03$, $\frac{k_2^2}{\zeta_m} = 33$). It is clear that there are two identical peaks evaluated at around these two optimal pairs ($\Omega_{sc}, r_{sc}^{\text{opt}}$) and ($\Omega_{oc}, r_{oc}^{\text{opt}}$). Finally, table 1 summarizes the relation between the system parameters (k_2^2, ζ_m) and the normalized load, displacement, voltage, current and power at these two optimal conditions [44]. This table will be used later to identify the electrical response of series- and parallel-SSHI systems which are shown to be closely related to the strongly coupled electromechanical system using the standard interface.
Piezoelectric current

Therefore, the magnitude of peak power are identical in these three cases, but they are achieved at different operating conditions and system parameters.

Table 1. There are two optimal operating points ($\Omega_{oc}, r_{oc}^{opt}$) and ($\Omega_{oc}, r_{sc}^{opt}$) in a strongly coupled electromechanical standard system ($\zeta_{m} \gg 1$). The dependence of optimal displacement, voltage, current and power on the system parameters r_{oc}^{2e} and ζ_{m} are provided at these two optimal pairs. It is shown later that the behavior of parallel-SSHI is similar to those listed in the left column, while the response of series-SSHI is similar to those listed in the right column.

<table>
<thead>
<tr>
<th>Optimal points (Ω, r)</th>
<th>(Parallel-SSHI)</th>
<th>(Series-SSHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Parallel-SSHI)</td>
<td>$\Omega_{oc}^{opt} \sim \Omega_{oc} = 1$</td>
<td>$\Omega_{oc}^{opt} \sim \sqrt{1 + k_{c}}$</td>
</tr>
<tr>
<td>Optimal outputs</td>
<td>$r_{oc}^{opt} \propto \frac{1}{\sqrt{1 + k_{c}}}$</td>
<td>$r_{sc}^{opt} \propto \frac{1}{\sqrt{1 + k_{c}}}$</td>
</tr>
<tr>
<td>Displacement</td>
<td>$\bar{u}{opt}^{p} \propto \frac{1}{\sqrt{1 + k{c}}}$</td>
<td>$\bar{u}{opt}^{p} \propto \frac{1}{\sqrt{1 + k{c}}}$</td>
</tr>
<tr>
<td>Voltage</td>
<td>$\bar{V}{opt}^{p} \propto \frac{1}{\sqrt{1 + k{c}}}$</td>
<td>$\bar{V}{opt}^{p} \propto \frac{1}{\sqrt{1 + k{c}}}$</td>
</tr>
<tr>
<td>Current</td>
<td>$I_{opt}^{p} \propto \frac{1}{\sqrt{1 + k_{c}}}$</td>
<td>$I_{opt}^{p} \propto \frac{1}{\sqrt{1 + k_{c}}}$</td>
</tr>
<tr>
<td>Current</td>
<td>$P_{opt}^{p} \propto \frac{1}{\sqrt{1 + k_{c}}}$</td>
<td>$P_{opt}^{p} \propto \frac{1}{\sqrt{1 + k_{c}}}$</td>
</tr>
</tbody>
</table>

2.2. Series-SSHI Interface

Consider a series-SSHI interfacing circuit illustrated in figure 2(b). It consists of adding up a switching device in series with the piezoelectric structure. The electronic switch is triggered at the extreme values of displacement of the mass. Different from the case of the parallel-SSHI technique [12], the piezoelectric element is under an open circuit condition for most of the vibration time due to a quick inversion of the piezoelectric voltage operated by the switch. Therefore, the piezoelectric current I is always null except during the voltage inversion phases. The typical waveforms of displacement and piezoelectric voltage are provided in figure 3(b), where the displacement at the steady-state operation is

$$u(t) = u_{0} \sin(wt - \Theta),$$

with u_{0} as the magnitude and Θ as the phase shift. Guyomar et al [12] have performed the SSHI analysis assuming the in-phase assumption, i.e. the effect of the phase shift Θ in equation (9) is insignificant. However, it has been shown that the in-phase estimates differ profoundly from the improved estimates of the standard and parallel-SSHI systems if the electromechanical coupling of the system is not small [44, 46]. In addition, it is required to consider the phase-shift effect for estimating the reduction in power due to frequency deviation from resonance. Thus, such an effect has to be included in analyzing the electrical response of a series-SSHI system.

Now let t_{i} and t_{f} be two time instants such that the displacement $u(t)$ goes from the minimum $-u_{0}$ to the maximum u_{0}, as demonstrated in figure 3(b). When the switch is on at time instant t_{i}, the piezoelectric voltage $V_{p}(t_{i}) = -V_{M}$ is reversed to $V_{p}(t_{f}) = V_{M}$ during the inversion. The inversion process can be understood by an electrically oscillating circuit consisting of the piezoelectric element in series with an inductance L at a battery-like rectified voltage V_{c}. This process is assumed to be quasi-instantaneous in the sense that the inversion time is chosen to be much smaller than the period of the mechanical vibration, i.e. $\Delta t = t_{f} - t_{i} \approx \pi \sqrt{L/C_{p}} \ll T$, where $T = \frac{2\pi}{\omega}$ [19]. As the rectified voltage V_{c} is almost kept constant due to large C_{p}, this gives $-(V_{M} - V_{c}) = -V_{m} - V_{c}$ in the ideal case. However, due to the electrical loss in the switching mechanism, the inversion is determined by

$$-(V_{M} - V_{c})q_{1} = -(V_{M} - V_{c})e^{\frac{t_{f} - t_{i}}{\tau}} = -V_{m} - V_{c},$$

where τ_{1} is the inversion quality factor and $q_{1} = e^{\frac{t_{f} - t_{i}}{\tau}}$.

Each time the switch turns on, the electric charge passing through the inductor L transmits a part of the energy stored in the piezoelectric capacitor C_{p} to the storage circuit. Therefore, the charge conservation is

$$C_{p}\Delta V = C_{p}(V_{M} + V_{m}) = \frac{T}{2} \frac{V_{c}}{R} = \frac{\pi}{\omega} \frac{V_{c}}{R}.$$

Next, from equation (2), we have

$$\int_{t_{i}}^{t_{f}} (-\Theta u + C_{p} \dot{V}_{p}) dt = -\int_{t_{i}}^{t_{f}} I(t) dt = 0.$$

This results in

$$V_{M} - V_{m} = \frac{2\Theta}{C_{p}}u_{0}.$$

Figure 4. The harvested DC power against the electrical resistance and applied frequency for standard (equation (6)), series-SSHI (equation (21)) and parallel-SSHI (equation (26)) techniques. (a) A standard system with strong electromechanical coupling ($k_{c}^{2} = 1.0, \zeta_{m} = 0.03, \frac{Q_{1}}{Q_{e}} = 33$). (b) An ideal series-SSHI system with weak electromechanical coupling ($k_{c}^{2} = 0.01, \zeta_{m} = 0.03, \frac{Q_{1}}{Q_{e}} = 0.33, Q_{1} = \infty$). (c) An ideal parallel-SSHI system with weakly electromechanical coupling ($k_{c}^{2} = 0.01, \zeta_{m} = 0.03, \frac{Q_{1}}{Q_{e}} = 0.33, Q_{1} = \infty$). Notice that the magnitude of peak power are identical in these three cases, but they are achieved at different operating conditions and system parameters.
Combining equations (10)–(12) provides the relation between the magnitude of displacement and the rectified voltage:

$$ V_r = \frac{2\Theta R u(1 + q_1)}{\pi(1 - q_1) + 2C_p R u(1 + q_1)} u_0. \quad (13) $$

The estimation of harvested power can be found once the magnitude of displacement u_0 is determined due to equation (13). Next consider the balance of energy which is obtained by adding equation (1) multiplied by $\dot{u}(t)$ and equation (2) multiplied by $V_p(t)$. Integration of the energy balance equation from t_i^+ to t_f gives energy conservation

$$ \int_{t_i^+}^{t_f} F(t) \dot{u}(t) \, dt = \int_{t_i^+}^{t_f} \eta m \ddot{u}^2(t) \, dt + \int_{t_i^+}^{t_f} V_p(t) I(t) \, dt $$

$$ + \frac{k}{2} M \dddot{u}^2(t) \bigg|_{t_i^+}^{t_f} + \frac{1}{2} K \ddot{u}^2(t) \bigg|_{t_i^+}^{t_f} + \frac{1}{2} C_p V_p^2(t) \bigg|_{t_i^+}^{t_f}. $$

$$ = \int_{t_i^+}^{t_f} \eta m \ddot{u}^2(t) \, dt + \frac{1}{2} C_p (V_M - V_p). \quad (14) $$

Substituting equation (9) into equation (14) gives

$$ \frac{\pi}{2} F_0 u_0 \sin \theta = \frac{\pi}{2} \eta m w u_0^2 + \frac{T V^2}{2 R} + \frac{1}{2} C_p (1 - q_1^2)(V_M - V_p), $$

where equations (10) and (11) are used for deriving equation (15). To eliminate the phase shift θ in equation (15), consider from equation (2)

$$ \Theta \dot{V}_p(t) = \frac{\Theta}{C_p} \left[-I(t) + \Theta \dot{u}(t) \right]. \quad (16) $$

Substituting equation (16) into equation (1) by differentiating with respect to time t gives

$$ M \frac{d}{dt} \ddot{u}(t) + \eta m \frac{d}{dt} \dot{u}(t) + \left[\frac{\Theta}{C_p} \right]^2 \frac{d}{dt} u(t) - \frac{\Theta}{C_p} I(t) = \frac{d}{dt} F(t). $$

Integrating equation (17) from t_i^+ to t_f provides

$$ \left(K - M \dot{u}^2 + \frac{\Theta^2}{C_p} \right) u_0 = F_0 \cos \theta. \quad (18) $$

The comparison between equations (15) and (18) eliminates the phase shift θ and gives the explicit form of displacement magnitude

$$ u_0 = \sqrt{\frac{F_0}{\left[\frac{\eta m w + \frac{4q_1^2(1-q_1)}{\pi(1-q_1)} \right]^2 + \left(K - M \ddot{u}^2 + \frac{\Theta^2}{C_p} \right)^2} - 1}. $$

The average harvested power is therefore obtained once u_0 is determined due to equation (13) and $P = \frac{\pi}{2} V_r$. Finally, the displacement, voltage and harvested power in a series-SSHl system are expressed in terms of dimensionless parameters defined in equation (7) by

$$ u_0^{\text{Series--SSHl}} = \frac{u_0^{\text{Series--SSHl}}}{k_e^{\text{Series--SSHl}}} = \frac{1}{\left[\frac{2\xi_m \Omega + \frac{4q_1^2(1-q_1)}{\pi(1-q_1)} \right]^2 + (1 + k_e^2 - \Omega^2)^2} \quad (19) $$

$$ V_{c, \text{Series--SSHl}}^{\text{Series--SSHl}} = \frac{V_{c, \text{Series--SSHl}}^{\text{Series--SSHl}}}{k_e^{\text{Series--SSHl}}} = \frac{2r \Omega (1 + q_1)}{(1 - q_1) \pi + 2r \Omega (1 + q_1)} \times \left[\frac{2\xi_m \Omega + \frac{4q_1^2(1-q_1)}{\pi(1-q_1)} \right]^2 + (1 + k_e^2 - \Omega^2)^2 \right]^2. \quad (20) $$

$$ \beta^{\text{Series--SSHl}} = \frac{\beta^{\text{Series--SSHl}}}{k_e^{\text{Series--SSHl}}} = \frac{2(1 + q_1)}{(1 - q_1) \pi + 2r \Omega (1 + q_1)} \times \left[\frac{2\xi_m \Omega + \frac{4q_1^2(1-q_1)}{\pi(1-q_1)} \right]^2 + (1 + k_e^2 - \Omega^2)^2 \right]^2. \quad (21) $$

To further analyze the results given by equations (19)–(21), consider the case of ideal inversion, i.e. the inversion of the piezoelectric voltage V_p is complete so that $Q_1 = \infty$ and $q_1 = e \frac{U_p}{V_m} = 1$. Under this circumstance, the normalized harvested power becomes

$$ \beta^{\text{Series--SSHl}} \bigg|_{r = r^{\text{opt}}, \Omega = \Omega_{oc}} = \frac{1}{16 \xi_m}. \quad (23) $$

From equation (23), the optimal load resistance is proportional to the ratio $k_e^{\text{Series--SSHl}}$, while the corresponding optimal power depends only on the mechanical damping ratio ξ_m and is independent of the electromechanical coupling coefficient k_e^2. Comparing all of these features with the right column of Table 1 suggests that the behavior of the power harvesting system using the series-SSHl interface is similar to that of the strongly coupled electromechanical standard system operated at the open circuit resonance Ω_{oc}.

In addition, the harvested average power based on the series-SSHl technique always achieves the saturation value P_{oc} no matter whether the real system is weakly or strongly electromechanically coupled. To see it, figure 4(b) shows power extraction against electrical load and applied frequency for an ideal series-SSHl system with weak electromechanical coupling ($k_e^2 = 0.01, \xi_m = 0.03, k_e^2 \xi_m = 0.33$). The peak of power is identical to that of a strongly electromechanically coupled system using the standard interface ($k_e^2 = 1.0, \xi_m = 0.03, k_e^2 \xi_m = 33$). Thus, power extraction is obviously enhanced for a weakly coupled electromechanical system using the series-SSHl electronic interface.

2.3. Parallel-SSHl interface

Figure 2(c) shows another version of SSHl interface, called parallel-SSHl. It consists of adding up a switching device in parallel with the piezoelectric structure. The electronic switch is triggered according to the maximum and minimum of the
displacement of the mass. As a result, this gives an inversion of the piezoelectric voltage V_p at each extremum, i.e. V_p is changed either from $-V_c$ to $q_1 V_c$ or from V_c to $-q_1 V_c$, as illustrated in figure 3(c). Here $q_1 = \frac{e}{m_0}$ and Q_1 is the inversion quality factor due to the energy loss mainly from the inductor in series with the switch. Different from the in-phase analysis [12], Shu et al have provided an improved analysis taking into account the effect of phase shift and shown (see equations (6)–(8) in [46])

$$a_{\text{Para–SSHI}}^0 = a_{\text{Para–SSHI}}^0 \left[\frac{r}{r} \right] = 1 \left\{ (2\zeta_m + \frac{2(1 + \frac{Q_1}{Q_1 + 1})}{{\frac{r}{r}} + \frac{2}{r}})^2 \Omega^2 + (1 - \Omega^2 + \frac{\omega_0}{\omega_0 + \frac{2}{r}})^2 \right\}^{\frac{1}{2}},$$

$$v_{\text{Para–SSHI}}^c = v_{\text{Para–SSHI}}^c \left[\frac{r}{r} \right] = \left(\frac{r}{r} \Omega \right) \left(\frac{r}{r} \Omega + \frac{2}{r} \right)^{\frac{1}{2}},$$

$$p_{\text{Para–SSHI}} = p_{\text{Para–SSHI}} \left[\frac{r}{r} \right] = \left(\frac{1}{1 - \frac{Q_1}{Q_1 + 1}} \right)^2 \left(\frac{1}{1 + \frac{Q_1}{Q_1 + 1}} \right)^2 \left(\frac{1}{1 + \frac{Q_1}{Q_1 + 1}} \right)^2,$$

These results given by equations (24)–(26) can be interpreted by considering the case where the inversion of the piezoelectric voltage V_p is complete, i.e. $Q_1 = \infty$. This gives $q_1 = 1$ and the normalized harvested power becomes

$$p_{\text{Para–SSHI}} = \frac{4}{\pi^2} \left(\frac{r}{r} \right) \left(\frac{1}{1 - \frac{Q_1}{Q_1 + 1}} \right)^2 \left(\frac{1}{1 + \frac{Q_1}{Q_1 + 1}} \right)^2 \left(\frac{1}{1 + \frac{Q_1}{Q_1 + 1}} \right)^2.$$

The optimal electric load resistance and the normalized power operated at Ω_{sc} are therefore

$$r_{\text{opt}} = \frac{\pi^2}{\frac{4}{\omega_0}}. \frac{1}{16\zeta_m},$$

In contrast to the case of series-SSHI, equation (28) indicates that the optimal load resistance is inversely proportional to the ratio k_1^2. The corresponding optimal power is, however, identical to that of the series-SSHI case. It depends only on the mechanical damping ratio ζ_m and is independent of the electromechanical coupling coefficient k_1^2. Moreover, comparing all of these features with the left column of table 1 suggests that the behavior of a parallel-SSHI system is similar to that of the strongly coupled electromechanical standard system operated at the short circuit resonance Ω_{sc}. As this result is valid even when the real electromechanical system is weakly coupled, the harvested power is increased significantly when compared to the standard system. For example, figure 4(c) shows harvested power of an ideal parallel-SSHI system with weak electromechanical coupling ($k_1^2 = 0.01$, $\zeta_m = 0.03$, $k_1^2 = 0.33$). The peak power is enhanced to be identical to that of a strongly coupled electromechanical standard system ($k_1^2 = 1$, $\zeta_m = 0.03$, $k_1^2 = 0.33$) shown in figure 4(a).

3. Results

3.1. Validation

The validation of the proposed improved estimates is carried out numerically by transforming equations (1)–(3) to an equivalent circuit system with $R^* = \frac{\omega_0}{r}$ as resistance, $L^* = \frac{\omega_0}{r}$ as inductance, $C^* = \frac{\omega_0}{r}$ as capacitance and $V_{\text{source}} = \frac{\omega_0}{r}$ as the voltage source, as shown in figure 5(a). The equivalent circuit is endowed with a series-SSHI electronic interface with the quality factor of voltage inversion Q_1 is 3.5 [12]. The common software PSpiCe, which is based on the SPICE (Simulation Program with Integrated Circuit Emphasis) algorithms, is adopted for circuit simulation. The simulation parameters are $R^* = 66.870 \ \Omega$, $L^* = 2051 \ \mu H$, $C^* = 0.7338 \ \mu F$, $V_{\text{source}} = 4.833 \ \mu V$ and $C_{\text{opt}} = 9.718 \ \mu F$. This gives the system parameters $k_1^2 = 0.0755$ and $\zeta_m = 0.02$. The results are demonstrated in figure 5(b) where the normalized power from equation (21) is plotted against the frequency ratio evaluated at the optimal load $r_{\text{opt}} = 3.84$. The in-phase estimates [2, 21] are also provided here for comparison and are denoted by dashed lines. The analytical estimates and numerical simulations are represented by solid lines and open circles in figure 5(b). Obviously, the numerical simulations are favorable to the results predicted based on the proposed improved estimates, since the in-phase estimates lack frequency dependence. In addition, other parameters are also chosen and the results show similar contrasting comparisons between the in-phase and improved estimates. Thus, the in-phase estimates are unable to predict the system behavior if the driving frequency deviates from the resonance frequency. The proposed improved estimates are therefore suitable for the performance evaluation of the electrical behavior of a series-SSHI system.

3.2. Comparison

Table 1 highlights the striking contrast in the behaviors of ideal parallel- and series-SSHI systems ($Q_1 = \infty$). However, the inversion of the piezoelectric voltage due to electrical oscillation by an inductor is typically not perfect ($Q_1 \neq \infty$). This gives a certain amount of performance degradation using the Sshi techniques. In addition, the harvested average power crucially depends on the different factors of the ratio of the electromechanical coupling coefficient to the mechanical damping ratio, i.e. k_1^2 to ζ_m. Thus, these factors have to be taken into account in comparing these different techniques. Assume $Q_1 = 4.4$. A much larger value of quality factor Q_1 can be obtained by requiring the use of the low loss inductor.

First consider the case of a weakly coupled electromechanical system, i.e. the ratio $k_1^2 \ll 1$. We take $k_1^2 = 0.1$
and \(\zeta_m = 0.03 \) for demonstration. This gives \(\frac{k^2_m}{\zeta_m^2} = 0.33 \). The harvested power versus frequency ratio for various normalized resistances are shown in figure 6(a) based on the parallel-SSHI interface, in figure 6(d) based on the standard interface and in figure 6(g) based on the series-SSHI. The maximum normalized power generated for the ideal voltage inversion is around \(\bar{P}_{\text{Para-SSH}} |_{Q=\infty} = 2.1 \) at \(\Omega = \Omega_{oc} \) and \(r = 7.4 \) for parallel-SSHI, while it is \(\bar{P}_{\text{Series-SSH}} |_{Q=\infty} = 2.1 \) at \(\Omega = \Omega_{oc} \) and \(r = 0.33 \) for series-SSHI. However, both are reduced to \(\bar{P}_{\text{Para-SSH}} |_{Q=4.4} = 1.2 \) and \(\bar{P}_{\text{Series-SSH}} |_{Q=4.4} = 1.1 \) in the non-ideal voltage inversion. While the harvested power based on the SSHI techniques is three times larger than that using the standard interface (\(\bar{P}_{\text{Standard}} = 0.4 \)), the performance degradation is significant for both parallel- and series-SSHI. The detailed operating points for generating the peak power are listed in table 2.

Next, suppose the electromechanical coupling is in the medium range, i.e. the ratio of \(\frac{k^2}{\zeta_m} \) is of the order of one. We take \(k_e = 0.3 \) and \(\zeta_m = 0.03 \). This gives \(\frac{k^2}{\zeta_m} = 3 \). The harvested power versus frequency ratio for various normalized resistances are shown in figure 6(b) based on the parallel-SSHI interface, in figure 6(e) based on the standard interface, and in figure 6(h) based on the series-SSHI interface. Different from the previous case of weak coupling, the reduction in power is not significant in this case. Indeed, the maximum normalized power for the non-ideal voltage inversion is \(\bar{P}_{\text{Para-SSH}} |_{Q=4.4} = 1.9 \) at \(\Omega = \Omega_{oc} \) and \(r = 0.78 \) and \(\bar{P}_{\text{Series-SSH}} |_{Q=4.4} = 1.9 \) at \(\Omega = \Omega_{oc} \) and \(r = 3.02 \). Both are smaller than the ideal SSHI power (\(\bar{P}_{\text{Para-SSH}} |_{Q=\infty} = \bar{P}_{\text{Series-SSH}} |_{Q=\infty} = 2.1 \)), but are slightly larger than that (\(\bar{P}_{\text{Standard}} = 1.8 \)) using the standard electronic interface. The detailed operating points for achieving the peak power are listed in table 2.

In spite of no significant increase of power extraction using either the parallel-SSHI or series-SSHI electronic interfaces for the case of medium coupling, figures 6(b) or (h) demonstrate that the harvested power evaluated at around the optimal load is less sensitive to frequency deviation. Indeed, consider the standard case whose optimal power is achieved at around \(r = \frac{1}{2} \). From figure 6(e), it is clear that there is a 57% power reduction for around 5% frequency deviation from the

Figure 5. Numerical validation of the proposed analytical estimates of harvested power in a series-SSH system with parameters \(k_e^2 = 0.0755 \), \(\zeta_m = 0.02 \), \(\frac{k^2}{\zeta_m} = 3.77 \) and \(Q_1 = 3.5 \). (a) The equivalent circuit model for the piezoelectric device endowed with a series-SSH interface. (b) The numerical simulation results are compared with those predicted by analytical and in-phase estimates.

Table 2. Optimal power achieved at different operating points are compared for parallel-SSH/standard/series-SSH interfaces under various magnitudes of electromechanical coupling to mechanical damping: weak coupling \(\frac{k^2}{\zeta_m} = 0.3 \), medium coupling \(\frac{k^2}{\zeta_m} = 3.0 \) and strong coupling \(\frac{k^2}{\zeta_m} = 33.3 \).

<table>
<thead>
<tr>
<th>Optimal conditions</th>
<th>Parallel-SSH ((\Omega_{oc}))</th>
<th>Standard ((\Omega_{oc} < \Omega < \Omega_{ac}))</th>
<th>Series-SSH ((\Omega_{ac}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Load</td>
<td>Power</td>
<td>Load</td>
</tr>
<tr>
<td>Weak coupling</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
</tr>
<tr>
<td>(Q_1 = \infty)</td>
<td>2.1</td>
<td>7.4</td>
<td>—</td>
</tr>
<tr>
<td>(Q_1 = 4.4)</td>
<td>1.2</td>
<td>4.62</td>
<td>—</td>
</tr>
<tr>
<td>Medium coupling</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>(Q_1 = \infty)</td>
<td>2.1</td>
<td>0.82</td>
<td>—</td>
</tr>
<tr>
<td>(Q_1 = 4.4)</td>
<td>1.9</td>
<td>0.78</td>
<td>—</td>
</tr>
<tr>
<td>Strong coupling</td>
<td>—</td>
<td>—</td>
<td>2.1</td>
</tr>
<tr>
<td>(Q_1 = \infty)</td>
<td>2.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(Q_1 = 4.4)</td>
<td>2.1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
optimal frequency. In contrast to the standard case, figure 6(b) shows that the power reduction is around 30% for the same frequency deviation in the case of parallel-SSHI evaluated at the same electrical load \((r = \frac{\pi}{2})\). Similarly, the reduction in power is around 29% in the case of series-SSHI, as can be seen in figure 6(h) at \(r = \frac{\pi}{2}\). In addition, it can be shown that this frequency-insensitive feature or wideband effect is much more pronounced if the quality factor of voltage inversion is further improved.

The last case is to discuss the electrical behavior of a strongly coupled electromechanical system \((\frac{ke^2}{\zeta_m} \gg 1)\). We then take \(k_e = 1\) and \(\zeta_m = 0.03\), and this gives \(\frac{ke^2}{\zeta_m} = 33.3\). The harvested power versus frequency ratio for various normalized resistances are shown in figure 6(c) based on the parallel-SSHI interface, in figure 6(f) based on the standard interface, and in figure 6(i) based on the series-SSHI interface. As described in section 2.1, there are two identical peaks of optimal power in the standard case, while there is only one peak of power in either the parallel-SSHI or series-SSHI. Different from the cases of weak or medium coupling, there is no degradation in power as listed in table 2. A further investigation shows that the curve of peak power in the case of
parallel-SSHII is identical to that in the standard case operated at \(\Omega_{oc} \) and \(r = 0.08 \). Similarly, the curve of peak power in the case of series-SSHII is identical to that in the standard case operated at \(\Omega_{oc} \) and \(r = 16.2 \). Thus, from the point of view of deviations in frequencies or electrical loads, there seems to be no obvious advantages using either the parallel- or series-SSHII techniques for piezoelectric systems with strong electromechanical coupling.

3.3. Discussion

One of the important conclusions drawn from figure 6 is that both parallel- and series-SSHII systems show significant bandwidth improvement in the case of medium electromechanical coupling. But the effect of diode loss, which is inevitable in practical circuit systems, is not considered in figure 6, and therefore it is discussed here. Using the same system parameters of medium coupling as in figures 6(b), (e) and (h) and the PSpice equivalent circuit simulation, figure 7, accounting for the effect of diode loss shows a different electrical response between these two SSHII systems. To see it, consider the black line shown in figure 7(b). It represents the optimal power achieved at the normalized load \(r = \frac{e_2}{r} \) in the standard case and it exhibits small bandwidth as expected. At the same normalized load as shown in the black lines of figures 7(a) and (c), the parallel-SSHII system shows around 19% power reduction for 5% frequency deviation, while the series-SSHII system exhibits 48% reduction in power. Thus, the feature of frequency insensitivity to power reduction is almost lost in the series-SSHII system, while it still remains in the parallel-SSHII system.

To explain the loss of wideband effect in series-SSHII systems, consider equations (27) and (22) representing the ideal harvested power in parallel-series-SSHII systems, respectively. They are particular chosen since their mathematical expressions are simple for carrying out analysis. The sensibility of power reduction to frequency deviation can be realized by taking the derivatives of equations (27) and (22) with respect to frequency evaluated at around the optimal frequency and electrical load. Indeed, it can be shown that the slope of power to frequency ratio in the parallel-SSHII system is approximated to

\[
\frac{d\bar{P}_{\text{Para-SSHII}}}{d\Omega} \approx \frac{d\bar{P}_{\text{Para-SSHII}}}{df} \approx \frac{(1 + \chi)}{2(2 + \chi)^2} \frac{f}{(1 + 2f)^2},
\]

where \(f \) and \(\chi \) denote the amount of deviations in frequency and optimal electrical load and are defined by

\[
\Omega = \Omega_{oc} + f, \quad r = \frac{r_{\text{opt}}(1 + \chi)}{4 \sqrt{\frac{\zeta m}{\kappa_1}} (1 + \chi)}.
\]

Thus, from equation (29), at the fixed frequency deviation \(f \)

\[
\left| \frac{d\bar{P}_{\text{Para-SSHII}}}{d\Omega} \right|_{r > r_{\text{opt}}(\chi > 0)} \leq \left| \frac{d\bar{P}_{\text{Para-SSHII}}}{d\Omega} \right|_{r > r_{\text{opt}}(\chi < 0)}.
\]

This result shows that power reduction in a parallel-SSHII system is less sensitive to frequency deviations if the terminal electrical loads are chosen to be slightly greater than the optimal load. Next, applying the similar analysis to the series-SSHII case gives

\[
\frac{d\bar{P}_{\text{Series-SSHII}}}{d\Omega} = \frac{d\bar{P}_{\text{Series-SSHII}}}{df} \approx \frac{(1 + k_2^2)(1 + \chi)^3}{2(2 + \chi)^2} \left(\frac{-f}{(\sqrt{1 + k_2^2} + 2f)^2} \right),
\]

where the derivations in frequency \(f \) and electrical load \(\chi \) are defined by

\[
\Omega = \Omega_{oc} + f, \quad r = \frac{r_{\text{opt}}(1 + \chi)}{1 + k_2^2 \zeta_m (1 + \chi)}.
\]

Thus, at the fixed frequency deviation \(f \), it can be shown easily that

\[
\left| \frac{d\bar{P}_{\text{Series-SSHII}}}{d\Omega} \right|_{r > r_{\text{opt}}(\chi > 0)} \leq \left| \frac{d\bar{P}_{\text{Series-SSHII}}}{d\Omega} \right|_{r > r_{\text{opt}}(\chi < 0)}.
\]
In contrast to the behavior of a parallel-SSHI system, the harvested power in an ideal series-SSHI system reduces insignificantly to frequency deviations at the loads slightly lower than its optimal load. Thus, the additional equivalent resistive load added to the system due to the consideration of diode loss results in distinct electrical response in these two SSHI cases. The improvement in bandwidth is basically lost in a series-SSHI system since such an effect occurs at loads slightly smaller than its optimal load.

4. Conclusion

An improved analysis accounting for the full electromechanical response and vibration phase-shift effect is proposed to investigate the electrical behavior of a piezoelectric energy harvester embedded with a series-SSHI electronic interface. The analytical expression of harvested power is provided and validated numerically. The performance evaluation of a series-SSHI system is carried out and compared with the piezoelectric systems using the standard or parallel-SSHI interfacing circuits. The results show that the electrical response of an ideal series-SSHI system is in sharp contrast to that of an ideal parallel-SSHI system. Indeed, no matter what the strength of electromechanical coupling of a real system is, a series-SSHI (parallel-SSHI) system is similar to the response of a strongly coupled electromechanical standard system operated at the open (short) circuit resonance. As a result, both can significantly boost the harvested power of weakly coupled electromechanical systems, except that the optimal electrical load of the former is proportional to the ratio of the coupling factor to mechanical damping, while it is inversely proportional to this ratio in the latter case, as summarized in table 1.

The performance degradation due to non-ideal voltage inversion is discussed and classified according to the relative strength of electromechanical coupling to mechanical damping, as illustrated in figure 6. A series-SSHI system shows the significant degradation in performance in a weakly coupled electromechanical system and no obvious advantages over the standard system with strong electromechanical coupling. However, similar to the behavior of a parallel-SSHI system, a series-SSHI system avails against the standard technique in the case of medium coupling. It shows that the peak power is close to the ideal optimal value and the power reduction is less sensitive to frequency deviation. Finally, the further analysis reveals that these two SSHI systems exhibit dissimilar electrical responses in harvested power if the effect of diode loss is considered. It turns out that the ability of bandwidth improvement might be lost in series-SSHI systems whereas it still remains in parallel-SSHI systems, as demonstrated in figure 7.

Acknowledgments

The support from the NSC under grant nos. 96-2628-E-002-119-MY3 and 99-2221-E-002-071-MY3 is appreciated.

References

12