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Abstract
This paper examines the domain patterns and the macroscopic behaviour of

single crystals of ferroelectric material using a theory based on energy
minimization. A low-energy path is identi®ed for domain switching and a novel
con®guration that yields very large electrostriction is identi®ed.

} 1. Introduction
Ferroelectric crystals are widely used in a variety of applications including trans-

ducers, capacitors and non-volatile data storage elements. In particular, poled cera-
mics of ferroelectric materials are used commonly for their piezoelectric property in
actuator applications (Huber et al. 1997, Uchino 1998). Their many advantages
include a linear response of the induced strain to applied electric ®eld, very little
hysteresis and very-high frequency response. The strains and displacements that they
display, however, are quite small. An improvement in the strain level would lead to
an explosion of the applications of these materials as miniature solid-state actuators
and sensors in a variety of structural applications. It has recently been recognized
that it is possible to obtain large strains through electrostriction in single crystals
(Shrout and Park 1997).

Ferroelectric crystals are non-polar above the Curie temperature but are spon-
taneously polarized with a spontaneous lattice distortion below the Curie tempera-
ture. The interesting properties of ferroelectrics arise from the fact that it is possible
to change the polarization and distortion through applied electric ®eld or mechanical
stress. Further, there is typically a reduction in crystallographic symmetry at the
Curie temperature and this creates more than one symmetry-related, spontaneously
polarized and distorted state below this temperature. The di� erent states can coexist
as `domains’ in very intricate and characteristic domain patterns (for example
Hooton and Merz (1955), Little (1955), Tanaka and Honjo (1964), Arlt and Sasko
(1980), Goo et al. (1981), Hu et al. (1986), Li et al. (1992), Park and Chung (1994,
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1996) and Chou and Wayman (1997)). These domains can be switched and the
domain patterns manipulated by the application of electric ®eld and mechanical
stress. Domain switching with its large change in polarization and lattice distortion
provides a potent mechanism for obtaining large and unusual properties.

This paper studies the domain patterns and the macroscopic properties of single
crystals of ferroelectrics and proposes a new way of obtaining large electrostriction.
We propose, in § 2, a variational theory that describes the behaviour of a ferroelectric
single crystal. We write the total energy of the crystal as a sum of the free (or stored)
energy, the energy of the applied electrical and mechanical loads, the energy of the
induced electric ®eld and the domain wall energy; the state of the ferroelectric crystal
is obtained as minimizers of this total energy. The stored energy density encodes
phenomenologically the information that the crystal prefers a few given sponta-
neously polarized and distorted states and can be non-convex with multiple wells
owing to the presence of multiple such states. This theory is similar to the classical
Landau±Ginzburg±Devonshire theory (Devonshire 1949, 1951, 1954) (see also
Fatuzzo and Merz (1967) and Lines and Glass (1979) for lucid descriptions of
the theory and its successes and Damjanovic (1998) for a recent review) with a
few key di� erences. First, we allow for ®nite deformations which are quite impor-
tant as the strains become large. Second, we carefully account for the energy of
the electric ®eld, both applied and induced. This turns out to be quite important
in deciding between di� erently shaped specimens. Finally, we do not restrict
ourselves to polynomials but use very general functions and impose only the
conditions required by symmetry.

We show in § 3 that energy minimization based on this theory automatically leads
to domain patterns and accurately predicts the observed domain patterns in common
ferroelectric materials based on very few parameters. Energy minimization based on
an energy with multiple wells leads to frustration which manifests itself as domains.
The positions of the wells, the electrostatic energy and the mechanical compatibility
determine very characteristic domain patterns. An important result is that many
commonly observed domain walls have low energy and that this is a surprising
and non-generic consequence of material symmetry. It follows from this observation
that these domain walls provide a low-energy path for domain switching. This result
is consistent with recent experiment (Li et al. 1991, 1992) on barium titanate
(BaTiO3) single crystals which demonstrated that the critical compressive stress
for the nucleation and removal of domains is below or around only 1 MPa. This
section also provides a detailed analysis of many complicated domain patterns in a
variety of materials and compares them with experimental observations.

This theoretical framework and analysis are similar to those used recently with
great success in the study of martensitic materials (Ball and James 1987, 1992,
Bhattacharya 1991, 1992, Hane and Shield 1998), magnetostrictive materials
(James and Kinderlehrer 1993), and ferromagnetic shape-memory alloys (James
and Wuttig 1998, DeSimone and James 1997, 2001).

In § 4 we turn to the study of electrostriction through domain switching
and propose a novel large strain actuator using a carefully chosen con®gura-
tion and electromechanical loading path. The basic idea is that domain switch-
ing can give rise to large strains, and this can take place because of a suitable
geometry and electromechanical loading path. The predictions of this section
have been recently veri®ed experimentally by Burcsu et al. (2000) for BaTiO3

single crystals.
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} 2. Continuum Model

2.1. Kinematics
Consider a ferroelectric single crystal and an arrangement of conductors shown

in ®gure 1. The ferroelectric crystal occupies the region O 3 in its reference
con®guration. The deformation of the crystal is described by the function
y : O ! 3, the deformation gradient is F ˆ rxy : O ! 3 3 where m n is the
set of all m n matrices and rx is the gradient with respect to the reference con®g-
uration, and y…O† is the region occupied by the crystal in the current con®guration.
We assume that the deformation is invertible, and that det rxy…x† exists and is
positive almost everywhere in O. Although we use a continuum theory, we have
the following atomic picture in mind. Associated with the material point x, there
is a lattice with lattice vectors fl01; l02; l03g in the reference con®guration. As the crystal
deforms, so does the lattice: therefore, after deformation, the lattice has lattice
vectors fl1; l2; l3g. We invoke the Cauchy±Born rule (Ericksen 1984) which says
that the overall distortion of the lattice follows the macroscopic distortion, or

li ˆ …rxy†l0i i ˆ 1; 2; 3:

We ®nd it convenient to choose the undistorted non-polar phase at the Curie tem-
perature as our reference con®guration; therefore, fl0i g is independent of x.

We denote the spontaneous polarization at the point y in the current con®gura-
tion as p…y†. Since our deformation is invertible, we shall ®nd it convenient at times
to `pull back’ p to the reference con®guration, and we write p…x† ˆ p…y…x†† with a
slight abuse of notation.

We apply a dead load to our crystal with ®xed reference traction t0 : qO ! 3

and use an arrangement of conductors C1
3 with total charge Q and C2

3

with a ®xed potential ¿̂¿ to apply an electric ®eld. Let e0 : 3 ! 3 be the electric ®eld
that would be present owing to the conductors C1 and C2 were the ferroelectric
crystal absent.
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Figure 1. A ferroelectric±conductor system where O is the undistorted reference con®gura-
tion of the ferroelectric crystal at its Curie temperature ³c; C1 and C2 are the domains
occupied by conductors with total charge Q and ®xed potential ¿̂¿ respectively. The
crystal is subjected to a dead load t0 on some parts of its boundary.



2.2. Electroelastic Energy
For a ferroelectric crystal at temperature ³ subject to a dead load t0 and an

electric ®eld e0 as described above, we postulate that we can obtain the deformation
and polarization as those that minimize

E…y; p† ˆ
…

O
‰ 1

2
rxp· A rxp ‡ W…rxy; p; ³† e0· p …det rx y†Š dx

…

qO
t0· y dSx ‡ °0

2

…

3

jry¿j2dy; …1†

where A 2 3 3 is a positive de®nite matrix, ry is the gradient with respect to the
current con®guration, W : 3 3 3 ! is the given `stored energy density’,

°0 ˆ 8:85 10 12C2 N 1 m 2 is the coe� cient of permittivity of the free space and
the electric potential ¿ is obtained by solving Maxwell’s equation

ry· °0ry ¿ ‡ p Ày…O†
¡ ¢ ˆ »f on 3; …2†

subject to

ry¿ ˆ 0 on C1;

…

qC1

q¿

qn
dS ˆ 0; ¿ ˆ 0 on C2;

¿ ! 0 as jyj ! 1; …3†
for some free charge »f supported on qC1 [ qC2.

Let us clarify the notation. Given y : O ! 3 and p : y…O† ! 3, we solve equa-
tion (2) to obtain ¿ and substitute it back into equation (1) to obtain E…y; p†.
Maxwell’s equation (2) is of course solved over all space 3 with p ˆ 0 outside
y…O†; we emphasize this by writing p Ày…O†, where Ày…O† is the characteristic function
of y…O† so that Ày…O† ˆ 1 on y…O† and Ày…O† ˆ 0 outside y…O†. The free charge »f is a
measure supported on qC1 [ qC2, and we assume that it is of the form d»f ˆ »f dS
where »f : qC1 [ qC2 ! with an obvious abuse of notation. Thus, by equation (2),
we mean

ry· … °0ry ¿ ‡ p† ˆ 0 in y…O†;

r2
y¿ ˆ 0 in C1 [ C2 [ 3 n y…O† [ C1 [ C2

± ²± ²
;

‰‰ °0ry ¿ ‡ pŠŠ· n0 ˆ 0 on qy…O†n…qC1 [ qC2†;

‰‰ °0ry ¿ ‡ pŠŠ· n0 ˆ »f on qC1 [ qC2;

where ‰‰ ŠŠ denotes the jump across the interface and n0 is the normal to the boundary.
Each of the terms in the functional (1) has a physical interpretation. The ®rst

term penalizes changes in the polarization and thus is interpreted as the energy of
forming a ferroelectric domain wall. The second term, the stored energy density, is
the energy cost that the crystal must pay if the distortion and polarization deviate
from the preferred states at that temperature; thus this builds in the information that
the crystal prefers certain spontaneous distortion and spontaneous polarization at a
given temperature. The third is the potential energy of the applied electric ®eld, and
this enforces the desire of the polarization to align with the applied electric ®eld. The
fourth is of course the potential energy of the dead-loading device. The ®nal term is

2024 Y. C. Shu and K. Bhattacharya



the electrostatic self-energy associated with the electric ®eld generated by the ferro-
electric crystal.

The variational principle (1) may be justi®ed by considering the total energy of
the ferroelectric±conductor system described in § 2.1:

EE…y; p† ˆ
…

O
‰ 1

2
rxp· A rxp ‡ W …rxy; p; ³†Š dx

…

qO
t0· y dSx

‡ °0

2

…

3

jry ¿¿j2 dy ¿̂¿

…

qC2

»»f dS; …4†

where the free charge density »»f : qC1 [ qC2 ! and electric potential ¿¿ : 3 !
are obtained by solving Maxwell’s equation

ry· … °0ry ¿¿ ‡ p Ày…O†† ˆ »»f on 3 …5†

subject to

ry¿¿ ˆ 0 on C1;

…

qC1

q¿¿

qn
dS ˆ Q

°0

; ¿¿ ˆ ¿̂¿ on C2; ¿¿ ! 0 as jyj ! 1: …6†

Let ¿0 be the electric ®eld potential and »0 : qC1 [ qC2 ! be the free charge
density that would be present if the ferroelectric were absent. They are obtained by
solving Maxwell’s equation

°0 r2
y ¿0 ˆ »0 on 3 …7†

subject to the boundary conditions (6) with ¿¿ replaced by ¿0. Now set

¿ ˆ ¿¿ ¿0; »f ˆ »»f »0; e0 ˆ ry ¿0: …8†

Then, it follows from the linearity of Maxwell’s equation that ¿ : 3 ! and

»f : qC1 [ qC2 ! satisfy equation (2) subject to equation (3). Now note that

°0

…

3

ry¿· ry¿0 dy ˆ °0

…

3

ry· …¿0ry¿† ¿0r2
y ¿

£ ¤
dy

ˆ
…

3

¿0 ry· …p Ày…O†† »f

£ ¤
dy

ˆ
…

3

ry ¿0· p Ày…O† ‡ »f ¿0

¡ ¢
dy

ˆ
…

y…O†
e0· p dy ‡

…

qC1

»f ¿0 dS ‡
…

qC2

»f ¿0 dS

ˆ
…

y…O†
e0· p dy ‡ ¿̂¿

…

qC2

»f dS; …9†

where we have used the divergence theorem and Maxwell’s equations (2) and (3)
repeatedly. Substituting equations (8) and (9) into equation (4), we have

EE…y; p† ˆ
…

O

1
2

rxp· Arxp ‡ W…rxy; p; ³† e0· p …det rx y†
£ ¤

dx
…

qO
t0· y dSx

‡ °0

2

…

3

jry¿j2 dy ‡ °0

2

…

3

jry¿0j
2 dy ¿̂¿

…

qC2

»0 dS: …10†
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Note that the sum of the last two terms of equation (10) (the energy of the conductor
system in the absence of the ferroelectric crystal) does not depend on y and p.
Therefore removing them from the energy does not change the variational principle,
but yields the functional (1).

Although we have justi®ed equation (1) in the special case of the ferroelectric±
conductor system shown in ®gure 1, the functional is still valid if the applied ®eld is
created by some other arrangement (using for example other dielectrics) provided
that we interpret e0 as the electric ®eld that would be present if the ferroelectric
crystal were absent, and Maxwell’s equation (2) were solved using appropriate
boundary conditions.

We make two comments for future use. First, we can rewrite the last term in the
energy using Maxwell’s equations as

1
2

…

y…O†
p…y†· ry ¿…y†dy: …11†

Second, we can replace Maxwell’s equations by the following variational principle:

min

…

3

j °0ry¿ ‡ p Ày…O†j2 dy
³ ´

…12†

over all ¿ that satisfy equation (3).

2.3. Multiwell structure
Let us now turn to the basic properties of the stored energy density W . We

require it to possess the following two fundamental properties:

(i) Frame indi� erence. We assume that W is objective; that is it is una� ected by
a change in frame or an additional rigid body rotation of the current
con®guration:

W…QF; Qp; ³† ˆ W…F; p; ³† …13†
for all Q 2 SO(3), for all F 2 3 3 with det F > 0 and for all p 2 3.

(ii) Material symmetry. We assume that W re¯ects the crystalline symmetry of
the ferroelectric crystal. In other words, we assume that a change in
reference con®guration by a member of the point group P0 (which is de®ned
as the group of rotations that map the reference lattice back to itself) leaves
W invariant:

W…FR; p; ³† ˆ W…F; p; ³† …14†
for all R 2 P0, for all F 2 3 3 with det F > 0 and for all p 2 3.

In considering these invariances, it is useful to recall that the polarization is
de®ned in the current con®guration. For future use we combine these relations
and note that

W…QRTFR; QRTp; ³† ˆ W…F; p; ³† …15†
for all R 2 P0, for all Q 2 SO(3) and for all F 2 3 3 with det F > 0 and for all
p 2 3.

Ferroelectric crystals are non-polar above the Curie temperature with a preferred
(stress-free) lattice structure but are spontaneously polarized below the Curie tem-
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perature with a spontaneous lattice distortion. Our stored energy function W should
re¯ect this. We discuss this in detail for the special case of BaTiO3, which is one of
the most widely studied ferroelectric materials. This discussion can be adapted to
other ferroelectrics; in particular we comment on lead zirconate titanate (PZT) at the
end of this section.

BaTiO3 undergoes a series of three ®rst-order phase transformations as summar-
ized in ®gure 2. Above 120°C it is non-polar and has a cubic perovskite ABO3

structure as shown at the bottom left of ®gure 2. Between 5 and 120°C, it has a
tetragonal lattice structure as shown at the bottom right of ®gure 2 and is sponta-
neously polarized along the pseudocubic h100i axis. It is spontaneously polarized in
a pseudocubic h110i direction and has an orthorhombic structure between 90 and
5°C and ®nally is spontaneously polarized in a pseudocubic h111i direction and has a
rhombohedral structure below 90°C.

Now consider a single crystal of undistorted BaTiO3 at the Curie temperature of
120°C and choose this as the reference con®guration. First, note that P0 is the point
group of the cubic lattice or the 24 proper rotations that map the cube back into
itself (see appendix A). Next, recall from § 2.1 that we can represent the di� erent
states of the crystal by the pair …F; p† where F is the deformation gradient with
respect to the reference con®guration and p is the polarization. Thus, the cubic
state is described by …I; 0†, the tetragonal state by …Ut

1; pt
1†, the orthorhombic state

by …Uo
1 ; po

1† and the rhombohedral state by …Ur
1; pr

1† where I is the identity matrix, Ut
1

is the matrix that maps the cubic unit cell to the tetragonal (i.e. unit cell at the
bottom left of ®gure 2 to that at the bottom right) and so forth. These depend on
temperature (owing to thermal expansion); we ignore this here for simplicity but note
that the theory can be easily be modi®ed to account for it.

Since di� erent phases are stable at di� erent temperatures, we conclude that the
stored energy density W must have di� erent minimizers at di� erent temperatures as
shown schematically in ®gure 3. In particular, …I; 0† should minimize the energy
above 120°C, …Ut

1; pt
1† between 5 and 120°C and so forth:

Macroscopic behaviour of ferroelectric materials 2027

Figure 2. The spontaneous polarization and lattice structure of BaTiO3 at di� erent
temperatures.



W …I; 0; ³†4 W…F; p; ³† 8…F; p†; 120°C 4 ³;

W…Ut
1; pt

1; ³†4 W…F; p; ³† 8…F; p†; 5°C 4 ³ 4 120°C;

W…Uo
1 ; po

1 ; ³†4 W…F; p; ³† 8…F; p†; 90°C 4 ³ 4 5°C;

W…Ur
1; pr

1; ³†4 W…F; p; ³† 8…F; p†; ³ 4 90°C:

However, frame indi� erence and material symmetry (as summarized in equation
(15)) imply the existence of minimizers other than those described above. For exam-
ple, between 5 and 120°C, we conclude that W is minimized on the set

…G; q† : G ˆ QUt
1R; q ˆ Qpt

1; 8 Q 2 SO…3†; 8 R 2 P0
© ª

:

These sets have a very simple characterization based on which we conclude the
following.

(i) Non-polar cubic wells. Above 120°C, W is minimized on the set

W c ˆ f…Q; 0† : Q 2 SO…3†g: …16†

A rigid rotation of the crystal still keeps it in the cubic phase; so the cubic
phase corresponds to the `well’ of all rigid rotations of the reference con®g-
uration.

(ii) h100i tetragonal wells. Between 5 and 120°C, W is minimized on the set

Wt ˆ f…QUt
i ; Qpt

i† : Q 2 SO…3†; i ˆ 1; 2; 3g; …17†

2028 Y. C. Shu and K. Bhattacharya

Figure 3. A schematic view of the stored energy density W. Here we do not show the h111i
polarized states, and show only two of the six (12) possible h100i (h110i) polarized
states.



where

pt
1 ˆ ¹tf1; 0; 0g; pt

2 ˆ ¹tf0; 1; 0g; pt
3 ˆ ¹tf0; 0; 1g;

Ut
1 ˆ

²t
2 0 0

0 ²t
1 0

0 0 ²t
1

0

B@

1

CA; Ut
2 ˆ

²t
1 0 0

0 ²t
2 0

0 0 ²t
1

0

B@

1

CA; Ut
3 ˆ

²t
1 0 0

0 ²t
1 0

0 0 ²t
2

0

B@

1

CA; …18†

and the measured values for BaTiO3 are ¹t ˆ 0:26 C m 2, ²t
2 ˆ 1:0067 and

²t
1 ˆ 0:9958 (Mitsui et al. 1969). Note that, according to material symmetry,

the crystal can be polarized in six equivalent h100i directions; thus there are
six symmetry-related variants of the tetragonal phase and this corresponds
to the fact that Wt consists of six wells. This set is shown in ®gure 4.

(iii) h110i orthorhombic wells. Between 90 and 5°C, W is minimized on the set

W0 ˆ f…QUo
i ; Qpo

i † : Q 2 SO…3†; i ˆ 1; . . . ; 6g; …19†

where
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Figure 4. Energy wells W t and domain walls of BaTiO3 in its tetragonal phase. Let the plane
of the paper be the set of all states (F; p†. (U1 ; p1†, …U1; p1†, (U2; p2†; . . . are the six
crystallographically equivalent polarized states or variants, and the open circles repre-
sent the states obtained from any of these states (Ui; pi† by a rigid-body rotation
(change in observer frame). The possible domain walls are shown as broken lines;
any variant can form a 180° domain wall with the variant with the same stretch and
opposite polarization, and one 90° domain wall with exactly one state of each of the
other variants. Some of the lines are not shown to keep the ®gure reasonably com-
prehensible.



po
1 ˆ ¹of1; 1; 0g;

Uo
1 ˆ

¬o ¯o 0

¯o ¬o 0

0 0  o

0

BB@

1

CCA;

po
2 ˆ ¹of 1; 1; 0g;

Uo
2 ˆ

¬o ¯o 0

¯o ¬o 0

0 0  o

0

BB@

1

CCA;

po
3 ˆ ¹of1; 0; 1g;

Uo
3 ˆ

¬o 0 ¯o

0  o 0

¯o 0 ¬o

0

BB@

1

CCA;

po
4 ˆ ¹of 1; 0; 1g

Uo
4 ˆ

¬o 0 ¯o

0  o 0

¯o 0 ¬o

0

BB@

1

CCA;
…20†

po
5 ˆ ¹of0; 1; 1g;

Uo
5 ˆ

 o 0 0

0 ¬o ¯o

0 ¯o ¬o

0

BB@

1

CCA;

po
6 ˆ ¹of0; 1; 1g;

Uo
6 ˆ

 o 0 0

0 ¬o ¯o

0 ¯o ¬o

0

BB@

1

CCA;

and the measured values for BaTiO3 are ¹o ˆ 0:21 C m 2, ¬o ˆ 1:003 29,

 o ˆ 0:9975 and ¯o ˆ 0:001 15 (Mitsui et al. 1969). Note that, according
to material symmetry, the crystal can be polarized in 12 equivalent h110i
directions; thus there are 12 symmetry-related variants of the orthorhombic
phase and Wo consists of 12 wells. This set is shown in ®gure 5.

(iv) h111i rhombohedra l wells. Below 90°C, W is minimized on the set

W r ˆ f…QUr
i ; Qpr

i† : Q 2 SO…3†; i ˆ 1; . . . ; 4g; …21†

where

pr
1 ˆ ¹rf1; 1; 1g;

Ur
1 ˆ

¬r ¯r ¯r

¯r ¬r ¯r

¯r ¯r ¬r

0

BB@

1

CCA;

pr
3 ˆ ¹rf1; 1; 1g;

Ur
3 ˆ

¬r ¯r ¯r

¯r ¬r ¯r

¯r ¯r ¬r

0

BB@

1

CCA;

pr
2 ˆ ¹rf 1; 1; 1g;

Ur
2 ˆ

¬r ¯r ¯r

¯r ¬r ¯r

¯r ¯r ¬r

0

BB@

1

CCA;

pr
4 ˆ ¹rf1; 1; 1g;

Ur
4 ˆ

¬r ¯r ¯r

¯r ¬r ¯r

¯r ¯r ¬r

0

BB@

1

CCA;

…22†

and the measured values for BaTiO3 are ¹r ˆ 0:19 C m 2, ¬r ˆ 0:99999 and
¯r ˆ 0:00131 (Mitsui et al. 1969). Note that there are eight equivalent h111i
directions and hence Wr has eight wells. This set is shown in ®gure 6.

PZT, a solid solution of lead titanate (PbTiO3) and lead zirconate (PbZrO3), is
widely used in applications, especially at compositions close to the morphotropic
phase boundary. Pure PbTiO3 is cubic and non-polar above the Curie temperature,
and h100i polarized tetragonal below it; so the wells at room temperature are given
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Figure 5. Energy wells W o and domain walls of BaTiO3 in its orthorhombic phase. The
symbols have the same meanings as in ®gure 4. Any orthorhombic variant can form a
180° domain wall with the variant with the same stretch and opposite polarization, a
90° wall with each of the two variants with di� erent stretch but same c axis, and either
a 60° or 120° wall with each of the other eight variants. Some of the lines are not
shown to keep the ®gure reasonably comprehensible.

Figure 6. Energy wells W r and domain walls of BaTiO3 in its rhombohedral phase. The
symbols have the same meanings as in ®gure 4. Any rhombohedral variant can form a
180° domain wall with the variant with the same stretch and opposite polarization, and
either a 70° or a 109° wall with each of the other six variants. Some of the lines are not
shown to keep the ®gure reasonably comprehensible.



by equations (17) and (18) with the measured values ²t
1 ˆ 0:9824 and ²t

2 ˆ 1:0453
(Mitsui et al. 1969). Pure PbZrO3 is cubic and non-polar above its Curie tempera-
ture, and antiferroelectric at room temperature; however, doping it with a small
amount of Ti makes it ferroelectric with h111i polarization below the Curie tem-
perature. Therefore the wells for PbZrO3 are given by equations (21) and (22) with
measured values ¬r ˆ 0:9999; ¯r ˆ 0:002 03 (Mitsui et al. 1969). The solid-solution
PZT is h100i polarized tetragonal in the Ti-rich region and h111i polarized rhombo-
hedral in the Zr-rich region, with an exchange of stability at the `morphotropic
phase boundary’ (at approximately Pb…Ti0:45Zr0:55†O3 composition). Therefore at
the morphotropic phase boundary the crystal can have either the h100i or the
h111i polarization, and hence have both set of wells: the h100i wells (17) and
h111i wells (21). The measured values are given by ²t

1 ˆ 1:0138; ²t
2 ˆ 1:0327,

¬r ˆ 0:9999; and ¯r ˆ 0:0029 around the morphotropic composition (Mitsui et al.
1969).

} 3. Domain patterns
In this section we show that the multiwell structure of the stored energy density

W gives rise to minimizers that consist of domains of di� erently oriented polariza-
tion. Further, these domains form very characteristic patterns. In this section we
study domain patterns in a large ferroelectric single crystal held at a constant tem-
perature in the absence of external loadings, that is when e0 ˆ 0 and t0 ˆ 0.

Let us go back to the total energy of the single crystal described in equation (1).
Recall that the ®rst term is the energy associated with spatial changes in polarization
or domain walls. If this term is small or, equivalently, if the size of the crystal under
consideration is large compared with the square root of the largest eigenvalue of the
matrix A, then the crystal can form many domains if it chooses to, and this term does
not in¯uence the overall domain pattern and macroscopic behaviour. Thus, it can be
neglected in a large crystal. This statement can be made rigorous by adopting the
arguments of DeSimone (1993).

Thus we are led to the problem of minimizing the energy

ÊE…y; p† ˆ
…

O
W…rxy; p†dx ‡ °0

2

…

3

jry¿j2 dy; …23†

where we obtain the electric potential ¿ by solving Maxwell’s equation (2). Above,
we have dropped temperature from the notation. Further, since it is held constant,
we assume that W is minimized on a suitable set W and that its minimum value is
zero without any loss of generality.

Note that each of these terms in (23) is positive, and thus to minimize it we need
to minimize them individually. The ®rst term thus requires that

rxy…x†; p…y…x††… † 2 W …24†

at each point x 2 O where W is the set of appropriate energy wells from among
equations (16), (17), (19) or (21). The second term requires that the electric ®eld be
zero, and this in turn requires that p be divergence free:

ry· p…y…x†† ˆ 0 on 3: …25†
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3.1. Domain Walls
Consider a piecewise homogeneous state as shown in ®gure 7 with deformation

gradient and polarization taking values …F‡; p‡† in one part of the crystal and
…F ; p † in the other. Assume that the two parts are separated by a plane with
normal n̂n in the reference con®guration. We assume that the deformation is contin-
uous so that the crystal does not break apart. Then, the deformation gradients F‡

and F on the two sides cannot be arbitrary but must satisfy the Hadamard jump
condition (for example Gurtin (1981)):

F‡ F ˆ a 0 n̂n …26†
for some vector a 0 where a 0 n̂n is the matrix with components …a 0 n̂n†ij

ˆ a 0
i n̂nj and

a 0 ˆ …a 0
i †; n̂n ˆ …n̂ni†. Further, the interface has a normal

n0 ˆ …F‡† Tn̂n

j…F‡† Tn̂nj
ˆ …F † Tn̂n

j…F † Tn̂nj
…27†

in the current con®guration.
We now examine the necessary conditions for such a piecewise homogeneous

con®guration to be an energy minimizer. According to equation (24) we require that
…F ; p † 2 W or, equivalently,

F‡ ˆ Q‡Uj; p‡ ˆ Q‡pj;

F ˆ Q Ui; p ˆ Q pi; …28†
for some Q 2 SO…3† and for some i; j. Further according to equation (25) inter-
preted in the weak form, we require that

…p‡ p †· n0 ˆ 0: …29†
Setting Q ˆ …Q †TQ‡ and a ˆ …Q †Ta0 we conclude the following from equa-

tions (26)±(29). We can form an interface between variants i and j if and only if we
satisfy

QUj Ui ˆ a n̂n; …30†

…µQpj pi†· U T
i n̂n ˆ 0 …31†
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con®guration.



for some Q 2 SO…3†; a 2 3; n̂n 2 3; µ ˆ 1. The ®rst of these equations, the
mechanical compatibility equation (30), is the same as the `twinning equation’ in
martensites and guarantees the mechanical integrity of the interface. The second of
these, the electrical compatibility equation (31), ensures that there are no bound
charges on the interface.

Let us now examine whether we can solve these equations for a given pair …Ui; pi†
and …Uj ; pj†. Ball and James have given the most general conditions for solving the
twinning equation (30) for a given pair …Ui; Uj†. They show that there are at most
two solutions …QI; aI; n̂nI† and …QII; aII; n̂nII†. In other words, the twinning equation
completely determines the unknown quantities. Thus the system of equations (30)
and (31) is overdetermined and generically has no solution.

However, it is possible to have solutions under certain very special conditions on
…Ui; pi† and …Uj; pj†. It turns out that symmetry forces the satisfaction of these
conditions in many materials of interest as demonstrated in the following lemma.
A similar result has been independently derived by DeSimone and James (2001) in
the context of magnetostriction. Thus the existence of low-energy domain walls is a
consequence of symmetry.

Lemma 1 (classi®cation of domain walls): Let …Ui; pi† and …Uj; pj† be given.
(a) Suppose that i ˆ j. Then equations (30) and (31) are both satis®ed by Q ˆ I,

a ˆ 0, µ ˆ 1 and any n̂n that satis®es n̂n· U 1
i pi ˆ 0. This gives a 180° domain

wall. Note that µ ˆ ‡1 gives a degenerate solution since it implies that there is
no di� erence between the two sides.

(b) Suppose that i 6ˆ j. Further suppose that the two sides are related by a twofold
rotation, that is let Ui and Uj satisfy

Uj ˆ RTUiR; pj ˆ RTpi; …32†

for some twofold rotation R ˆ I ‡ 2v̂v v̂v with axis v̂v. Then, equations (30)
and (31) have two solutions given by

n̂n…I† ˆ v̂v ; a…I† ˆ 2
U 1

i v̂v

jU 1
i v̂vj2

Uiv̂v

Á !

; µ…I† ˆ ‡1 …type I solution†; …33†

n̂n…II† ˆ 2

»
v̂v

U2
i v̂v

jUiv̂vj2

Á !

; a…II† ˆ » Uiv̂v; µ…II† ˆ 1 …type II solution†; …34†

where » is chosen such that jn̂n…II†j ˆ 1. Q…I† and Q…II† are obtained by substi-
tuting these back into equation (30). Moreover, the angles between the polar-
ization on the two sides ( …I† between pi and µ…I†Q…I† pj for the type I twins and

 …II† between pi and µ…II†Q…II† pj for the type II twins) are given by

cos  …I; II† ˆ µ…I;II† p̂pi· …Ui ‡ a…I; II† n̂n…I; II††U 1
j

h i
p̂pj ; …35†

where p̂pi ˆ …1=jpij†pi and p̂pj ˆ …1=jpjj†pj. Thus, these are  …I; II† domain
walls. Finally, if

Ui pi ˆ ¶ pi; Uj pj ˆ ¶ pj …36†

for some common ¶ 6ˆ 0, then
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cos  …I; II† ˆ µ…I;II† p̂pi· p̂pj ‡ 1

¶
a…I; II†· p̂pi

± ²
n̂n…I; II†· p̂pi

± ²
: …37†

Proof: The case i ˆ j is obvious. If i 6ˆ j and if equation (32) holds, we can verify that
(a…I†; n̂n…I†) and (a…II†; n̂n…II†) in equations (33) and (34) respectively solve equations (30)
(Bhattacharya 1992). We now show that (n̂n…I†; µ…I†) and (n̂n…II†; µ…II†) satisfy equation
(31). According to equations (33) and (34),

R…I†n̂n…I† ˆ n̂n…I†; R…II†n̂n…II† ˆ n̂n…II†; …38†
so that, with an appropriate choice of µ,

…µRTU 1
i pi U 1

i pi†· n̂n ˆ µU 1
i pi· Rn̂n U 1

i pi· n̂n ˆ 0: …39†
Further, one can verify that

U 1
i a…I†· n…I† ˆ U 1

i a…II†· n…II† ˆ 0: …40†
Now from equatons (32) and (39),

…µRTU 1
i pi U 1

i pi†· n̂n ˆ 0 , …µRTU 1
i RRTpi U 1

i pi†· n̂n ˆ 0

, …µU 1
j pj U 1

i pi†· n̂n ˆ 0

, …µ…QUj† 1Qpj U 1
i pi†· n̂n ˆ 0

, …µQpj pi†· U 1
i n̂n ˆ 0:

The last identity follows since …QUj† Tn̂n ˆ U T
i n̂n as a consequence of equations (30)

and (40). This gives equation (31). It also follows from Ball and James (1987) that
these are the only solutions.

Finally, the angles  …I;II† between pi and µ…I;II†Q…I;II† pj follow from

cos  …I; II† ˆ µ…I;II†Q…I; II† pj· pi

jQ…I; II†pjjjpij

ˆ µ…I;II†

jpij jpjj
pi· …Ui ‡ a…I; II† n̂n…I; II††U 1

j

h i
pj

ˆ µ…I;II† p̂pi· p̂pj ‡ µ…I;II†

¶
a…I;II†· p̂pi

± ²
n̂n…I;II†· p̂pj

± ²

ˆ µ…I;II† p̂pi· p̂pj ‡ µ…I;II†

¶
a…I;II†· p̂pi

± ²
n̂n…I;II†· R…I; II†T p̂pi

± ²

ˆ µ…I;II† p̂pi· p̂pj ‡ 1

¶
a…I;II†· p̂pi

± ²
n̂n…I;II†· p̂pi

± ²

because of equation (38). This completes the proof. &

We have inherited the terminology type I and type II above from the twinning
literature. In type I solutions, the interface is a crystallographic plane (rational plane)
while in type II solutions the direction of shear (U 1

i a) is a crystallographic direction
(rational direction). If a solution has both rational interface and direction of shear,
we call it a compound solution.

Note that this lemma only gives us su� cient conditions for the existence of
solutions. In other words it identi®es a set of conditions under which we can ®nd
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a solution but does not exclude the possibility of ®nding other solutions even if these
symmetry conditions are violated. In fact we shall see one such solution later when
we study the tetragonal to rhombohedral transition.

3.2. Domain walls in barium titanate
We now use lemma 1 to study possible domain walls in BaTiO3 for tetragonal,

orthorhombic and rhombohedral phases.

3.2.1. Tetragonal phase
The energy wells Wt of the tetragonal phase are described in equation (17) and

shown in ®gure 4. We can clearly form 180° domain walls between points …QUi; Qpi†
and …QUi; Qpi† for any Q 2 SO…3† and i ˆ 1; 2; 3 according to lemma 1.

We now turn to domain walls with di� erent strains on the two sides. First
consider the case i ˆ 1 and j ˆ 2. Note that R, a twofold rotation about the axis
v̂v ˆ …1=21=2†…êe1 ‡ êe2† satis®es R 2 P0 (see appendix A) and equation (32). We can
then conclude from lemma 1 that there are two possible solutions to equations (30)
and (31) and they are obtained from equations (33) and (34) to be

n̂n…I† ˆ 1

21=2
…êe1 ‡ êe2†; a…I† ˆ 21=2…²t2

2 ²t2

1 †
²t2

1 ‡ ²t2

2

… ²t
2êe1 ‡ ²t

1êe2†;

n̂n…II† ˆ 1

21=2
… êe1 ‡ êe2†; a…II† ˆ 21=2…²t2

2 ²t2

1 †
²t2

1 ‡ ²t2

2

…²t
2êe1 ‡ ²t

1êe2†: …41†

To obtain the angles  …I;II† between the polarizations on the two sides, note that
U1 p1 ˆ ²t

2 p1 and U2 p2 ˆ ²t
2 p2. Thus, we conclude from equation (37) that

cos  …I;II† ˆ ²t2

1 ²t2

2

²t2

1 ‡ ²t2

2

; …42†

whence from a standard trigonometric identity (tan …2 † ˆ …2 tan  †=…1 tan2  ))

 …I;II† ˆ 2 tan 1…²
t
2

²t
1

†: …43†

For BaTiO3,  …I;II† ˆ 90:62°. Thus, both solutions characterize 90° domain walls.
To characterize these walls further, note that we could have obtained the same

two solutions by choosing R to be a twofold rotation about v̂v* ˆ …1=21=2†… êe1 ‡ êe2†.
Moreover, one can verify that the type I solution in terms of the rotation with axis v̂v
coincides with the type II solution in terms of the rotation with axis v̂v*, and vice
versa. As a result, these solutions are compound with a rational interface f110gc and
a rational shear direction h110i.

The cases i ˆ 1, j ˆ 3 and i ˆ 2, j ˆ 3 similarly yield f110gc domain walls.
Thus, the domain walls in tetragonal wells can be characterized as shown in

®gure 4. Any point on one of energy wells can form a 180° domain wall with a
corresponding point on the well with the same strain but opposite polarization, and a
90° domain wall with a point on each of the other wells. Further it is possible to show
that these are the only domain walls that are possible in the tetragonal phase. This is
in agreement with experimental observations (Hooton and Merz 1955, Ja� e et al.
1971, Xu 1991, Chou and Wayman 1997, Park and Chung 1997).
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3.2.2. Orthorhombic phase
The energy wells Wo of the orthorhombic phase are described in equation (19)

and shown in ®gure 5. We can clearly form 180° domain walls between points
…QUi; Qpi† and …QUi; Qpi† for any Q 2 SO…3† and i ˆ 1; . . . ; 6 according to
lemma 1.

To ®nd the other domain walls, let us begin with a pair i; j such that Ui and Uj

have the same c axis, that is the pair 1 and 2, the pair 3 and 4 and the pair 5 and 6.
We shall ®rst show that it is possible to form 90° domain walls with normal f100gc

between any of these pairs. Further these domain walls are obtained from compound
solutions. Indeed, consider i ˆ 1 and j ˆ 2. Let R be a twofold rotation about the
axis v̂v ˆ êe2. Note that R 2 P0 and satis®es equation (32). So we can obtain two
solutions from equations (33) and (34), and they have normal n̂n…I† ˆ êe2 and
n̂n…II† ˆ êe1. Further, we can calculate the angle between the polarizations by noting
that U1 p1 ˆ ²o

1 p1 and U2 p2 ˆ ²o
1 p2:

cos  …I;II† ˆ ²o2

1 ‡ ²o2

2

²o2

1 ‡ ²o2

2

;

where ²o
1 ˆ 1

2
…¬o ‡ ¯o†, ²o

2 ˆ 1
2
…¬o ¯o†, ²o

3 ˆ  o and ¬o, ¯o, and  o are lattice para-
meters of orthorhombic variants (20). For BaTiO3,  …I;II† ˆ 90:13°. Finally, note that
we obtain the same solutions by starting with a twofold rotation R about the axis
v̂v ˆ êe2. The pair 3 and 4 and the pair 5 and 6 are treated analogously.

Now consider the remaining cases, that is when Ui and Uj do not have the same c
axis. We shall show that here we can form a type I 120° domain wall with normal
f110gc and a type II 60° domain wall with an irrational normal. To be speci®c,
consider the pairs …U1; p1† and …U4; p4†. Let R be a twofold rotation about the
axis v̂v ˆ …1=21=2† …êe2 ‡ êe3†. Note that R 2 P0 and satis®es equation (32). So we can
obtain two solutions from equations (33) and (34). Further, one can verify that
U1 p1 ˆ ²o

1 p1 and U4 p4 ˆ ²o
1 p4; so that the angles  …I;II† between the polarizations

are

cos  …I† ˆ ²o2

2 ²o2

3 ²o2

1 …2²o2

2 ‡ ²o2

3 †
²o2

2 ²o2

3 ‡ ²o2

1 …2²o2

2 ‡ ²o2

3 †
;

cos  …II† ˆ ²o2

1 ‡ ²o2

2 ‡ 2²o2

3

²o2

1 ‡ ²o2

2 ‡ 2²o2

3

:

For BaTiO3,  …I† ˆ 120:27° and  …II† ˆ 60:27°. The remaining pairs of variants are
treated analogously.

In summary, each point on any orthorhombic well can form a 180° domain wall
with the corresponding point on the well with the same strain but opposite polariza-
tion, a 90° domain wall with one point each on the two wells with di� erent strains
with identical c axis, and a 60° or 120° domain wall with one point on each well of
the pair with di� erent c axes. Further it is possible to show that these are the only
domain walls that are possible in the orthorhombic phase. This is shown schemati-
cally in ®gure 5 and is in agreement with observations (Jona and Shirane 1962,
Huang et al. 1995).
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3.2.3. Rhombohedral phase
The energy wells Wr of the rhombohedral phase are described in equation (21)

and shown in ®gure 6. We can clearly form 180° domain walls between points
…QUr

i ; Qpr
i † and …QUr

i ; Qpr
i† for any Q 2 SO…3† and i ˆ 1; . . . ; 4 according to

lemma 1.
We now turn to domain walls with di� erent strains on the two sides. First

consider the case i ˆ 1 and j ˆ 2. Note that R, a twofold rotation about the axis
v̂v ˆ …1=21=2†…êe2 ‡ êe3† satis®es R 2 P0 (see appendix A) and Ur

2 ˆ RTUr
1R,

pr
2 ˆ RTpr

1. We can then conclude from lemma 1 that there are two possible solu-
tions to equations (30) and (31) and they are obtained from equations (33) and (34)
to be

n̂n…I† ˆ 1

21=2
…êe2 ‡ êe3†; a…I† ˆ 23=2 ¯r …2 ¬r ‡ ¯r†

¬r2 ‡ 2 ¯r2
¬rêe1 ¯rêe2 ¯rêe3f g;

n̂n…II† ˆ êe1; a…II† ˆ 2 ¯r …2 ¬r ‡ ¯r†
¬r2 ‡ 2 ¬r ¯r ‡ 3 ¯r2

2 ¯rêe1‡…¬r‡¯r†êe2‡…¬r ‡ ¯r†êe3f g:

…44†
To obtain the angles  …I;II† between the polarizations on the two sides, ®rst note that
in general there does not exist the common ¶ such that equation (36) holds unless the
lattice parameters of rhombohedral variants have certain special relation. Thus, we
have to resort to equation (35) with the help of equations (44). It follows that

cos  …I† ˆ ¬r2

8 ¬r ¯r 2 ¯r2

3 ¬r2 ‡ 6 ¯r2 ; …45†

cos  …II† ˆ ¬r2

‡ 10 ¬r ¯r ‡ 7 ¯r2

3 …¬r2 ‡ 2 ¬r ¯r ‡ 3 ¯r2†
: …46†

For BaTiO3,  …I† ˆ 70:74° and  …II† ˆ 109:68°.
To characterize these walls further, note that we could have obtained the same

two solutions by choosing R to be a twofold rotation about v̂v* ˆ êe1. Moreover, one
can verify that the type I solution in terms of the rotation with axis v̂v coincides with
the type II solution in terms of the rotation with axis v̂v*, and vice versa. As a result,
these solutions are compound.

The remaining cases can be treated analogously.
In summary, the domain walls in rhombohedral wells can be characterized as

shown in ®gure 6. Any point on one of energy wells can form a 180° domain wall
with a corresponding point on the well with the same strain but opposite polariza-
tion, and a 70° or 109° domain wall with one point on each of the other wells
with di� erent strains. Further it is possible to show that these are the only domain
walls that are possible in the rhombohedral phase. This is in general agreement with
experimental observations of the rhombohedral domain con®guration (Jona and
Shirane 1962, Ricote et al. 2000).

3.3. Rhomobohedral±Tetragonal domain wall
We have discussed in § 2.3 that PZT at compositions at the morphotropic phase

boundary can be polarized in either the h100i or the h111i directions, and the energy
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has both the tetragonal and the rhombohedral wells. This material, therefore, can
switch from the rhombohedral to the tetragonal phase and vice versa. Further, the
rhombohedral-to-tetragona l phase transformation in relaxors is also the basis of the
ultrahigh strains (Shrout and Park 1997). A similar transformation has recently also
been observed in BaTiO3 (Park et al. 1999).

We now explore whether it is possible to form a low-energy interface between
with the h100i polarized tetragonal one side and the h111i polarized rhombohedral
on the other. This would require us to satisfy the mechanical and electrical compat-
ibility conditions (30) and (31) with Uj ˆ Ur

1, Ui ˆ Ut
1, pj ˆ pr

1, pi ˆ pt
1. Ball

and James (1987) have given the most general conditions under which one can
solve equation (30). According to their result, a solution is possible if and only if
the eigenvalues ¶1; ¶2 and ¶3 of the matrix …Ut

1† 1…Ur
1†2…Ut

1† 1 satis®es
0 4 ¶1 4 ¶2 ˆ 1 4 ¶3. If these conditions are satis®ed, then their result also provides
us with a formula for n̂n. Using this value of n̂n we can look for solutions of equation
(31). The calculations, which are omitted since they are tedious and unenlightening,
lead us to conclude the following.

It is possible to form a low-energy domain wall between the rhombohedral and
tetragonal phases if and only if

² ¹ ˆ ²2
1 ; …47†

²…² ‡ ¹† ‡ ²2
1²2

2 4 ²2
1² ‡ ²2

2…² ‡ ¹† ‡ 2¹2; …48†

¹r‰2²1 ‡ ¶°1 ‡ …1 ¶†°3Š ˆ µ ‰¶°1 ‡ …1 ¶†°3Š…¬r ‡ 2¯r†¹t; …49†

where

¶ ˆ 1

1 µ̂µf‰…¶3 1†=…1 ¶1†Š‰…2 ‡ °2
1†=…2 ‡ °2

3†Šg
1=2

;

¶1 ˆ 1

2²2
1²2

2

²2
1² ‡ ²2

2…² ‡ ¹† f‰²2
1² ²2

2…² ‡ ¹†Š2 ‡ 8²2
1²2

2¹2g1=2
± ²

;

¶3 ˆ 1

2²2
1²2

2

²2
1² ‡ ²2

2…² ‡ ¹† ‡ f‰²2
1² ²2

2…² ‡ ¹†Š2 ‡ 8²2
1²2

2¹2g1=2
± ²

;

°1 ˆ 1

2²1²2¹
²2

1² ²2
2…² ‡ ¹† f‰²2

1² ²2
2…² ‡ ¹†Š2 ‡ 8²2

1²2
2¹2g1=2

± ²
;

°3 ˆ 1

2²1²2¹
²2

1² ²2
2…² ‡ ¹† ‡ f‰²2

1² ²2
2…² ‡ ¹†Š2 ‡ 8²2

1²2
2¹2g1=2

± ²
;

²1 ˆ ²t
1; ²2 ˆ ²t

2; ² ˆ …¬r†2 ‡ 2…¯r†2; ¹ ˆ ¯r…2¬r ‡ ¯r†; µ ˆ 1; µ̂µ ˆ 1:

Note that these are severe restrictions on ²t
1; ²t

2; ¬r; ¯r; ¹t; ¹r which are given for
any given material. We conclude therefore that only very special materials can form
these low-energy rhombohedral±tetragonal walls. We speculate that materials whose
parameters satisfy these special relations can undergo the rhombohedral-to-tetrago -
nal phase transformation under much smaller driving forces, and thus with much
smaller hysteresis, than the others. We wonder whether these relations have any
connection to the relaxors that display ultrahigh strains. We note here that such
special relations play a very signi®cant role in the context of martensites where it has
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been established that special relations can lead to very special microstructures
(Bhattacharya 1991).

3.4. Other domain patterns

3.4.1. Banded domain patterns
We now use the same ideas to examine the more complex domain patterns that

are observed in ferroelectric materials. Consider a state shown in ®gure 8 (a) where
…F‡; p‡† and …F ; p † alternate in layers separated by parallel planes with normal n̂n
in the reference con®guration. Notice that the necessary conditions that this layered
structure be an energy minimizer are the same as those for forming a single domain
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Figure 8. (a) Rank-one lamellar domain patterns. (b) Rank-two banded domain patterns. (c)
Predicted banded domain patterns for ferroelectric crystals in the tetragonal phase. (d)
High-rank domain patterns with very-®ne-scale electric substructure within sublayers.



wall. Therefore, the results above describe not only a single domain wall but also a
laminate made of many parallel domain walls.

Let us now turn to the more complicated banded structure shown schematically
in ®gure 8 (b). This is commonly observed (for example Jona and Shirane (1962) and
Arlt (1990)) and consists of parallel `layers’ which themselves are made up of many
parallel `sublayers’. The length scale of the sublayers is typically much smaller than
those of the layers. For this structure to be an energy minimizer, the four states must
belong to energy wells; let us label the corresponding wells i, j, k and l. The sublayers
must satisfy both the mechanical and electrical compatibility conditions (30) and (31)
across the interfaces with normals n̂n1 and n̂n2 as before. Finally the layers themselves
must satisfy the mechanical and electrical compatibility conditions across the inter-
faces with normal m̂m. However, this compatibility is only on average (James and
Kinderlehrer 1993). Since the sublayers are much ®ner than the layers, at the level of
the layers we do not see the individual sublayers; instead we ®nd the average defor-
mation gradient and the average polarization and only require these averages to be
compatible across the interface with normal m̂m. Putting all this together, we conclude
the following.

We can form a structure shown in ®gure 8 (b) as an energy minimizer if, for given
i; j; k; l, we satisfy the equations

Q1Uj Ui ˆ a1 n̂n1; …µ1Q1pj pi†· U T
i n̂n1 ˆ 0; …50†

Q2Ul Uk ˆ a2 n̂n2; …µ2Q2pl pk†· U T
k n̂n2 ˆ 0; …51†

Q~FF ~GG ˆ b m̂m; …µQ~pp ~qq†· ~GG Tm̂m ˆ 0; …52†

where

~FF ˆ ®2Q2Ul ‡ …1 ®2†Uk ˆ Uk ‡ ®2a2 n̂n2;

~GG ˆ ®1Q1Uj ‡ …1 ®1†Ui ˆ Ui ‡ ®1a1 n̂n1; …53†
~pp ˆ ®2 µ2Q2pl ‡ …1 ®2†pk;

~qq ˆ ®1 µ1Q1pj ‡ …1 ®1†pi

for some vectors a1; a2; b; n̂n1; n̂n2 and m̂m, for rotations Q1; Q2 and Q and for

µ1; µ2; µ ˆ 1.
Note that equations (50) and (51) are the same as equations (30) and (31) con-

sidered earlier and can be solved using lemma 1. It turns out that it is rather di� cult
to solve equation (52) in general; we can ®nd solutions to the ®rst equation here, but
the latter makes it over-determined. There are, however, some very interesting solu-
tions that one can obtain using symmetry for the case when we have equal volume
fractions ®1 ˆ ®2 ˆ ®. Assume that the pair …Ui; pi† and …Uj; pj† and the pair …Uk; pk†
and …Ul; pl† satisfy the conditions listed in lemma 1. Then one can obtain solutions to
equations (50) and (51). Further, suppose that we can ®nd a twofold rotation R
about the axis v̂v that relates the variants as follows:

Ul ˆ RUjR; pl ˆ µ1 µ2 Rpj;

Uk ˆ RUiR; pk ˆ Rpi:
…54†
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It follows that

Q2 ˆ RQ1R; a2 ˆ Ra1; n̂n2 ˆ Rn̂n1: …55†

Therefore, with ®1 ˆ ®2 ˆ ®,

~FF ˆ R ~GGR; ~pp ˆ R~qq: …56†

Now a slight modi®cation of case 2 in lemma 1 shows that there are two solutions to
equation (52) given by

m̂m…I† ˆ v̂v ; b…I† ˆ 2
~GG Tv̂v

j ~GG Tv̂vj2
~GGv̂v

Á !

; µ…I† ˆ ‡1; …57†

m̂m…II† ˆ 2

»
v̂v

~GGT ~GGv̂v

j ~GGv̂vj2

Á !

; m…II† ˆ » Uiv̂v; µ…II† ˆ 1; …58†

where » is chosen such that jm̂m…II†j ˆ 1.
Let us now specialize to tetragonal variants with energy wells (34). For the case

i ˆ 1, j ˆ 2, k ˆ 1, l ˆ 2 involving only two variants, we can ®nd solutions with
normals

m̂m…I† ˆ
1

0

0

0

BB@

1

CCA; m̂m…II† ˆ
0

1

0

0

BB@

1

CCA: …59†

For the case i ˆ 3, j ˆ 2, k ˆ 3, l ˆ 1, which involves all three variants as shown in
®gure 8 (c), we also have two solutions

m̂m…I† ˆ 1���
2

p

1

1

0

0

BB@

1

CCA; m̂m…II† ˆ 1

21=2

1

2w2 ‡ 1

³ ´1=2

1

2w2 ‡ 1

³ ´1=2

³
4w2

2w2 ‡ 1

´1=2

0

BBBBBBBBBB@

1

CCCCCCCCCCA

; …60†

where

w ˆ …® 1†…²t2

1 ²t2

2 †
2²t2

1 …²t2

1 ²t2

2 †®
: …61†

Notice that, if ²t
2=²t

1 1, then m̂m…II† …1=21=2†…1; 1; 0†T. All other sets of variants are
obtained from the above by symmetry.

Let us go back brie¯y to the case ®1 6ˆ ®2. Here, as we have already noted, there
are no generic solutions to equations (52). It is however, possible to form such
domain patterns by simply introducing an `electrical substructure ’ within the sub-
layer as shown in ®gure 8 (d). Recall that, if …F; p† 2 W, then …F; p† 2 W . So within
each sublayer we make a substructure of 180° domains so that the average polariza-
tion is zero. We are then left with only the mechanical expressions in equations (50)±
(52), which have many solutions.
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Finally, we note that we can form an in®nite number of such patterns by iterating
this construction and obtaining layers within layers within layers and so forth.

3.4.2. Crossing domain pattern
Consider the crossing pattern involving four di� erent polarized states shown in

®gure 9. The key di� erence between this and the banded layered pattern shown in
®gure 8 (b) is that here we do not have any separation of length scales, that is all the
widths are comparable and all adjacent pairs form `exact’ interfaces. Therefore the
material has to satisfy a much more restrictive condition to satisfy such a pattern to
be an energy-minimizing state.

The deformation gradient and polarization associated with the di� erent states
must belong to the energy wells. So, without loss of generality, let us assume
that they are given by …Ui; pi†, …QjUj; µjQjpj†, …QjQkUk; µjµkQjQkpk†,
…QjQkQlUl; µjµkµlQjQkQlpl† for suitable choices of i; j; k; l and where as usual
Qj; Qk; Ql 2 SO…3† and µi; µj; µk; µl ˆ 1. Further these states must satisfy mechan-
ical and electrical compatibility conditions (30) and (31) across the interfaces:

Qj Uj Ui ˆ a1 n̂n1; …µjQjpj pi†· U T
i n̂ni ˆ 0;

Qk Uk Uj ˆ a2 n̂n2; …µkQkpk pj†· U T
j n̂nj ˆ 0;

Ql Ul Uk ˆ a3 n̂n3; …µlQlpl pk†· U T
k n̂nk ˆ 0; …62†

Qi Ui Ul ˆ a4 n̂n4; …µiQipi pl†· U T
l n̂nl ˆ 0;

Qi Qj Qk Ql ˆ I; µiµjµkµl ˆ 1;

and n̂n1; . . . ; n̂n4 must lie on a plane to ensure that the four interfaces meet along a line.
It is easy to verify that these conditions also prevent the formation of singularities at
the fourfold corner, and are su� cient for forming the pattern shown in ®gure 9.

The crossing pattern was analysed in martensitic materials by Bhattacharya
(1996), where one has to deal with only mechanical compatibility. In particular,
he provided su� cient conditions for the expressions of mechanical compatibility
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lemma 2: the i±j and k±l interfaces are of type I twins and lie on the same plane, while
the j±k and l±i interfaces are of type II twins and are related by a re¯ection.



in equations (62). It turns out, as in lemma 1, that these conditions are also su� cient
to satisfy the electrical compatibility in equations (62) as well. The results are sum-
marized in the following lemma which can be obtained by combining the arguments
given by Bhattacharya (1996) with those in lemma 1.

Lemma 2: Let Ui; Uj ; Uk; Ul and pi; pj; pk; pl be distinct (i.e., i; j; k; l are distinct) and
be related by twofold rotations R1 and R2 as follows:

Uj ˆ RT
1 UiR1; Uk ˆ RT

2 UjR2; Ul ˆ RT
1 UkR1;

pj ˆ RT
1 pi; pk ˆ RT

2 pj; pl ˆ RT
1 pk; …63†

R1 ˆ I ‡ 2v̂v1 v̂v1; R2 ˆ I ‡ 2v̂v2 v̂v2;

where v̂v1 and v̂v2 are the axes of rotations for R1 and R2 and satisfy

v̂v1· v̂v2 ˆ 0; v̂v3· U2
i v̂v2 6ˆ 0; …64†

with v̂v3 perpendicular to both v̂v1 and v̂v2. Then, the following solves equations (62):

n̂ni ˆ v̂v1; ai ˆ 2
U 1

i v̂v1

jU 1
i v̂v1j2

Uiv̂v1

Á !

; µi ˆ 1;

n̂nj ˆ 2

»
v̂v2

U2
j v̂v2

jUjv̂v2j2

Á !

; aj ˆ » Uj v̂v2; µj ˆ 1;

n̂nk ˆ v̂v1; ak ˆ 2
U 1

k v̂v1

jU 1
k v̂v1j2

Ukv̂v1

Á !

; µk ˆ 1;

n̂nl ˆ 2

»0 v̂v2

U2
l v̂v2

jUlv̂v2j2

Á !

; al ˆ »0 Ulv̂v2; µl ˆ 1;

…65†

where » and »0 are chosen such that jn̂njj ˆ jn̂nlj ˆ 1.

Let us now study the consequences of this result. Note that, since the lemma
requires all four states to be distinct, it gives no solution for the tetragonal phase. In
fact, one can use the results of Bhattacharya (1996) to rule out all any crossing
patterns in cubic-to-tetragona l transformations .

On the other hand, the lemma delivers one set of solutions for the rhombohedral
phase. One solution corresponds to the choice

i ˆ 1; j ˆ 2; k ˆ 3; l ˆ 4; …66†

and those obtained from this by symmetry. For the speci®c choice (66), we can
satisfy the hypothesis in the lemma by choosing v̂v1 ˆ êe1 and v̂v2 ˆ êe2; we obtain
the normal in the reference con®guration to be:

n̂ni ˆ êe1; n̂nj ˆ 1

21=2
…êe1 êe3†; n̂nk ˆ êe1; n̂nl ˆ 1

21=2
…êe1 ‡ êe3†: …67†

In the orthorhombic phase, however, the lemma delivers two sets of solutions.
One solution corresponds to the choice

i ˆ 1; j ˆ 4; k ˆ 3; l ˆ 2; …68†
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and those obtained from these by symmetry. For the speci®c choice (68), we can
satisfy the hypothesis in the lemma by choosing v̂v1 ˆ …1=21=2†…êe2 ‡ êe3† and v̂v2 ˆ êe1;
we obtain the normal in the reference con®guration to be:

n̂ni ˆ 1

21=2
…êe2 ‡ êe3†; n̂nj ˆ êe3; n̂nk ˆ 1

21=2
…êe2 ‡ êe3†; n̂nl ˆ êe2: …69†

The second solution corresponds to the choice

i ˆ 1; j ˆ 2; k ˆ 5; l ˆ 6; …70†
and those obtained from these by symmetry. For the speci®c choice (70), we can
satisfy the hypothesis in the lemma by choosing v̂v1 ˆ êe2 and v̂v2 ˆ …1=21=2†…êe1 ‡ êe3†;
we obtain the normals in the reference con®guration to be

n̂ni ˆ êe2; n̂nj ˆ 1

»
‰ …²o2

1 ‡ ²o2

2 2²o2

3 †êe1 ‡ 2…²o2

1 ²o2

2 †êe2 ‡ …²o2

1 ‡ ²o2

2 2²o2

3 †êe3Š;

n̂nk ˆ êe2; n̂nl ˆ 1

» 0 ‰…²o2

1 ‡ ²o2

2 2²o2

3 †êe1 ‡ 2…²o2

1 ²o2

2 †êe2 …²o2

1 ‡ ²o2

2 2²o2

3 †êe3Š;
…71†

where ²o
1 ˆ 1

2
…¬o ‡ ¯o†, ²o

2 ˆ 1
2
…¬o ¯o†, ²o

3 ˆ  o and ¬o, ¯o and  o are lattice para-
meters of orthorhombic variants (20).

3.5. Energy minimization
We now show that the ferroelectric crystal can reduce its energy to zero by

forming domain patterns. We also explain why energy minimization often forces a
material to form very-®ne-scale domain patterns.

Let us begin by considering an isolated ferroelectric single crystal and recalling
the total energy ÊE in equation (23). Note that, for any …F; p† 2 W, the uniform state
…y ˆ Fx; p† makes the ®rst term in the energy zero. However, the second term is not
zero, except in very special circumstances. To see this, note that, if n0 is the normal to
the body in the current con®guration, it is not possible that p· n0 ˆ 0 everywhere on
the boundary unless of course the body is a plate in the current con®guration. This in
turn gives rise to electric ®elds since Maxwell’s equation (2) has to be solved over all
space. Thus, generically, the uniformly polarized state does not have zero energy.

Note, however, that, if …F; p† 2 W , then …F; p† 2 W . Further, according to
lemma 1 we can form alternating layers of the state …F; p†, …F; p† (with a suitable
normal). Finally, if the layer thickness is small enough, we can satisfy p· n0 ˆ 0 on
average, and this allows us to reduce the second term of the energy to zero as well.
This can be made precise using the arguments given by James and Kinderlehrer
(1993). In particular for a sequence …y…k†; p…k†† of alternating layers of thickness 1=k,

inf ÊE ˆ lim
k!1

‰ÊE…y…k†; p…k††Š ˆ 0: …72†

We could of course construct many other sequences which have zero energy in the
limit. We can use banded domain patterns of the type in § 3.3.1 which involve
di� erent deformation gradients and thus even satisfy suitable mechanical boundary
conditions. This has been studied extensively in the context of martensitic phase
transformations (Ball and James 1987, 1992, Bhattacharya 1991, 1992, Hane and
Shield 1998). A general but simple characterization of all possible mechanical bound-
ary conditions that can be achieved by sequences with zero energy is unfortunately
unknown.
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Now consider a ferroelectric in contact with some conductor domains C2 as
shown in ®gure 1. Since we solve Maxwell’s equation (2) with the condition
r¿ ˆ 0 (see equation (3)) on the conductors (by allowing the formation of surface
charges), it follows that no electric ®eld is generated even if p· n0 6ˆ 0 on that part of
the ferroelectric that is in contact with the conductors. Therefore, we do not need ®ne
patterns in the region that are `shielded’ by the conducting electrode.

} 4. Application to Design of Large-Strain Actuators

4.1. Flat-plate con®guration
Consider a ferroelectric crystal in the shape of a ¯at plate with electrodes on the

two faces as shown in ®gure 10. Let O…h† be the reference domain of the crystal:

O…h† ˆ fx 2 3 : …x1; x2† 2 S; 0 < x3 < hg; …73†
where S is the cross-section (bounded Lipschitz domain in two dimensions), h is the
thickness of the ferroelectric plate, and fx1; x2; x3g is relative to an orthonormal
reference basis f n 1; n 2; n 3g. A uniaxial compressive stress and an electric ®eld are
applied to the crystal as also shown in ®gure 10. We shall now show that, if the
thickness of the crystal is much smaller than the lateral size and we apply a ®xed
electric ®eld e0 and mechanical load derived from a constant tensor T0, that is
t0 ˆ T0n̂n on qO, then we can ®nd the state of the crystal by minimizing the much
simpler function

G…F; p; e0; T0† ˆ W…F; p† e0· p …det F† T0· F …74†
instead of the functional E de®ned in equation (1). In particular, if the applied ®eld is
in the n 3 direction (i.e. e0 ˆ e0 n 3) and the applied stress is uniaxial compressive in the
n 3 direction (i.e. T0 ˆ ¼0 n 3 n 3) as shown in the ®gure, then

G…F; p; e0; T0† ˆ W…F; p† e0…det F†…p· n 3† ‡ ¼0…n 3· F n 3†: …75†
The idea behind replacing E by G is the following. For the con®guration under

consideration, the electrostatic energy is negligible since the ferroelectric is shielded
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Figure 10. A ferroelectric crystal in the shape of a ¯at plate subject to a uniaxial compresive
stress with magnitude ¼0 and electric ®eld e0 obtained from a potential ¿0. The
physical and crystal bases are n i and êei respectively as shown.



on the top and bottom faces, and the lateral surface is of negligible area.
Furthermore, the minimizers are not forced to re®ne in the absence of the electric
®eld, and therefore even the exchange energy is negligible. We are left with an
integral over the body, which is minimized when the integrand (74) is minimized.

To make this precise, de®ne

E…h†…y; p† ˆ 1

volume O…h† E…y; p† ˆ 1

h jSj
E…y; p†; …76†

where jSj denotes the area of S. We have the following theorem.

Theorem 1: Given constants e0 and T0,

lim
h!0

min
y;p

³
E…h†…y; p†

´µ ¶
ˆ min

F;p
‰G…F; p; e0; T0†Š: …77†

Proof: Since the ®rst and last terms of the total energy E de®ned in equation (1) are
non-negative, we easily ®nd a lower bound:

E…h†…y; p†5
1

h jSj

…

O…h†
W…rxy; p† e0· p …det rx y† T0· rx y‰ Š dx

5
1

h jSj

…

O…h†
min
F;p

W …F; p† e0· p …det F† T0· F‰ Š
³ ´

dx

ˆ min
F;p

‰G…F; p; e0; T0†Š: …78†

It therefore su� ces to show the upper bound

lim sup
h!0

min
y;p

‰E…h†…y; p†Š
³ ´

4 min
F;p

‰G…F; p; e0; T0†Š: …79†

Given any constants F; p, de®ne O…h†
F to be the image of O…h† under F:

O…h†
F

ˆ fy : F 1y 2 O…h†g: …80†

Note that, using equation (11), we have

E…h†…Fx; p† ˆ G…F; p; e0; T0† ‡ E…h†
elec ; …81†

where

E…h†
elec

ˆ 1

h jSj

…

O…h†
F

p· ry¿…h† dy; …82†

and ¿…h† solves Maxwell’s equation (4) subject to ¿…h† ˆ 0 on S
…0†
F and S

…h†
F which are

the deformed top and bottom surfaces of the electrodes. We now change variables
from y to x and de®ne

~¿¿…h†…x† ˆ ¿…h†…Fx† and rp
~¿¿…h† ˆ ~¿¿

…h†
;1 n 1 ‡ ~¿¿

…h†
;2 n 2 …83†
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to obtain

E…h†
elec

ˆ 1

h jSj

…

O…h†
p· F Trx

¡ ¢
~¿¿…h† det F dx

ˆ 1

h jSj

…

O…h†
F 1p

¡ ¢
· rp

~¿¿…h† ‡ ~¿¿
…h†
;3 ¹3

± ²
det F dx

ˆ 1

h jSj

…

O…h†
F 1p

¡ ¢
· rp

~¿¿…h†
± ²

det F dx …84†

since ~¿¿…h† ˆ 0 on the top and bottom surfaces of the electrodes denoted by S…0† and
S…h† in the reference con®guration.

We now show that E…h†
elec goes to zero with h. Recall from equation (12) that

Maxwell’s equation is equivalent to a variational principle. Therefore we can con-
clude by a change in variables that ~¿¿…h† minimizes the functional

1

h jSj

…

3

jF T °0rx
~¿¿ ‡ FTpÀO…h†

¡ ¢
j2 det F dx …85†

over all ~¿¿ 2 H1… 3† that vanishes on S…0† and S…h†. To study this problem, it is
convenient to introduce a second change in variables:

z1 ˆ x1; z2 ˆ x2; z3 ˆ 1

h
x3; …86†

and de®ne

’…z…x†† ˆ ~¿¿…x†; O…1† ˆ fz : …z1; z2; hz3† 2 O…h†g; S…1† ˆ fz : …z1; z2; hz3† 2 S…h†g: …87†

The variational problem (85) is the same as minimizing

F …h†…’† ˆ 1

jSj

…

3

jF T °0rp’ ‡ 1

h
’;3 n 3 ‡ FTpÀO…1†

³ ´
j2 det F dz …88†

over all ’ 2 H1… 3† that vanishes on S…0† and S…1†. Let the minimizer be ’…h†. Clearly,

F …h†…’…h††4 F …h†…0† ˆ jpj2 det F: …89†

Since jF Tvj2 5 ¬jvj2 for any vector v where ¬ is the smallest eigenvalue of F 1F T,
we conclude that

jj rp ’…h† jjL2 4 C; jj 1

h
’

…h†
;3 jjL2 4 C …90†

for some constant C independent of h. This also implies that

jj rz ’…h† jjL2 4 C: …91†

Using the PoincareÂ inequality, we conclude that there exists a subsequence of ’…h†

(not relabelled) and ’’ 2 H1… 3† that vanishes on S…0† and S…1† such that

’…h† * ’’ in H1… 3† as h ! 0: …92†

However, from the second of equations (90), we also have

’
…h†
;3 ! 0 in L2… 3† as h ! 0: …93†
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From the uniqueness of the weak limit, we conclude that

’’;3…z† ˆ 0 a:e: …94†
Finally, since ’’ ˆ 0 on S…0† and S…1† and since O…1† is convex in z3, we conclude that

’’…z† ˆ 0 on O…1†. Combining this with equation (92), we conclude that

1

jSj

…

O…1†
F 1p

¡ ¢
· rp’…h†
± ²

det F dz ! 0 as h ! 0: …95†

Changing variables back to x and comparing this with equation (84) we conclude
that

E…h†
elec ! 0 as h ! 0: …96†

Combining equations (81) and (96), we conclude that

G…F; p; e0; T0† ˆ lim sup
h!0

E…h†…Fx; p†
h i

5 lim sup
h!0

min
y;p

‰E…h†…y; p†Š
³ ´

: …97†

This gives us the desired upper bound (79) and concludes the proof. &

We conclude this section with the following remark. In the preceding, we
assumed that the applied ®eld e0 and load T0 are held ®xed while the crystal deforms
to its minimum-energy con®guration. Experimentally, it is possible to apply a ®xed
mechanical load but it is very di� cult to apply a ®xed electrical ®eld. Instead,
experimentally it is convenient to apply a constant potential to the faces as shown
in ®gure 10. Note now that the ®eld changes as the crystal deforms, and G in
equation (74) should be replaced by

~GG…F; p; ¿0; ¼0† ˆ W…F; p† ¿0

h
…det F†…p· F T n 3† ‡ ¼0…n 3· F n 3†; …98†

where we have applied a ®xed electric potential ¿0 and compressive load ¼0 as shown
in ®gure 10. We can prove this using an argument very similar to that in theorem 1.
Note that, if the deformation is small, then the di� erence between ~GG and G in
equation (75) with e0 ˆ ¿0=h is negligible.

4.2. Phase diagram
The energy density W has multiple wells as described in § 2. The function G (or

~GG) in equation (74) (or equation (98)) inherits this multiwell structure; however, the
heights of the individual wells are controlled by the applied loads ¼0 and ¿0. In
particular, G does not satisfy the material symmetry condition (14), and thus the
di� erent variants do not necessarily have the same energy. In short, the applied ®elds
and loads can bias one variant over others; similarly it can change the transforma-
tion temperatures. This information can be summarized in a `¼0 ¿0 phase diagram’
which shows the variant that minimizes G for a given pair …¼0; ¿0†.

For example, consider a BaTiO3 single crystal at room temperature oriented such
that the pseudocubic ‰001Š axis is normal to the plate (i.e. the crystal axes fêeig
coincides with the physical axes f n ig). The phase diagram is shown schematically
in ®gure 11. All tetragonal variants are equally preferred in the absence of applied
®eld and load (at the point O). If we apply a moderate ®eld and a small load as at (b),
the crystal prefers the ‰001Š polarized state; in contrast, if we apply a moderate load
and a small ®eld as at (a), the crystal prefers either a ‰100Š or a ‰010Š polarized state.
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The exchange of stability takes place across the line OT. Finally, if we apply a very
large ®eld and load as at (c), the crystal transforms to the orthorhombic phase and is
either ‰101Š or ‰011Š polarized. Note that T is the triple point where all the di� erent
states have equal energy. The details of this phase diagram and others for di� erent
temperatures and di� erent crystal orientations have been presented elsewhere
(Burcsu 2001).

4.3. Maximum actuation strain
The phase diagram in ®gure 11 and the result in lemma 1 suggest one way of

obtaining large electrostriction. Suppose that we apply a ®xed moderate load ¼0 and
variable electric ®eld ¿0 so that we cycle along the broken line (a)±(b) in ®gure 11.
The material then cycles between the ‰010Š- (or [100]-) and ‰001Š-polarized states.
Further, the domain wall described in § 3 between these states provides a low-energy
path between the two end states.

The phase diagram and the electrostriction depends on the orientation of the
crystal. To ®nd the orientation with the maximum electrostriction, let R be the
rotation that maps the crystal basis to the physical basis:

êei ˆ R n i: …99†
Then, the strain on switching from variant i to variant j is given by

max
Q2SO…3†

…n 3· QRUiU
1

j RT n 3† 1; …100†

so by maximizing over all crystal orientations and all pairs of variants, we conclude
that the maximum actuation strain is given by
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Figure 11. The ®eld±stress phase diagram at room temperature for BaTiO3. The basic
experimental idea is to apply a constant load and varying electric ®eld to traverse
the broken lines (a)±(b) or (a)±(c).



°A ˆ max
R2SO…3†

max
i;j

max
Q2SO…3†

…n 3· QRUiU
1

j RT n 3† 1: …101†

For tetragonal variants we ®nd that the optimal rotations are R ˆ Q ˆ I and the
optimal variants are i ˆ 1 and j ˆ 3, or i ˆ 2 and j ˆ 3. This is exactly the situation
considered along the line (a)±(b) in ®gure 11. The maximum actuation strain is

°
…t t†
A

ˆ ²t
2

²t
1

1; …102†

which for BaTiO3 turns out to be

°
…t t†
A 1:1%: …103†

Therefore we can obtain an electrostriction of 1:1% with h001i-oriented BaTiO3 at
room temperature by using an electromechanical loading path (a)±(b) in ®gure 11.
This is about ten times larger than the strain induced by the current PZT piezo-
electric actuators. The corresponding value is about 6:3% in PbTiO3. Thus, a
coupled electromechanical loading o� ers an attractive possibility for large electro-
striction.

For the orthorhombic variants, the calculation of maximum actuation strain is
more complicated than the above case. However, if the lattice parameters in equa-
tions (20) satisfy j¬o 1j 1, j o 1j 1 and j¯oj 1, then

°
…o o†
A

…
^̄̄2 ‡ 2

2
†1=2 j¬o  oj if ^̄̄4 21=2;

^̄̄j¬o  oj if ^̄̄5 21=2;

8
><

>:
…104†

where ^̄̄ ˆ 2¯o=j¬o  oj. The optimal rotation Q I, but now the optimal orienta-
tion R and variants depends on lattice parameters. If ^̄̄4 21=2, then the optimal pair
can be chosen as …Uo

1 ; Uo
3† with

RT n 3

^̄̄

‰2… ^̄̄2 ‡ 2†Š1=2
n 1 ‡

^̄̄

‰2… ^̄̄2 ‡ 2†Š1=2 2
n 2

^̄̄

‰2… ^̄̄2 ‡ 2†Š1=2 ‡ 2
n 3

Á !

;

if ^̄̄5 21=2, then the optimal pair can be chosen as …Uo
5 ; Uo

6† with

RT¹3

1

21=2
n 2 ‡ n 3… †:

For BaTiO3 in the orthorhombic phase,

°
…o o†
A 0:66%: …105†

We now consider the possibility of a phase transformation from the tetragonal to
the orthorhombic phase. If the lattice parameters in equations (18) and (20) satisfy
j²t

1 1j 1, j²t
2 1j 1, j¬o 1j 1, j o 1j 1 and j¯oj 1, then

°
…t o†
A max °

…1†
A ; °

…2†
A ; °

…3†
A ; °

…4†
A

n o
; …106†
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where

°
…1†
A

ˆ j ²t
1 ¬o ¯o j; °

…2†
A

ˆ j ²t
2  o j;

°
…3†
A

ˆ j ²t
1 ¬o ‡ ²t

2 ²t
1

2
……²

t
2 ²t

1†2

4
‡ ¯o2†1=2 j; °

…4†
A

ˆ j ²t
1  o j:

…107†

For BaTiO3

°
…t o†
A

ˆ °
…1†
A 1%; …108†

and the associated optimal orientation R is

RT n 3

1

21=2
…n 2 ‡ n 3†; for the pair …Ut

1; Uo
5†: …109†

Finally, we consider the possibility of a phase transformation from the tetragonal
to the rhombohedral phase. If the lattice parameters in equations (18) and (22)
satisfy j²t

1 1j 1, j²t
2 1j 1, j¬r 1j 1 and j¯rj 1, then

°
…t r†
A max °

…1†
A ; °

…2†
A

n o
; …110†

where

°
…1†
A

1
2

j ²t
2 ‡ ²t

1 ¯r 2¬r ‡ ‰…²t
2 ²t

1†2 ‡ 2 …²t
2 ²t

1† ¯r ‡ 9 ¯r2

Š1=2 j; …111†

°
…2†
A j ²t

1 ‡ ¯r ¬r j: …112†
The optimal pair can be chosen as …Ut

1; Ur
1† with orientation close to

RT¹3 j j ²t
2 ²t

1 ‡ ¯r ‡ ‰…²t
2 ²t

1†2 ‡ 2 …²t
2 ²t

1† ¯r ‡ 9 ¯r2

Š1=2
n o

n 1 2¯r n 2 2¯r n 3

if °
…t r†
A °

…1†
A , or

RT n 3 j j …n 2 n 3†
if °

…t r†
A °

…2†
A .

4.4. Comparison with experiment
Burcsu et al. (2000) have designed and built an experimental set-up to apply a

constant mechanical load and variable electric ®eld. They used a ‰001Š-oriented single
crystal (approximately 5 mm 5 mm 1 mm) as suggested by the theoretical con-
siderations above, applied a loading along the path (a)±(b) (see ®gure 11) and mea-
sured the strain. Their experimental result is shown in ®gure 12. Note that the strain
is almost 0:9% for moderate ®elds of about 2 KV mm 1, and that this is close to the
theoretically predicted value of 1.1%. We do not know the reason for this small
discrepancy at this moment but speculate the following. First, our theory ®nds
absolute minimum while the material has to follow a suitable kinetic path which
may become trapped in a local minimum. Second, the aspect ratio of the thickness to
the lateral size of the specimen is 1 : 5 which may not be small enough to make the
electrostatic end ®elds negligible. Further, there is some electric leakage on the
electrodes in reality, giving rise to incomplete charge compensation. If the leakage
is signi®cant, the neglect of the depolarization energy is questionable. Finally, the
specimen is not defect free; some microcracks extending from the edges to the centre
of the specimen were observed prior to the experiment. This would cause electric
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concentration around the crack tips which in turn could change the patterns of
polarization switch. In any case, the agreement is encouraging and these speci®c
issues will be addressed in future work.
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A P P E N D I X A
Let êe1 ˆ ‰100Šc, êe2 ˆ ‰010Šc and êe3 ˆ ‰001Šc be a set of an orthonormal crystal basis
relative to the pseudocubic axes. The point group P0 for a cubic lattice consists of 24
elements:

I; Rp=2…êe1†; Rp=2…êe2†; Rp=2…êe3†; Rp…êe1†; Rp…êe2†; Rp…êe3†; R3p=2…êe1†; R3p=2…êe2†;

R3p=2…êe3†; Rp êe1 ‡ êe2

21=2

³ ´
; Rp êe1 êe2

21=2

³ ´
; Rp êe2 ‡ êe3

21=2

³ ´
; Rp êe2 êe3

21=2

³ ´
; Rp êe3 ‡ êe1

21=2

³ ´
;

Rp êe3 êe1

21=2

³ ´
; R2p=3 êe1 ‡ êe2 ‡ êe3

31=2

³ ´
; R2p=3 êe1 ‡ êe2 êe3

31=2

³ ´
; R2p=3 êe1 êe2 ‡ êe3

31=2

³ ´
;

R2p=3 êe1 êe2 êe3

31=2

³ ´
; R4p=3 êe1 ‡ êe2 ‡ êe3

31=2

³ ´
; R4p=3 êe1 ‡ êe2 êe3

31=2

³ ´
;

R4p=3 êe1 êe2 ‡ êe3

31=2

³ ´
; R4p=3 êe1 êe2 êe3

31=2

³ ´
;
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Figure 12. Experimental observation of actuation strain versus various electric voltage for
BaTiO3. A constant uniaxial compressive stress with magnitude about 3.5 MPa is
applied on the specimen.



where

R!…êe† ˆ cos ! I ‡ …1 cos !† êe êe ‡ sin ! êe ^

is the proper rotation with êe as axis and ! as rotation angle.
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