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Abstract

We study the effective behavior of heterogeneous thin films with three com-
peting length scales: the film thickness and the length scales of heterogeneity and
material microstructure. We start with three-dimensional nonhomogeneous nonlin-
ear elasticity enhanced with an interfacial energy of the van der Waals type, and
derive the effective energy density as all length scales tend to zero with given limit-
ing ratios.We do not require anya priori selection of asymptotic expansion or ansatz
in deriving our results. Depending on the dominating length scale, the effective en-
ergy density can be identified by three procedures: averaging, homogenization and
thin-film limit. We apply our theory to martensitic materials with multi-well energy
density and use a model example to show that the “shape-memory behavior” can
crucially depend on the ratios of these length scales. We comment on the effective
conductivity of linear composites, and also on multilayers made of shape-memory
and elastic materials.

1. Introduction

Martensitic thin films have recently attracted much interest because of their
potential for application as microactuators [27,28,39,33,18,17]. Martensitic ma-
terials undergo a diffusionless phase transformation during which there is a sud-
den change in the crystal structure at a certain temperature. The high temperature
austenitephase is cubic while the low temperaturemartensitephase has less sym-
metry. This gives rise to symmetry-related variants and these variants usually form
microstructures or fine-scale mixtures. Crystals undergoing a thermoelastic marten-
sitic transformation often exhibit the shape-memory effect. Below the transforma-
tion temperature, they are extremely malleable – sustaining a huge deformation
with strains as large as 10% under very small forces. When they are heated above
the transformation temperature, the specimen springs back to its original shape as
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Fig. 1. A heterogeneous thin film with three different length scales.

all the strain is recovered.Actuators utilizing the shape-memory effect are predicted
to have the largest energy output per unit volume per cycle among a variety of com-
mon actuator systems [33]. But bulk shape-memory actuators have enjoyed limited
success in temperature sensitive applications because the response is slow due to
thermal inertia. On the other hand, the enhanced rate of heat transfer in thin films
makes these alloys ideal for microactuators, micropumps and microelectromechan-
ical system (MEMS) applications.

Typically, martensitic films are polycrystalline rather than monocrystalline. A
polycrystal consists of a large number of single crystal grains with different orien-
tations. The behavior of a polycrystal can be very different from that of a single
crystal because of the constraining effect of neighboring grains. Depending on the
deposition technique, the size of grains within the film can be larger than, com-
parable to or smaller than the thickness of film. Furthermore, depending on the
material, the length scale of the microstructure can also be larger than, comparable
to or smaller than that of grains. The behavior of the film can critically depend on
the relative magnitudes of these length scales, and we seek to understand this.

Consider a heterogeneous (possibly multilayer) thin film shown in Fig. 1. It
occupies a reference domain

�h = {x ∈ R
3 : (x1, x2) ∈ S,0< x3 < h}, (1.1)

whereS is a bounded Lipschitz domain,{x1, x2, x3} are relative to an orthonor-
mal film basis{e1,e2,e3}, andh is the film thickness. Let̃y : �h → R

3 be the
deformation of the film. The total energy of the heterogeneous thin film is

ẽ(h)[ỹ] =
∫
�h

{
κ2|∇2ỹ|2 + ϕ

(
∇ỹ,

x1

d
,
x2

d
,
x3

h

)}
dx (1.2)

whereϕ : M
3×3 × R

2 × (0,1) → R is the elastic free energy density of the film
andM

m×n is the set of allm × n matrices. We assume thatϕ is periodic in the
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in-plane variablesx1 andx2 with period[0,1]2. Sod scales like the typical grain
size. Further, since we wish to model martensites,ϕ(F, ·, ·, ·)may have a multi-well
structure and consequently nonconvex energy densities. Note that we have included
the interfacial energy of the typeκ2|∇2ỹ|2. Minimizers of the energy (1.2) have
oscillations on a length scale that scales withκ and hence we callκ the length scale
of the microstructure. We are interested in finding the limiting behavior of the film
when all length scalesκ, d andh tend to zero. Therefore, we take

κ = κ(h) > 0, d = d(h) > 0, lim
h→0

κ(h) = 0, lim
h→0

d(h) = 0, (1.3)

and assume that they have fixed limiting ratios:

α = lim
h→0

κ

d
, β = lim

h→0

h

d
, α′ = lim

h→0

κ

h
. (1.4)

In bulk materials, the homogenization of cellular elastic materials with non-
convex energy densityϕ has been studied byBraides [13] andMüller [36]. The
same problem including the interfacial energy has been studied byFrancfort &
Müller [24]. However, microstructure in thin films can be significantly different
to that in bulk materials, endowing materials with dramatically distinct properties
(for example, see [3]). Recently,Bhattacharya & James [9] have developed a
theory of single crystal martensitic thin films which captures this effect. Related
work on the modeling of thin structures with convex (quadratic) energy density
includes, for example,Kohn & Vogelius [31,32],Damlamian & Vogelius [20]
andCaillerie [16]; and related problems with nonconvex energy density include,
for example,Acerbi et al. [1], Le Dret & Raoult [21] andFonseca & Franc-
fort [22]. We wish to combine homogenization with the thin-film analysis for non-
convex energies and apply it to heterogeneous martensitic films.Braides, Fonseca
& Francfort [15] have studied a similar problem withκ = 0.

Our approach is variational. We study the “variational limit” of (1.2) ash tends
to zero. Since the energy defined in (1.2) scales likeh ash tends to zero, we shall
be interested in the limiting energy per unit thickness, i.e.,

ẽ
(h)
1 = 1

h
ẽ(h).

We expect the minimum values and the minimizers of the functionalẽ
(h)
1 to

converge to those of a “limiting energy”ẽ(0)1 , which we try to find. In this context,
the natural tool is0-convergence as proposed byDe Giorgi [25] andDe Giorgi
& Franzoni [26] which under a suitable technical hypothesis is nearly identical
to that of convergence of minimizers (see also Remark 1). Using this notion, we
show that the limiting energy is always given by

ẽ
(0)
1 [y] =

∫
S

ϕ̄

(
∂y
∂x1

,
∂y
∂x2

)
dx1dx2,

whereϕ̄ is the effective energy density and only depends on the in-plane gradient of
deformationy and not explicitly on the position. It describes the overall behavior of
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Table 1. Summary of the effective behavior of a heterogeneous thin film.A means averaging,
H means homogenizing andT means thin-film limit.TH denotes that the effective energy
densityϕ̄ is obtained by taking the thin-film limit first, and then homogenizing in the plane of
the film. On the other hand,HT denotes homogenization first followed by the thin-film limit.
Finally, a stacked symbolHT denotes the simultaneous performance of these two operations.

( ? )

A T

T H

T 
H
A

H T 

Theorem 2 Theorem 3

Theorem 3

HH
T 

Theorem 2

AA

T 

Theorem 4

Theorem 1Theorem 1

A T

Theorem 1

A T

Theorem 5

T 
Hκ

�∼�h

κ
�∼�h

h ∼ dh � d h � d

κ ∼ d

κ � d

κ � d

the heterogeneous thin film after taking into account the martensitic microstructure,
grains and multilayers.

In the following, we give a non-technical description of our main results which
are summarized in Table 1. The most important finding is that the effective energy
densityϕ̄ crucially depends on the limiting ratios of these three length scales.

1. Strong interfacial energy(κ >> d). Assumeϕ = ϕ(F, x1
d
, x2
d
). Our Theorem 1

shows that the effective energy densityϕ̄ is obtained by averaging the micro-
scopic energyϕ over the period, then passing to the thin-film limit. It costs
materials more energy to form microstructures within each grain as a result of
strong interfacial energy. Material is internally stressed. The result is also true
if ϕ = ϕ(F, x1

d
, x2
d
, x3
h
) and ifκ >> d andκ >> h.

2. Flat grains (d >> h). Assumeϕ = ϕ(F, x1
d
, x2
d
). If the length scale of the

microstructure is much smaller than that of grains (i.e., ifκ << d), then The-
orem 2(i) shows that the elastic energy dominates the interfacial energy and
materials can form microstructures freely. As a result, the macroscopic energy
densityϕ̄ is impervious to the presence of interfacial energy. Further,ϕ̄ is ob-
tained by taking the thin-film limit first, and then homogenizing in the plane
of the film. The thin-film limit says that only the in-plane compatibility is im-
portant and this allows a wider class of microstructures to be formed in thin
films than in bulk materials. On the other hand, if the length scales of grains and
microstructure are of the same order of magnitude (i.e., ifκ ≈ d), Theorem 2(ii)
shows that the interfacial energy explicitly contributes to the effective energy
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densityϕ̄. Materials can form only a limited amount of microstructure because
of competing energies between elastic energy and interfacial energy.

3. Comparable grains(d ≈ h). Assumeϕ = ϕ(F, x1
d
, x2
d
, x3
h
). Our Theorem 3

gives the expression of effective energy densityϕ̄ when all length scales are
comparable. This case apparently has no simple explanation since the averaging,
homogenizing and thin-film limit are taken into account together.

4. Long grains(d << h). Assumeϕ = ϕ(F, x1
d
, x2
d
). Theorem 1 includes the case

d << κ. On the other hand, ifκ = 0 orκ << d, Theorem 5 says that the effec-
tive energy density is obtained by homogenizing the bulk material, then passing
to the thin-film limit. Finally, ifκ andd are of the same order of magnitude and
both are much smaller thanh (κ ≈ d << h), we conjecture that the effective
energy density is obtained by taking averaging and bulk homogenization first,
and then passing to the thin-film limit.

5. Multilayers (κ versush). Assumeϕ = ϕ(F, x3
h
). In such a situation, only two

physical parametersκ andh are relevant. Our Theorem 4 gives the expression
of ϕ̄ containing through-the-thickness variations.

We apply our results in Section 7.We use examples to show that the macroscopic
behavior of films can significantly depend on the limiting ratios of these length
scales. In our first example, we are interested in the shape-memory behavior of a
polycrystalline martensitic film. Shape-memory materials are modeled with a multi-
well energy densityϕ, each well representing a phase or variant. The relaxation
of ϕ has the degeneracy, i.e.,Qϕ = 0 on a setS. This setS contains all strains
recoverable on heating in a single crystal. Similarly, the strains recoverable on
heating in a polycrystal are contained in the setP on which ϕ̄ vanishes [11].
While the setS can be obtained in most martensitic materials, the setP is rather
difficult to calculate. The estimation of this setP in bulk martensitic materials
have been studied in [10,11,37]. We extend this framework to thin films. Our
result shows that, for strong interfacial energy (i.e.,κ >> d), the shape-memory
behavior is expected to be negligible in general polycrystals since materials cannot
form microstructures within each grain to accommodate deformation. On the other
hand, for small interfacial energy (i.e.,κ << d), materials can form microstructures
freely and our model example shows that this setP significantly depends on the
limiting ratio of h

d
. We further consider cubic-monoclinic shape-memory thin films.

We show that recoverable strains in thin films with flat columnar grains (d >> h)
differs from (are larger than) those with long columnar grains (d << h). We also
establish that films made by sputtering can recover only relatively small strains in
Ti-Ni and other common shape-memory alloys.

Next, we consider effective conductivity of linear composites. We show that in
general the effective conductivity of composites made of anisotropic materials can
depend on the ratioh

d
. We also provide bounds to estimate it in our model example.

We compare this result with the optimal bounds ofDamlamian & Vogelius [20].

Finally, we consider a multilayered thin film made of a finite number of al-
ternating layers of a martensitic material and a purely elastic material. We find
quite different behavior whenκ

h
tends to zero and infinity. We conclude that such
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a multilayered thin film provides an opportunity to design materials with unusual
transformation properties.

2. Preliminaries

It is convenient to work on a fixed domain instead of a varying domain�h, so
we introduce the following change of variables:

zp = (z1, z2) = xp = (x1, x2), z3 = 1

h
x3, x ∈ �h, (2.1)

and set

�1 = S × (0,1). (2.2)

With each deformatioñy : �h → R
3 we associate a deformationy : �1 → R

3 via

y(z(x)) = ỹ(x), x ∈ �h.
We use the notation∇p for the gradient in the plane of the film, i.e.,

∇py = y,1 ⊗ e1 + y,2 ⊗ e2,

andy,1 = ∂y
∂z1

= (
∂y1
∂z1
,
∂y2
∂z1
,
∂y3
∂z1
)T ; etc. We now change variables in1

h
ẽ(h) using

(1.2) and (2.1) and get

ẽ
(h)
1 [y] := 1

h
ẽ(h)[ỹ]

=
∫
�1

{
κ2
(

|∇2
py|2 + 2

h2 |∇py,3|2 + 1

h4 |y,33|2
)

(2.3)

+ ϕ

(
y,1|y,2|1

h
y,3,

zp
d
, z3

)}
dz.

We have used the notation

F = (f1|f2|f3) = f1 ⊗ e1 + f2 ⊗ e2 + f3 ⊗ e3

for F ∈ M
3×3.

We assume the energy densityϕ satisfies the following conditions:

1. ϕ(F, z) is Carath́eodory and nonnegative.
2. Periodicity in the plane of the film:ϕ(F, zp, z3) is periodic in the in-plane vari-

ablezp = (z1, z2) with period[0,1]2 for all F ∈ M
3×3 andz3 ∈ (0,1).

3. Growth and coercivity conditions:

c1(|F|p − 1) 5 ϕ(F, z) 5 c2(|F|p + 1) (2.4)

for all F ∈ M
3×3 and for a.e.z = (zp, z3) ∈ R

2 × (0,1).
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4. Lipschitz condition:

|ϕ(F, z)− ϕ(G, z)| 5 c2(1 + |F|p−1 + |G|p−1)|F − G| (2.5)

for all (F,G) ∈ M
3×3 × M

3×3 and for a.e.z = (zp, z3) ∈ R
2 × (0,1).

Above, 0< c1 5 c2 andp satisfies 1< p < ∞.

For anyy ∈ W1,p(�1,R3), we extend the functional̃e(h)1 [y] to

e
(h)
1 [y] =

{
ẽ
(h)
1 [y] if y ∈ W2,2(�1,R3),

+∞ otherwise.
(2.6)

Now our goal is to compute the0-limit of e(h)1 ash, d andκ tend to zero with fixed
limiting ratios (1.4). To this purpose, we recall that

Definition 1. A family e(h)1 of functionals onW1,p(�1,R3) (1 < p < ∞) is said

to 0-converge(in the weakW1,p(�1,R3) topology) to e(0)1 if and only if

(I) every sequencey(h) with

y(h) ⇀ y in W1,p(�1,R3) ash → 0,

satisfies the “lower bound”

lim inf
h→0

e
(h)
1 [y(h)] = e

(0)
1 [y];

(II) for every y ∈ W1,p(�1,R3), there exists a sequencey(h) called the “recovery
sequence” such that

y(h) ⇀ y in W1,p(�1,R3) ash → 0

and

lim
h→0

e
(h)
1 [y(h)] = e

(0)
1 [y].

Remark 1. The limiting functionale(0)1 is, by construction, lower semicontinuous
with respect to weak convergence inW1,p(�1,R3) [14] and, therefore, attains
its minimum value due to the coercivity condition (2.4). Further, using the fact
that theL2 norm is sequentially lower semicontinuous and Rellich’s compact-
ness theorem, one can show thate

(h)
1 admits a minimum for any fixedh > 0 (cf.

Francfort & Müller [24]). Therefore, minimizers ofe(h)1 converge to those of

e
(0)
1 by the fundamental theorem of0-convergence (see, for example,Braides &

Defranceschi [14]).
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In the following, we will show that, for anyy ∈ W1,p(�1,R3),e(h)1 0-converges

to a functionale(0)1 of the form

e
(0)
1 [y] =



∫
S

ϕ̄(∇py) dzp if y ∈ VS,
+∞ otherwise,

(2.7)

whereϕ̄ will be determined explicitly andVS is defined by

VS = {y : y ∈ W1,p(�1,R3) andy,3 = 0 for a.e.z in �1} (2.8)

which is canonically isomorphic toW1,p(S,R3). The following lemma is the first
step towards proving (2.7); with it we only need to compute the0-limit of e(h)1 for
y ∈ VS .

Lemma 1. Let e(h)1 be defined by(2.6)and assumey /∈ VS . Then,lim inf h→0 e
(h)
1

[y(h)] = +∞ for any sequencey(h) such thaty(h) ⇀ y inW1,p(�1,R3) ash → 0.

Proof. We prove it by contradiction. Suppose there exists a sequencey(h) converg-
ing weakly toy inW1,p(�1,R3)with lim inf h→0 e

(h)
1 [y(h)] = M finite. Therefore,

there exists a subsequencey(h) (not relabeled) such that

e
(h)
1 [y(h)] → M < +∞ ash → 0.

By coercivity, 1
h
y(h),3 is bounded inLp(�1,R3) and this implies

y(h),3 → 0 strongly inLp(�1,R3) (2.9)

ash → 0. Sincey(h) converges weakly toy in W1,p(�1,R3) ash tends to zero,
this gives

y(h),3
h
⇀ y,3 in Lp(�1,R3). (2.10)

Combining (2.9) and (2.10), we havey,3 = 0 a.e. by the uniqueness of the weak
limit. Thusy ∈ VS , which contradicts the assumption, and this completes the proof.
ut

3. Strong interfacial energy

Theorem 1.Lete(h)1 ande(0)1 be defined by(2.6)and(2.7). Then,e(h)1 0-converges

to the functionale(0)1 if

(i) ϕ = ϕ(F, zp
d
), κ
d

→ ∞ ash → 0, and

ϕ̄(F̄) = Qϕ̃0(F̄),

ϕ̃0(F̄) = inf
b∈R3

ϕ̃(F̄|b), (3.1)

ϕ̃(F) =
∫
Z

ϕ(F, zp) dzp,

whereQϕ̃0 is the lower quasi-convex envelope ofϕ̃0, F̄ ∈ M
3×2 andZ =

(0,1)2;
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(ii) ϕ = ϕ(F, zp
d
, z3),

κ
d

→ ∞, κ
h

→ ∞ as h → 0, and ϕ̄ is given by(3.1)1,
(3.1)2 with (3.1)3 replaced by

ϕ̃(F) =
∫
Z×(0,1)

ϕ(F, z) dz; (3.2)

(iii) ϕ = ϕ(F, z3),
κ
h

→ ∞ ash → 0, andϕ̄ is given by(3.1)1, (3.1)2 with (3.1)3
replaced by

ϕ̃(F) =
∫ 1

0
ϕ(F, z3) dz3. (3.3)

Remark 2. It is clear thatϕ̃(F) enjoys the same growth and coercivity conditions
(2.4) and is continuous by virtue of the Lipschitz condition (2.5) onϕ. It follows that
ϕ̃0 given by(3.1)2 is well defined and the infimum is achieved. Further, Proposition 1
of Le Dret & Raoult [21] shows thatϕ̃0(F̄) satisfies the growth and coercivity
estimates (2.4) and is continuous.

Proof of Theorem 1.We begin with case (i):ϕ = ϕ(F, zp
d
) andκ

d
→ ∞ ash → 0.

We first construct a recovery sequence for anyy ∈ VS . Recalling Remark 2 and
invoking the relaxation theorem due toDacorogna [19] we find a sequencey(δ)

which converges weakly toy in W1,p(S,R3) such that∫
S

ϕ̃0(∇py(δ)) dzp →
∫
S

Qϕ̃0(∇py) dzp asδ → 0. (3.4)

Since the infimum of̃ϕ0 is achieved (see Remark 2), an argument like that used by
Le Dret & Raoult [21] shows that for each element of the sequencey(δ), there
exists a measurableb(δ) ∈ Lp(S,R3) such that

ϕ̃0(∇py(δ)) = ϕ̃(∇py(δ)|b(δ)). (3.5)

Further, we may also assume at the moment that bothy(δ)(zp) andb(δ)(zp) are
smooth functions because of the Lipschitz character of∂S (see Remark 3). Define

y(δ,h) = y(δ)(zp)+ hb(δ)(zp)z3 (3.6)

and substitute it intoe(h)1 . We have

e
(h)
1 [y(δ,h)] =

∫
�1

{
κ2
(
|∇2
py(δ) + h∇2

pb(δ)z3|2 + 2|∇pb(δ)|2
)

+ ϕ
(
∇py(δ) + h∇p(b(δ)z3) | b(δ),

zp
d

)}
dz. (3.7)

The first term of the integrand,κ2
(
|∇2
py(δ) + h∇2

pb(δ)z3|2 + 2|∇pb(δ)|2
)
, vanishes

for any fixedδ sinceκ(h) → 0 ash → 0. Therefore, using the Lipschitz condition
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(2.5) onϕ, we get

e
(h)
1 [y(δ,h)] h−→

∫
S

∫
Z

ϕ(∇py(δ)(zp)|b(δ)(zp), ẑp) dẑp dzp

=
∫
S

ϕ̃(∇py(δ)(zp)|b(δ)(zp)) dzp

=
∫
S

ϕ̃0(∇py(δ)(zp)) dzp. (3.8)

Above in (3.7), we have approximated(∇py(δ) | b(δ)) by a piecewise constant ele-
ment inLp(S,R9), passed to the limit as in (3.8) using the Lemma A.1 byBall
& Murat [7]1, and then use the estimate (2.5) onϕ again to complete the whole
argument.

Recalling (3.4) gives us

lim sup
δ→0

lim sup
h→0

e
(h)
1 [y(δ,h)] = e

(0)
1 [y]. (3.9)

Now appealing to the standard diagonalization argument ofAttouch [4, Corollary
1.16] yields a sequencey(δ(h)) that converges weakly toy inW1,p(�1,R3)ash → 0
and satisfies

lim
h→0

e
(h)
1 [y(δ(h))] = e

(0)
1 [y]. (3.10)

To complete the proof, we need to establish the lower bound. Lety(h)
h
⇀ y ∈ VS

inW1,p(�1,R3). We may assume that lim infh→0 e
(h)
1 [y(h)] is finite; else the result

follows. We may also restrict ourselves to a subsequencey(h) (not relabeled) which
achieves the lim inf.

For anyδ > 0 letS′ ⊂⊂ S with |S\S′| < δ. Define

Pd = {zp ∈ dZ
2 : zp + dZ ⊂ S′},

Sd =
⋃

zp∈Pd
(zp + dZ),

�1,d = Sd × (0,1) and �′ = S′ × (0,1).

ClearlySd ⊂ S′. For eacĥz in �1,d define

Y(h)(ẑp, ẑ3) = 1

d2

∫
zp+dZ

(
∇py(h)|1

h
y(h),3

)
dz̃p, ẑp ∈ zp + dZ, zp ∈ Pd.

(3.11)

One can check easily that

‖Y(h)‖Lp(�1,d ) 5
∥∥∥∥
(

∇py(h)|1

h
y(h),3

)∥∥∥∥
Lp(�1,d )

. (3.12)

1 Suppose 15 p 5 ∞. Letg(x) ∈ Lploc(R
m) be[0,1]m−periodic. Theng( x

ε ) converges
weakly inLp(�) to its mean value asε → 0 for any bounded open subset�.
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Using the Poincar´e inequality for each small square inSd at fixedz3, summing all
such squares, and integrating overz3 from 0 to 1, one can deduce that∥∥∥∥Y(h) −

(
∇py(h)|1

h
y(h),3

)∥∥∥∥
2

L2(�1,d )

5 C

(
d

κ

)2 ∫
�1,d

κ2
(

|∇2
py(h)|2 + 1

h2 |∇py(h),3 |2
)
dz (3.13)

whereC is some constant that does not depend onh. Using the fact thatd
κ

→ 0 as

h → 0 and the finiteness of lim infh→0 e
(h)
1 [y(h)], we have∥∥∥∥Y(h) −

(
∇py(h)|1

h
y(h),3

)∥∥∥∥
L2(�1,d )

→ 0 ash → 0. (3.14)

Thus, we can apply Egoroff’s theorem to assert the existence of a measurable subset
A of �′ such that, for sufficiently smallh, A ⊂ �1,d , |�′\A| < δ and

Y(h) −
(

∇py(h)|1

h
y(h),3

)
→ 0 uniformly onA (3.15)

ash → 0 for some subsequence
(
Y(h) − (∇py(h)| 1

h
y(h),3 )

)
(not relabeled). Us-

ing the Lipschitz condition (2.5), (3.12), (3.15) and the uniform boundedness of
‖(∇py(h)| 1

h
y(h),3 )‖Lp(�1), we have(∫

A

ϕ
(
Y(h),

zp
d

)
dz −

∫
A

ϕ

(
∇py(h)|1

h
y(h),3 ,

zp
d

)
dz
)

→ 0 ash → 0.

(3.16)

LetAz3 be the projection of the slice ofA at the constantz3, i.e.,

Az3 = {(z1, z2) : (z1, z2, z3) ∈ A}. (3.17)

Also, pick anyẑp ∈ Pd and let

QS = ẑp + dZ, andQ = {(zp, z3) : zp ∈ QS, z3 ∈ (0,1)}, (3.18)

and notice thatY(h) is constant overQS for any fixedz3 ∈ (0,1). Thus, using
Fubini’s theorem, we have∫

A∩Q
ϕ
(
Y(h),

zp
d

)
dz =

∫ 1

0

∫
QS∩Az3

ϕ
(
Y(h),

zp
d

)
dzp dz3

and∫
QS∩Az3

ϕ
(
Y(h),

zp
d

)
dzp =

∫
QS

ϕ
(
Y(h),

zp
d

)
dzp −

∫
QS\Az3

ϕ
(
Y(h),

zp
d

)
dzp

=
∫
QS

ϕ̃(Y(h)) dzp − c2(1 + |Y(h)|p) |QS\Az3|
(3.19)
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where we have used the second inequality in (2.4). Using the other inequality in
(2.4), we have∫

QS∩Az3
ϕ
(
Y(h),

zp
d

)
dzp = c1 (|Y(h)|p − 1) |QS ∩ Az3|. (3.20)

Combining (3.19) and (3.20), we obtain∫
QS∩Az3

ϕ
(
Y(h),

zp
d

)
dzp =

∫
QS

µ(d)(z)ϕ̃(Y(h)) dzp − 2c2

∫
QS\Az3

µ(d)(z) dzp,

(3.21)

where

µ(d)(z) = c1|QS ∩ Az3|
c1|QS ∩ Az3| + c2|QS\Az3|

=
c1 −∫ ẑp+dZ χAz3 (z̃p)d z̃p

(c1 − c2)−∫ ẑp+dZ χAz3 (z̃p)d z̃p + c2
for z ∈ Q (3.22)

andχAz3 is the characteristic function of the setAz3. Integrating (3.21) overz3 from

0 to 1 and summing the same equation over allẑp in Pd , gives∫
A

ϕ
(
Y(h),

zp
d

)
dz =

∫
�1,d

µ(d)(z)ϕ̃(Y(h)) dz − 2c2

∫
�1,d\A

µ(d)(z) dz.

(3.23)

Invoking the Lebesgue point theorem on (3.22) asd → 0 ash → 0 for each fixed
z3, we have

µ(d)(zp, z3) → c1χAz3 (zp)

c1χAz3 (zp)+ c2(1 − χAz3 (zp))

= χAz3 (zp) a.e. on�′,
(3.24)

and (3.23) becomes

lim inf
h→0

∫
A

ϕ
(
Y(h),

zp
d

)
dz = lim inf

h→0

∫
A

µ(d)(z)ϕ̃(Y(h)) dz. (3.25)

Recalling (3.16), (3.25), (3.15), and the fact thatϕ is nonnegative, we obtain

lim inf
h→0

∫
�

ϕ

(
∇py(h)|1

h
y(h),3 ,

zp
d

)
dz = lim inf

h→0

∫
A

ϕ

(
∇py(h)|1

h
y(h),3 ,

zp
d

)
dz

= lim inf
h→0

∫
A

ϕ
(
Y(h),

zp
d

)
dz

= lim inf
h→0

∫
A

µ(d)(z)ϕ̃(Y(h)) dz

= lim inf
h→0

∫
A

µ(d)(z)ϕ̃
(

∇py(h)|1

h
y(h),3

)
dz

= lim inf
h→0

∫
A

µ(d)(z)ϕ̃0(∇py(h)) dz. (3.26)
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Egoroff’s theorem tells us that there exists a measurable subsetA′ ⊂ A with
|A\A′| < δ′ such that for some subsequence (not relabeled)

µ(d) → χAz3 ≡ 1 uniformly on A′

asd → 0 ash → 0. Therefore, for anyη > 0, we have

lim inf
h→0

∫
A

µ(d)(z)ϕ̃0(∇py(h)) dz = lim inf
h→0

∫
A′
µ(d)(z)ϕ̃0(∇py(h)) dz

= lim inf
h→0

∫
A′
(1 − η)Qϕ̃0(∇py(h)) dz. (3.27)

If we defineG : W1,p(�1,R3) → R by

G(ŷ) =
∫
�1
Qϕ̃0(∇pŷ)dz

and set8 : M
3×3 → R to be8(f1|f2|f3) = Qϕ̃0(f1|f2). SinceQϕ̃0 is quasiconvex,

it can be shown [21] that8 is also quasiconvex, bounded below by−c1, and satisfies
growth and coercivity conditions similar to (2.4). ThenG is sequentially lower
semicontinuous onW1,p(�1,R3) (seeAcerbi & Fusco [2]). Applying this result
to
∫
�1(1 − η)χA′Qϕ̃0(∇py(h))dz, we have

lim inf
h→0

∫
A′
(1 − η)Qϕ̃0(∇py(h))dz =

∫
A′
(1 − η)Qϕ̃0(∇py)dz.

By letting δ′ andη tend to zero, we have

lim inf
h→0

∫
A

µ(d)(z)ϕ̃0(∇py(h))dz =
∫
A

Qϕ̃0(∇py)dz.

Combining this with (3.26) yields

lim inf
h→0

∫
A

ϕ

(
∇py(h)|1

h
y(h),3 ,

zp
d

)
dz =

∫
A

Qϕ̃0(∇py)dz.

Using the fact thatQϕ̃0(∇py) belongs toL1(�1) and|�1\A| < 2δ, we obtain the
desired lower bound by lettingδ → 0.

We now consider case (ii):ϕ = ϕ(F, zp
d
, z3) and κ

d
→ ∞, κ

h
→ ∞ ash → 0.

We can construct the recovery sequence in a way similar to the previous case
without any difficulty. The proof of the lower bound is also similar, except we have
to replace (3.11) by

Y(h)(ẑp) = 1

d2

∫ 1

0

∫
zp+dZ

(
∇py(h)|1

h
y(h),3

)
dz̃pdz̃3, ẑp ∈ zp+dZ, zp ∈ Pd.
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Note that (3.12) remains valid, but (3.13) becomes∥∥∥∥Y(h) −
(

∇py(h)|1

h
y(h),3

)∥∥∥∥
2

L2(�1,d )

5 C

(
d

κ

)2 ∫
�1,d

κ2
(

|∇2
py(h)|2 + 1

h2 |∇py(h),3 |2
)
dz

+C
(
h

κ

)2 ∫
�1,d

κ2
(

1

h2 |∇py(h),3 |2 + 1

h4 |y(h),33|2
)
dz

whereC is some constant that does not depend onh. Since bothκ
d

→ ∞, κ
h

→ ∞
ash → 0, we obtain (3.14). The rest of the proof is similar and we omit it here.

Finally, case (iii) (ϕ = ϕ(F, z3) and κ
h

→ ∞ ash → 0) follows from case (ii).
ut

Remark 3. In (3.6), we have assumed thaty(δ) andb(δ) are smooth functions to al-
low the second derivative. Indeed, ify(δ) ∈ W1,p(S,R3) andb(δ) ∈ Lp(S,R3), the
bounded Lipschitz domain permits the existence of sequencesy(δ,ε) ∈ C∞(S̄,R3)

andb(δ,ε) ∈ C∞
0 (S,R

3) such that

y(δ,ε) → y(δ) strongly in W1,p(S,R3)

b(δ,ε) → b(δ) strongly in Lp(S,R3)

asε → 0. Then, (3.6) is replaced by

y(δ,ε,h)(z) = y(δ,ε)(zp)+ hb(δ,ε)(zp)z3

and (3.9) now becomes

lim sup
δ→0

lim sup
ε→0

lim sup
h→0

e
(h)
1 [y(δ,ε,h)] = e

(0)
1 [y].

Appealing to the already quoted diagonalization argument, we find that there exists
a recovery sequence labeled only in terms ofh and thus (3.10).

4. Film thickness much smaller than heterogeneity

Theorem 2.Supposeϕ = ϕ(F, zp
d
), κ
d

→ α and h
d

→ 0 ash → 0. LetF̄ ∈ M
3×2,

Z = (0,1)2 ande(h)1 be defined by(2.6). Then,e(h)1 0-converges to the functional

e
(0)
1 defined by(2.7) if

(i) α = 0 and

ϕ̄(F̄) = inf
k∈N

inf
ω∈W1,p

0 (kZ)

−
∫
kZ

ϕ0(F̄ + ∇pω, zp)dzp, (4.1)

ϕ0(F̄0, z0
p) = inf

b∈R3
ϕ(F̄0|b, z0

p); (4.2)
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(ii) α > 0 and

ϕ̄(F̄) = inf
k∈N

inf
ω∈W1,p

0 (kZ)∩W2,2
0 (kZ)

b∈Lp(kZ)∩W1,2
0 (kZ)

−
∫
kZ

{
α2
(
|∇2
pω|2 + 2|∇pb|2

)

+ ϕ(F̄ + ∇pω|b, zp)
}
dzp;

(4.3)

(iii) α = ∞ and

ϕ̄(F̄) = Qϕ̃0(F̄),

ϕ̃0(F̄) = inf
b∈R3

ϕ̃(F̄|b), ϕ̃(F) =
∫
Z

ϕ(F, zp)dzp

whereQϕ̃0 is the lower quasi-convex envelope ofϕ̃0.

Note that we have used the notation−∫
�

· · · = 1
|�|
∫
�

· · · .

Remark 4. It can be shown that the effective energy densityϕ satisfies the growth
and Lipschitz condition for 05 α 5 ∞, i.e.,

c1(|F̄|p − 1) 5 ϕ̄(F̄) 5 c2(|F̄|p + 1) (4.4)

|ϕ̄(F̄)− ϕ̄(Ḡ)| 5 c′2(1 + |F̄|p−1 + |Ḡ|p−1)|F̄ − Ḡ| (4.5)

for all (F̄, Ḡ) ∈ M
3×2 × M

3×2. Indeed, consider 0< α < ∞. The upper bound
is obtained by settingω = b = 0 in (4.3) and using (2.4) onϕ. To show the
lower bound, note that for everyε > 0, there existsk ∈ N,ω ∈ W1,p

0 (kZ,R3) ∩
W

2,2
0 (kZ,R3) andb ∈ Lp(kZ,R3) ∩W1,2

0 (kZ,R3) such that

ϕ̄(F̄) 5 −
∫
kZ

{
α2
(
|∇2
pω|2 + 2|∇pb|2

)
+ ϕ(F̄ + ∇pω|b, zp)

}
dzp

5 ϕ̄(F̄)+ ε.

(4.6)

Using (2.4) onϕ yields

ϕ̄(F̄)+ ε = c1

(
−
∫
kZ

|F̄ + ∇pω|b|p dzp − 1

)

= c1

(
−
∫
kZ

|F̄ + ∇pω|p dzp − 1

)

= c1

( ∣∣∣∣ −
∫
kZ

(F̄ + ∇pω) dzp

∣∣∣∣
p

− 1

)
= c1 (|F̄|p − 1)
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since| · |p is convex and|F̄|b|3×3 = |F̄|3×2 for all b ∈ R
3. To prove the Lipschitz

condition, we choose the sameω andb as the test functions for̄ϕ(Ḡ). We have

ϕ̄(Ḡ)− ϕ̄(F̄) 5 −
∫
kZ

∣∣(ϕ(Ḡ + ∇pω|b, zp)− ϕ(F̄ + ∇pω|b, zp))
∣∣ dzp + ε

5C
(
1 + 1

k2

∥∥Ḡ + ∇pω|b∥∥p
Lp

+ 1

k2

∥∥F̄ + ∇pω|b∥∥p
Lp

) p−1
p ∣∣Ḡ − F̄

∣∣+ ε.

(4.7)

Now invoking the growth conditions onϕ, ϕ̄ and (4.6), we get

C

(
1

k2

∥∥F̄ + ∇pω|b∥∥p
Lp

− 1

)
5 −
∫
ϕ(F̄ + ∇pω|b, zp) dzp

5 ϕ̄(F̄)+ ε 5 c2(|F̄|p + 1)+ ε

(4.8)

and

1

k2

∥∥Ḡ + ∇pω|b∥∥p
Lp

5 C
(
|Ḡ − F̄|p + 1

k2

∥∥F̄ + ∇pω|b∥∥p
Lp

)
. (4.9)

Combining (4.7)–(4.9) gives us

ϕ̄(Ḡ)− ϕ̄(F̄) 5 c′2(1 + |F̄|p−1 + |Ḡ|p−1)|F̄ − Ḡ| + ε. (4.10)

We have the desired inequality asε → 0. The opposite inequality can be obtained
by interchanginḡF andḠ. The caseα = 0 andα = ∞ can be treated similarly.

Proof of Theorem 2.The caseα = ∞ is a corollary of Theorem 1. The proof for
finite α = 0 consists of two parts. First, we prove the0-limit in the case where the
limit function is affine (Part A). We then prove the general case by approximating
an arbitrary function by piecewise affine functions (Part B).

Part A. Supposey = F̄zp with F̄ ∈ M
3×2. We begin by constructing a recovery

sequence for the case whereα > 0. It follows from the definition ofϕ̄ that there
exist sequencesk(ε) ∈ N, ω(ε) ∈ W1,p

0 (k(ε)Z,R3) ∩W2,2
0 (k(ε)Z,R3), andb(ε) ∈

Lp(k(ε)Z,R3) ∩W1,2
0 (k(ε)Z,R3) such that

1

k(ε)2

∫
k(ε)Z

{
α2
(
|∇2
pω

(ε)|2 + 2|∇pb(ε)|2
)

+ ϕ(F̄ + ∇pω(ε) | b(ε), zp)
}
dzp

→ ϕ̄(F̄)
(4.11)

as ε → 0. We useω(ε) and b(ε) to construct our recovery sequence. Unfortu-
nately,b(ε) may not be smooth enough to allow second differentiation. However,
an approximation argument similar to Remark 3 shows that we may assume that
b(ε) ∈ C∞

0 (k
(ε)Z,R3). Define

y(h,ε) = F̄zp + d ω(ε)
(zp
d

)
+ hb(ε)

(zp
d

)
z3, (4.12)
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whereω(ε) andb(ε) are extended periodically in the plane of the film sinceω(ε) =
∂ω(ε)/∂n = b(ε) = ∂b(ε)/∂n = 0 on∂k(ε)Z in the sense of trace. Clearly,y(h,ε)

h→
F̄zp for eachε > 0. Substituting (4.12) intoe(h)1 defined by (2.6), we have

e
(h)
1 [y(h,ε)] =

∫
�1

{(∣∣∣∣κd∇2
pω

(ε) + h

d
· κ
d

∇2
pb(ε)z3

∣∣∣∣
2

+ 2
∣∣∣κ
d

∇pb(ε)
∣∣∣2
)

+ϕ
(

F̄ + ∇pω(ε) + h

d
∇pbz3 | b(ε),

zp
d

)}
dz. (4.13)

If we assume thath
d

→ 0 andκ
d

→ α ash → 0, and impose the Lipschitz condition
(2.5) onϕ, we get

e
(h)
1 [y(h,ε)] → |�1|

k(ε)2

∫
k(ε)Z

{
α2
(
|∇2
pω

(ε)|2 + 2|∇pb(ε)|2
)

+ϕ (F̄ + ∇pω(ε) | b(ε), zp
) }
dzp (4.14)

ash → 0.Above, we have applied the property of mean value2 to (4.13) in deriving
(4.14). Then, using (4.11) gives

lim sup
ε→0

lim sup
h→0

e
(h)
1 [y(h,ε)] = |�1| ϕ̄(F̄) = |S| ϕ̄(F̄) = e

(0)
1 [y]. (4.15)

Recalling (4.12) and (4.15) and appealing to the standard diagonalization argument,
we find that there exists a sequenceŷ(h) = y(h,ε(h)) that converges weakly to
y = F̄zp in W1,p(�1,R3) and satisfies

lim
h→0

e
(h)
1 [ŷ(h)] = e

(0)
1 [y].

The case ofα = 0 is similar. Indeed, an argument similar to that in Remark 2
shows that (4.2) is well defined and the infimum is also achieved. From the definition
of ϕ̄, there exists sequencesk(ε) ∈ N, ω(ε) ∈ W1,p

0 (k(ε)Z,R3) such that

1

k(ε)2

∫
k(ε)Z

ϕ0

(
F̄ + ∇pω(ε), zp

)
dzp → ϕ̄(F̄)

asε → 0. Following an argument like the one used in (3.5), we find measurable
functionsb(ε) ∈ Lp(k(ε)Z,R3) such that

ϕ0(F̄ + ∇pω(ε), zp) = ϕ(F̄ + ∇pω(ε) | b(ε), zp) (4.16)

for almost allzp ∈ k(ε)Z. The rest of the proof follows similarly.

2 ibid 1.
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Setω(h) = y(h) − F̄zp. A slight refinement (see Lemma 2.1 inMüller [36])
shows that the recovery sequencey(h) can be constructed such that

ω(h) = ∂ω(h)

∂n
= 0 (4.17)

on6 = ∂S × (0,1) in the sense of trace.
We now turn to the lower bound wheny is an affine function andα > 0. We

assume thatS is a square domain with side lengths and

ω(h) = y(h) − F̄zp
h
⇀ 0 inW1,p(�1,R3),

ω(h) = ∂ω(h)

∂n
= 0

(4.18)

on6 = ∂S× (0,1) in the sense of trace. We may also assume that lim infh→0 e
(h)
1

[y(h)] is finite; otherwise the proof is trivial. Choosek ∈ N to be smallest integer
such thatk d = s + d. We can find a squarẽS(d) with the side lengthkd such that
S ⊂ S̃(d) and the corners of̃S(d) are indZ

2, i.e., S̃(d) = d(z0
p + kZ) for some

z0
p ∈ Z

2. Now extendingω(h) to S̃(d) × (0,1) by

ω̃(h) =
{

ω(h), for z ∈ S × (0,1),
0, for z ∈ (S̃(d)\S)× (0,1),

we have

e
(h)
1 [y(h)] =

∫
S̃(d)×(0,1)

{
κ2
(∣∣∣∇2

pω̃
(h)
∣∣∣2 + 2

h2

∣∣∣∇pω̃(h),3 ∣∣∣2 + 1

h4

∣∣∣ω̃(h),33

∣∣∣2)

+ ϕ

(
F̄ + ∇pω̃(h) | 1

h
ω̃,3,

zp
d

)}
dz

−
∫
(S̃(d)\S)×(0,1)

ϕ
(
F̄|0, zp

d

)
dz

= I1 − I2.

The second integral−I2 = −c2(1 + |F̄|p)|S̃(d)\S| converges to zero since
|S̃(d)\S| 5 (s + 2d)2 − s2 → 0 asd tends to zero ash tends to zero. Chang-
ing variableszp 7→ d(z0

p + ẑp) andz3 7→ d
h
ẑ3, using the periodicity ofϕ and

Fubini’s theorem, we have

I1 = d2 · d
h

·
∫ h

d

0

∫
kZ

{
α2
(∣∣∣∇2

pω̂
(h)
∣∣∣2 + 2

∣∣∣∇pω̂(h),3 ∣∣∣2
)

+ ϕ
(
F̄ + ∇pω̂(h) | ω̂(h),3 , ẑp

)}
dẑp dẑ3

where

ω̂
(h)
(ẑp, ẑ3) = 1

d
ω̃(h)

(
dẑp,

d

h
ẑ3

)
. (4.19)
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Notice that for almost everŷz3 ∈ (0, h
d
), the functionω̂

(h)

ẑ3
(ẑp) = ω̂

(h)
(ẑp, ẑ3)

belongs toW1,p
0 (kZ,R3)∩W2,2

0 (kZ,R3). Similarly, for almost everŷz3 ∈ (0, h
d
),

ω̂
(h)
,3 belongs toLp(kZ,R3) ∩W1,2

0 (kZ,R3). It follows that

I1 = d2 · d
h

·
∫ h

d

0
k2 ϕ̄(F̄) dz3 = (dk)2ϕ̄(F̄) = s2ϕ̄(F̄).

Thus, we have shown that lim infh→0 e
(h)
1 [y(h)] = s2ϕ̄(F̄) = e

(0)
1 [y] which is the

desired lower bound.
For the general domainS, assume the sequencey(h) satisfies (4.18). Consider

a squareQ which containsS. Using the fact that the recovery sequence can be
obtained such that (4.17) is satisfied for the domain(Q\S) × (0,1), we can also
obtain the lower bound.

Now letS be any open bounded Lipschitz domain and lety(h)
h
⇀ y = F̄zp in

W1,p(�1,R3). No further assumption such as (4.18) is imposed ony(h). We use
the argument ofDe Giorgi [25] (see alsoFrancfort & Müller [24]) to obtain
the lower bound. FixS0 open and compactly contained inS. Let

R = 1
2dist(S0, ∂S).

For any strictly positive integerν, define

Si =
{

zp ∈ S : dist(zp, S0) <
i

ν
R

}
, 1 5 i 5 ν,

and scalar functionsηi(zp) ∈ C∞
0 (S) such that


0 5 ηi 5 1,

ηi = 1 in Si−1 andηi = 0 in S \ Si,
|∇pηi | 5 ν+1

R
and|∇2

pηi | 5 ( ν+1
R
)2.

(4.20)

Moreover, let�1
i = Si × (0,1) for i = 0, · · · , ν and set

y(h)i = F̄zp + ηi (y(h) − F̄zp).

Then, for eachi, y(h)i converges weakly toy = F̄zp inW1,p(�1,R3) ash tends to

zero and(y(h)i − F̄zp) satisfies (4.18). Therefore, it follows from the previous result
that

lim inf
h→0

e
(h)
1 [y(h)i ;�1] = e

(0)
1 [y;�1]. (4.21)

Now

e
(h)
1 [y(h)i ;�1] = e

(h)
1 [y(h);�1

i−1] + e
(h)
1 [y(h)i ;�1

i \�1
i−1] + e

(h)
1 [y;�1\�1

i ]
5 e

(h)
1 [y(h);�1] + e

(h)
1 [y(h)i ;�1

i \�1
i−1]

+c2(1 + |F̄|p) |�1\�1
0|. (4.22)
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Using the growth condition (2.4) onϕ and the definition ofηi(zp),

e
(h)
1 [y(h)i ;�1

i \�1
i−1]

5 C

∫
�1
i \�1

i−1

{
κ2
(

|∇2
py(h)|2 + 2

h2 |∇py(h),3 |2 + 1

h4 |y(h),33|2

+
(
ν + 1

R

)4

|y(h) − F̄zp|2 + 4

(
ν + 1

R

)2 ∣∣∣∇py(h) − F̄
∣∣∣2

+ 2

h2

(
ν + 1

R

)2

|y(h),3 |2
)

+
(

1 + |F̄|p + |∇py(h) − F̄|p +
(
ν + 1

R

)p
|y(h)

−F̄zp|p +
∣∣∣∣1hy(h),3

∣∣∣∣
p)}

dz.

(4.23)

Notice that we have used the inequality
(∑N

i=1 |ai |
)2

5 N
∑N
i=1 |ai |2 in deriving

(4.23). Sincey(h)
h
⇀ F̄zp in W1,p(�1,R3), this impliesy(h)

h→ F̄zp in Lp(�1;
R

3) by Rellich’s compactness theorem and

∫
�1
i \�1

i−1

(
ν + 1

R

)p
|y(h) − F̄zp|p dz → 0 ash → 0. (4.24)

By the assumptions of finiteness of lim infh→0 e
(h)
1 [y(h)] and non-negativity ofϕ,

it is concluded that
∥∥∥ κh∇y(h),3

∥∥∥
L2(�1)

is uniformly bounded inh. Further since

∣∣∣∣
∫
�1

κ

h
y(h),3 dz

∣∣∣∣ 5 Cκ

∥∥∥∥1

h
y(h),3

∥∥∥∥
Lp(�1)

,

and 1
h
y(h),3 is uniformly bounded inLp(�1; R

3) due to coercivity ofϕ, the Poincar´e
inequality implies

κ

h
y(h),3 ⇀ 0 inW1,2(�1; R

3) ash → 0.

Similarly,
∥∥κ∇2y(h)

∥∥
L2(�1)

is uniformly bounded inh. Using the Poincar´e inequal-
ity twice implies that

κy(h) ⇀ 0 inW2,2(�1; R
3) ash → 0,

from which it is deduced that∫
�1
i \�1

i−1

κ2
{
|y(h) − F̄zp|2 + |∇py(h) − F̄|2 + |1

h
y(h),3 |2

}
dz → 0, (4.25)
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ash → 0. Collecting (4.21) to (4.25) gives

e
(0)
1 [y] 5 lim inf

h→0
e
(h)
1 [y(h)] + c2(1 + |F̄|p)|�1\�1

0|

+ C

∫
�1
i \�1

i−1

{
κ2
(

|∇2
py(h)|2 + 2

h2 |∇py(h),3 |2 + 1

h4 |y(h),33|2
)

+
(

1 + |F̄|p + |∇py(h) − F̄|p + |1

h
y(h),3 |p

)}
dz. (4.26)

Summing (4.26) overi = 1, · · · , ν and dividing byν gives

e
(0)
1 [y] 5 lim inf

h→0
e
(h)
1 [y(h)] + c2(1 + |F̄|p)|�1\�1

0|

+C
ν

∫
�1

{
κ2
(

|∇2
py(h)|2 + 2

h2 |∇py(h),3 |2 + 1

h4 |y(h),33|2
)

+
(

1 + |F̄|p + |∇py(h) − F̄|p + |1

h
y(h),3 |p

)}
dz. (4.27)

Recall the assumption of finiteness of lim infh→0 e
(h)
1 [y(h)] and note that‖∇py(h)−

F̄‖Lp(�1) and ‖ 1
h
y(h),3 ‖Lp(�1) are uniformly bounded inh sincey(h) ⇀ F̄zp in

W1,p(�1,R3) andϕ enjoys the coercivity (2.4). This concludes the proof by letting
ν → +∞ and�1

0 → �1.
The proof for the case whereα = 0 is almost exactly the same except we use

ϕ

(
F̄ + ∇pω̃(h) | 1

h
ω̃,3,

zp
d

)
= ϕ0

(
F̄ + ∇pω̃(h), zp

d

)
after (4.19).

Part B. In the case wherey is the piecewise affine function, the proof for the
lower bound is obvious. The recovery sequence can also be constructed by virtue
of (4.17).

For generaly ∈ VS , the existence of a recovery sequence can be deduced
as follows. The Lipschitz boundary∂S of the film guarantees the existence of a
sequence of piecewise affine functionsy(δ) such that

y(δ) → y in W1,p(S,R3) asδ → 0. (4.28)

For each piecewise affine functiony(δ), there exists a recovery sequencey(h,δ) such
that

y(h,δ) ⇀ y(δ) in W1,p(�1,R3) ande(h)1 [y(h,δ)] → e
(0)
1 [y(δ)] (4.29)

ash → 0. Define

f (h, δ) =
∣∣∣e(h)1 [y(h,δ)] − e

(0)
1 [y]

∣∣∣+ ∥∥∥y(h,δ) − y
∥∥∥
Lp(�1)

5
∣∣∣e(h)1 [y(h,δ)] − e

(0)
1 [y(δ)]

∣∣∣+ ∣∣∣e(0)1 [y(δ)] − e
(0)
1 [y]

∣∣∣
+
∥∥∥y(h,δ) − y(δ)

∥∥∥
Lp(�1)

+
∥∥∥y(δ) − y

∥∥∥
Lp(�1)

. (4.30)
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The Lipschitz condition of (4.5) for the homogenized energy densityϕ̄ implies that

∣∣∣e(0)1 [y(δ)] − e
(0)
1 [y]

∣∣∣ → 0 asδ → 0.

It follows that lim supδ→0 lim suph→0 f (h, δ) = 0. A standard diagonalization
argument establishes the existence of a recovery sequence.

It remains to prove the lower bound for generaly ∈ VS . Let y(h) ⇀ y
in W1,p(�1,R3) as h → 0. Without loss of generality, we may assume that
lim inf h→0 e

(h)
1 [y(h)] is finite. First, the regularity of∂S permits the existence of a

sequenceω(h) ∈ C∞(S̄) such that

ω(h) → y in W1,p(S,R3),

κ∇2
pω

(h) → 0 inL2(S,R12) (4.31)

ash → 0 (cf. Francfort & Müller [24]). For anyδ > 0, there exists a partition
{Si} of S into open sets such that

∑
i

∫
Si

|∇py − F̄i |p dzp < δ with F̄i = −
∫
Si

∇py dzp. (4.32)

Let ỹ(h) = F̄izp + y(h) − ω(h) for z ∈ �1
i = Si × (0,1). Clearly ỹ(h) ⇀ F̄izp in

W1,p(�1
i ,R

3) ash → 0. Using the previous result for piecewise affine functions,
we have after summation,

lim inf
h→0

∑
i

e
(h)
1 [ỹ(h);�1

i ] =
∑
i

e
(0)
1 [F̄izp; Si]. (4.33)

Notice that from (4.31), we have

∣∣∣∣∥∥∥κ∇2
p ỹ(h)

∥∥∥
L2(�1

i )
−
∥∥∥κ∇2

py(h)
∥∥∥
L2(�1

i )

∣∣∣∣ 5
∥∥∥κ(∇2

p ỹ(h) − ∇2
py(h))

∥∥∥
L2(�1

i )

=
∥∥∥κ∇2

pω
(h)
∥∥∥
L2(�1

i )
→ 0 (4.34)

ash → 0. Using (4.32), (4.34) and the Lipschitz conditions onϕ andϕ̄, we obtain

∣∣∣∣e(h)1 [y(h);�1] −
∑
i

e
(h)
1 [ỹ(h);�1

i ]
∣∣∣∣ 5 C · δ 1

p (4.35)

∣∣∣∣e(0)1 [y] −
∑
i

e
(0)
1 [F̄izp; Si]

∣∣∣∣ 5 C · δ 1
p (4.36)

for sufficiently smallh. Collecting (4.33), (4.35) and (4.36) concludes the proof.
ut
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5. Film thickness comparable to heterogeneity

Theorem 3.Supposeϕ = ϕ(F, zp
d
, z3),

κ
d

→ α and h
d

→ β > 0 ash → 0. Let

F̄ ∈ M
3×2 and e(h)1 be defined by(2.6). Thene(h)1 0-converges to the functional

e
(0)
1 defined by(2.7) if

(i) α = 0 and

ϕ̄(F̄) = inf
k∈N

inf
ω∈Aβk

−
∫
�
β
k

ϕ

(
F̄ + ∇pω | ω,3, zp, z3

β

)
dz, (5.1)

where

�
β
k = kZ × (0, β), Z = (0,1)2, 6β = ∂kZ × (0, β), (5.2)

Ã
β
k = {ω : ω ∈ W1,p(�

β
k ,R

3), ω |6β = 0}; (5.3)

(ii) α > 0 and

ϕ̄(F̄) = inf
k∈N

inf
ω∈Aβk

−
∫
�
β
k

{
α2|∇2ω|2 + ϕ

(
F̄ + ∇pω | ω,3, zp, z3

β

)}
dz (5.4)

where

A
β
k = {ω : ω ∈ W1,p(�

β
k ,R

3) ∩W2,2(�
β
k ,R

3),ω |6β = ∂ω

∂n
|6β = 0};

(5.5)

(iii) α = ∞ and

ϕ̄(F̄) = Qϕ̃0(F̄),

ϕ̃0(F̄) = inf
b∈R3

ϕ̃(F̄|b), ϕ̃(F) =
∫
Z×(0,1)

ϕ(F, z) dz

whereQϕ̃0 is the lower quasi-convex envelope ofϕ̃0.

The proof of Theorem 3 for finiteα = 0 is very similar to that of Theorem 2.
If h
d

= β, we construct a recovery sequence for an affine functiony = F̄zp using
the scaling

y(h) = F̄zp + dω

(
zp
d
,
hz3

d

)
, (5.6)

whereω(z) ∈ Aβk . The proof of lower bound also follows exactly that of Theorem 2
by using the same scaling (5.6). The caseα = ∞ is a corollary of Theorem 1(ii)
sinceκ

h
= κ

d
d
h

→ ∞ ash → 0 in this case.
We have a similar theorem when the in-plane heterogeneity vanishes.

Theorem 4.Supposeϕ = ϕ(F, z3) and κ
h

→ α′ ash → 0. LetF̄ ∈ M
3×2 ande(h)1

be defined by(2.6). Thene(h)1 0-converges to the functionale(0)1 defined by(2.7) if
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(i) α′ = 0 and

ϕ̄(F̄) = inf
k∈N

inf
ω∈Ã1

k

−
∫
�1
k

ϕ(F̄ + ∇pω | ω,3, z3) dz (5.7)

where�1
k andÃ1

k are defined by(5.2)and(5.3);
(ii) α′ > 0 and

ϕ̄(F̄) = inf
k∈N

inf
ω∈A1

k

−
∫
�1
k

{
α′2 |∇2ω|2 + ϕ(F̄ + ∇pω | ω,3, z3)

}
dz (5.8)

where�1
k andA1

k are defined by(5.2)and(5.5);
(iii) α′ = ∞ and

ϕ̄(F̄) = Qϕ̃0(F̄),

ϕ̃0(F̄) = inf
b∈R3

ϕ̃(F̄|b), ϕ̃(F) =
∫ 1

0
ϕ(F, z3) dz3,

whereQϕ̃0 is the lower quasi-convex envelope ofϕ̃0.

Remark 5. If our film is homogeneous and the interfacial energy is negligible
(α = α′ = 0), all our results coincide with that ofLe Dret & Raoult [21], i.e.,
ϕ̄(F̄) = Qϕ0(F̄). This is obvious in Theorem 1 and Theorem 2, but not in Theorem 3
and Theorem 4. So we explain this in some detail. Consider a homogeneous film
with energy densityϕ = ϕ(F) and let

ϕ0(F̄) = inf
b∈R3

ϕ(F̄|b).

Assumeϕ satisfies (2.4) and (2.5). A similar argument used in Remark 2 shows
that ϕ0 is well defined and the infimum is achieved. Further,ϕ0 also enjoys the
growth and coercivity estimates (2.4). Hence,W1,p quasi-convexification is equal
toW1,∞ quasi-convexification andQϕ0 can be expressed as

Qϕ0(F̄) = inf
ω̂∈W1,p

0 (Z)

−
∫
Z

ϕ0(F̄ + ∇pω̂) dzp, (5.9)

whereZ = (0,1)2. On the other hand, for homogeneous films,ϕ̄ defined in (5.1)
becomes

ϕ̄(F̄) = inf
k∈N

inf
ω∈Ãβk

−
∫
�
β
k

ϕ(F̄ + ∇pω | ω,3) dz (5.10)

for any finiteβ > 0. We wish to show̄ϕ = Qϕ0.
First, it is clear that

ϕ̄(F̄) = Qϕ0(F̄).

To prove the reverse inequality, notice that there exist sequences ofω̂
δ ∈ W

1,p
0

(Z,R3) andbδ ∈ Lp(Z,R3) such that

−
∫
Z

ϕ0(F̄ + ∇pω̂δ) dzp = −
∫
Z

ϕ(F̄ + ∇pω̂δ|bδ)dzp → Qϕ0(F̄) (5.11)
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as δ → 0. SinceC∞
0 (Z,R

3) is dense inLp(Z,R3), we may assumebδ ∈
C∞

0 (Z,R
3) (see Remark 3). Letk ∈ N and define

y(k,δ) = F̄zp + k ω̂
δ
(zp
k

)
+ bδ

(zp
k

)
z3. (5.12)

It is clear that(y(k,δ) − F̄zp) ∈ Ãβk defined by (5.3). Therefore,

ϕ̄(F̄) 5 −
∫
�
β
k

ϕ(∇y(k,δ))dz (5.13)

for all k ∈ N andδ > 0. Notice that by changing variablêzp = zp
k

andẑ3 = z3,
(5.13) becomes

ϕ̄(F̄) 5 1

β

∫ β

0

∫
Z

ϕ

(
F̄ + ∇pω̂δ(ẑp)+ 1

k
∇pbδ(ẑp)ẑ3

∣∣bδ(ẑp)
)
dẑp dẑ3. (5.14)

Let k → ∞, δ → 0 in (5.14) and recall (5.11). We have

ϕ̄(F̄) 5 Qϕ0(F̄).

Remark 6. If the film does not contain any out-of-plane heterogeneity, i.e.,ϕ =
ϕ(F, zp

d
), then Theorem 1(i) and Theorem 2(i) imply that the ratioκ

h
is irrelevant

to the effective energy. In particular, the effective energy of a homogeneous film is
independent of the ratioκ

h
. This ratio κ

h
is important only if the film contains out-

of-plane heterogeneity such as discussed in Theorem 4. We provide an example to
explain this. LetS = (0, L),�1 = S×(0,1), andy : �1 → R

2 be the deformation.
The energy per unit thickness for this homogeneous thin film is

e
(h)
1 [y] =

∫
�1

{
κ2
(

|y,11|2 + 2

h2 |y,12|2 + 1

h4 |y,22|2
)

+ ϕ

(
y,1|1

h
y,2

)}
dz

(5.15)

and the effective energy ash → 0 is

e
(0)
1 [y] =

∫
S

Qϕ0

(
∂y
∂z1

)
dz1.

Notice that the effective energy densityϕ̄ is independent of the ratioκ
h
. Let us

now explain this using the following example. Consider the material with the local
energy densityϕ(1)(F) : M

2×2 → R of the form

ϕ(1)(F) = 1

2

{
(F11 − 1)2 + (F 2

21 − 1)2 + F 2
12 + (F22 − 1)2

}
.

The minimizers ofϕ(1) are

F(1)1 =
(

1 0
1 1

)
, F(1)2 =

(
1 0

−1 1

)
. (5.16)

Suppose the edge of this thin film is clamped. We now show that the total energy
e
(h)
1 tends to zero ash tends to zero irrespective of the ratioκ

h
. First consider the
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(a) (b) (c)

or

Fig. 2. A heterogeneous thin film with clamped edges.(a) The sequence that minimizes the
energy with densityϕ(1) for α′ = 0. Here the darkly shaded and white regions represent

F(1)1 andF(1)2 defined by (5.16).(b) The sequence that minimizes the energy with density

ϕ(2) only for α′ = 0. Here the darkly shaded and white regions representF(2)1 andF(2)2
defined by (5.18).(c) The sequence that minimizes the energy with densityϕ(2) for α′ = 0.

Here the darkly shaded and white regions representF(2)1 andF(2)2 defined by (5.18).

caseκ = 0. Then, at eachh > 0, the sequence shown schematically in Fig. 2(a) is
clearly a minimizing sequence and it follows that

e
(h)
1 [y(h)] → 0 ash → 0.

If κ 6= 0 but is small, i.e.,α′ = κ
h

h→ 0, a slight refinement establishes the same

result. On the other hand, ifα′ > 0, it is not clear whether Fig. 2(a) minimizese(h)1
as it contains too much interfacial energy. Now set

f (z1) =
{
z1 for 0 5 z1 5 1

2,

−z1 + 1
2 for 1

2 5 z1 5 1.

Let χ(m) ∈ C∞
0 ((0,1)) converges strongly tof in W1,4

0 ((0,1)) asm → ∞. For
each fixedm, extendχ(m) periodically toR and consider

y
(1,h,m)
1 = z1, y

(1,h,m)
2 = d Lχ(m)

( z1

d L

)
+ h z2, (5.17)

where 1/d(h) is chosen to be the largest integer such that 1/d(h) 5 1/
√
κ(h).

Substituting (5.17) into (5.15), we find that the energy is driven to zero ifh → 0 first
andm → ∞ next. By standard diagonalization process, we can find a subsequence
y(h) such thate(h)1 [y(h)] → 0 ash → 0.

Next consider another material with the local energy densityϕ(2)(F) : M
2×2 →

R of the form

ϕ(2)(F) = 1
2

{
(F11 − 1)2 + F 2

21 + (F 2
12 − 1)2 + (F22 − 1)2

}
.

The minimizers forϕ(2) are

F(2)1 =
(

1 1
0 1

)
, F(2)2 =

(
1 −1
0 1

)
. (5.18)

Now if the edge of the film is clamped and ifκ = 0 orα′ = 0, Fig. 2(b) is clearly
one sequence minimizing the energy of this strip. On the other hand, ifα′ > 0, it can
be shown that the sequence in Fig. 2(b) does not minimize the energy. Instead, the
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sequence that minimizes the energy in this case looks like that in Fig. 2(c). Indeed,
setg(z1) = 1 and letη(m) ∈ C∞

0 ((0, L)) converge strongly tog in L4((0, L)).
Consider

y
(2,h,m)
1 = z1 ± hη(m)(z1)z2, y

(2,h,m)
2 = h z2. (5.19)

Using an argument similar to the above, we can find a subsequencey(h) such that
e
(h)
1 [y(h)] → 0 ash → 0.

In summary, material can form microstructure freely with interfaces which are
perpendicular to the film (Fig. 2(a)) and such interfaces cost vanishing energy as
h → 0 independent ofκ

h
. Further, material does not need to form the out-of-plane

fine-scale microstructure to reduce the energy (Fig. 2(c)) as long as there is no
out-of-plane heterogeneity contained in the film.

6. Film thickness much larger than heterogeneity

Let us consider the caseκ = 0, ϕ = ϕ(F, zp
d
) and the following change of

variables

ẑp = zp
h
, ẑ3 = z3, hŷ(ẑp, ẑ3) = y(hẑp, ẑ3). (6.1)

Then,e(h)1 becomes

h2
∫ 1

0

∫
S
h

ϕ

(
∇ŷ,

ẑp
d
h

)
dẑp dẑ3. (6.2)

Sinceh
d

→ ∞ ash → 0, (6.2) suggests that̄ϕ is obtained by homogenizing bulk
heterogeneous material first, and then passing to the thin-film limit. This is precisely
phrased by the following theorem.

Theorem 5.Supposeϕ = ϕ(F, zp
d
), κ = 0 and h

d
→ ∞ ash → 0. Then,e(h)1

0-converges to the functionale(0)1 defined by(2.7) if

ϕ̄(F̄) = QϕH0 (F̄),

ϕH0 (F̄) = inf
b∈R3

ϕH (F̄|b), (6.3)

ϕH (F) = inf
k∈N

inf
ω∈W1,p

0 (kẐ)

−
∫
kẐ

ϕ(F + ∇ω, zp) dz,

whereQϕH0 (F̄) is the lower quasi-convex envelope ofϕH0 , Ẑ = (0,1)3 andF =
(F̄|b) ∈ M

3×3.
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The establishment of the lower bound [12] will be based on the following two
lemmas.

Lemma 2. Supposey(h) ⇀ y in W1,p(�1,R3) as h → 0 and assume
lim inf h→0 e

(h)
1 [y(h)] is finite. Then, there exists a subsequencey(h) (not relabeled),

and a sequencẽy(h) such that

|Eh | = | {y(h) 6= ỹ(h)} ∪ {∇y(h) 6= ∇ỹ(h)} | → 0 (6.4)

ash → 0, (|∇p ỹ(h)|p) and(| 1
h

ỹ(h),3 |p) are equi-integrable, and

lim inf
h→0

e
(h)
1 [ỹ(h)] 5 lim inf

h→0
e
(h)
1 [y(h)] (6.5)

Proof. Due to the coercivity (2.4) onϕ, it is clear that

sup
h

∫
�1

(∣∣∣∇p y(h)
∣∣∣p +

∣∣∣∣1h y(h),3

∣∣∣∣
p)

< +∞. (6.6)

By passing to a subsequencey(h) (not relabeled), we may assume this subsequence
achieves the lim infh→0 e

(h)
1 [y(h)]. We extend the definition ofy(h) to S × R, first

defining y(h) on S × (0,2) by y(h)(zp, z3) = y(h)(zp,2 − z3), and then by 2-
periodicity in thez3-direction.

We then define

ω(h)(zp, z3) = y(h)
(

zp,
1

h
z3

)
.

We have∫
�1

|∇p ω(h)|p dz = h

∫
S×
(
0, 1
h

) |∇p y(h)|pdz 5 h

[[
1

h
+ 1

]] ∫
�1

|∇py(h)|p dz,

∫
�1

|ω(h),3 |p dz = h

∫
S×
(
0, 1
h

)
∣∣∣∣1hy(h),3

∣∣∣∣
p

dz 5 h

[[
1

h
+ 1

]] ∫
�1

∣∣∣∣1hy(h),3

∣∣∣∣
p

dz,

where[[x]] denotes the largest integer which is smaller thanx. Using the Decom-
position Lemma 1.2 in [23], we can find a subsequenceω(h) (not relabeled), and a
sequence of functionsu(h) in W1,p(�1,R3), such that

lim
h→0

|{u(h) 6= ω(h)} ∪ {∇u(h) 6= ∇ω(h)}| = 0,

and(|∇u(h)|p) is equi-integrable. Moreover, following the construction in the proof
of Lemma 1.2 in [23], we see that the functionsu(h) can be chosen to be 2h-periodic
in thez3-direction.

Now let
ỹ(h)(zp, z3) = u(h)(zp, hz3).

If A ⊂ �1, Ah = {(zp, hz3) : z ∈ A} and

A′ =
⋃{

Ah + 2khe3 : k ∈ Z, (Ah + 2khe3) ∩�1 6= ∅},
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then we have∫
A

|∇pỹ(h)|p dz = 1

h

∫
Ah

|∇p u(h)|p dz 5 2
∫
A′

|∇pu(h)|p dz,

∫
A

∣∣∣∣1h ỹ,3

∣∣∣∣
p

dz = 1

h

∫
Ah

|u(h),3 |p dz 5 2
∫
A′

|u(h),3 |p dz.

Since we have|A′| 5 c|A|, these inequalities show that(|∇p ỹ(h)|p) and(| 1
h
ỹ,3|p)

are equi-integrable.
Let

Eh = {y(h) 6= ỹ(h)} ∪ {∇y(h) 6= ∇ỹ(h)}.
We have then|Eh| → 0 ash → 0 and∫

Eh

ϕ

(
∇p ỹ(h)|1

h
ỹ(h),3 ,

zp
d

)
dz 5 c2

∫
Eh

(
1 + |∇pỹ(h)|p +

∣∣∣∣1h ỹ(h),3

∣∣∣∣
p )

dz → 0

ash → 0. Therefore, we have

lim inf
h→0

e
(h)
1 [ỹ(h)]

= lim inf
h→0

(∫
�1\Eh

ϕ

(
∇p ỹ(h)|1

h
ỹ(h),3 ,

zp
d

)
dz +

∫
Eh

ϕ

(
∇p ỹ(h)|1

h
ỹ(h),3 ,

zp
d

)
dz
)

= lim inf
h→0

∫
�1\Eh

ϕ

(
∇p y(h)|1

h
y(h),3 ,

zp
d

)
dz 5 lim inf

h→0
e
(h)
1 [y(h)]

by the equi-integrability above. This concludes the proof.ut
The next lemma is suggested byMüller [35] (see also [14], Chapter 22).

Lemma 3. Let S ⊂ R
2 be a Lipschitz set and�1 = S × (0,1). For all M, δ > 0

there existsε0 > 0 such that for allε < ε0 andu ∈ W1,p(�1,R3)with ‖∇u‖Lp 5
M there existsv ∈ W1,p(�1,R3) such that∫

�1
ϕ
(
∇u,

zp
ε

)
dz =

∫
�1
ϕH (∇u + ∇v) dz − δ, (6.7)

and‖v‖Lp 5 δ. The choice ofε0 can be uniform for allS′ translations ofS.

Proof. The proof is by contradiction. Suppose that there existM, δ > 0, a sequence
(εj ) of positive numbers converging to 0, and a sequence(uj ) inW1,p(�1,R3)with
‖∇uj‖Lp 5 M such that∫

�1
ϕ

(
∇uj ,

zp
εj

)
dz< inf

{ ∫
�1
ϕH (∇uj + ∇v)dz : ‖v‖Lp 5 δ

}
− δ. (6.8)

By passing to a subsequence (not relabeled), we can suppose that(uj ) converges
weakly inW1,p(�1,R3) to a functionu, and that

‖uj − u‖Lp 5 δ

2
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for all j . Note that the last inequality implies that

inf
{∫

�1
ϕH (∇uj + ∇v) dz : ‖v‖Lp 5 δ

}

5 inf
{∫

�1
ϕH (∇w) dx : ‖w − u‖Lp 5 t

}
for all t 5 δ/2. Hence, by (6.8) and by the lim inf inequality of0-convergence, we
get ∫

�1
ϕH (∇u) dz 5 lim inf

j

∫
�1
ϕ

(
∇uj ,

zp
εj

)
dz

< sup
t>0

inf
{∫

�1
ϕH (∇w) dz : ‖w − u‖Lp 5 t

}
− δ

= lim inf
w→u

∫
�1
ϕH (∇w) dz − δ

=
∫
�1
ϕH (∇u) dz − δ,

which is a contradiction.
It is clear that by the translation-invariance argument in thezp plane, it suffices

to consider all the setszp + S with zp ∈ [0,1]2 in order to prove that the thesis
of the theorem holds uniformly. In this case, the proof above still works with an
additional compactness argument forzp. ut
Proof of Theorem 5.We start with the lower bound. It suffices to consider the
case thaty = F̄zp. The extension to arbitrary function follows Part B of the
proof of Theorem 2. Lety(h) ⇀ F̄zp in W1,p(�1,R3) ash → 0 and assume

lim inf h→0 e
(h)
1 [y(h)] is finite; else the result follows. We further assumeS =

(0,1)2; it will be clear that the proof is insensitive to this assumption.
Setω(h) = y(h)− F̄zp. Using a cut-off argument near∂(0,1)2 (or the so-called

fundamental estimate in Chapter 24 of [14]), we can suppose that we haveω(h) = 0
if dist(zp, ∂(0,1)2) 5 2h, and, by Lemma 2, we can also suppose that the sequence

(|(∇p ω(h)| 1
h
ω
(h)
,3 )|p) is equi-integrable.

We set

u(h)(z) = 1

h
ω(h)(hzp, z3), Th = 1

h
, F = (F̄,0).

Note that

e
(h)
1 [y(h)] = 1

T 2
h

∫
(0,Th)2×(0,1)

ϕ

(
F + ∇u(h),

zp
d
h

)
dz,

and thatu(h) = 0 if dist(zp, ∂(0, Th)2) 5 2.
Define

Ih = {i ∈ Z
2 : 1 5 i1, i2 5 Th − 2}, Z = (0,1)2, �i = (i + Z)× (0,1).

Note that ⋃
i∈Ih

(i + Z) = (1, [[Th − 1]])2,
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so thatu(h) = 0 on

Ch := (
(0, Th)

2 × (0,1)
) \

⋃
i∈Ih

�i.

We can write∫
(0,Th)2×(0,1)

ϕ

(
F + ∇u(h),

zp
d
h

)
dz =

∑
i∈Ih

∫
�i

ϕ

(
F + ∇u(h),

zp
d
h

)
, dz

+
∫
Ch

ϕ

(
F,

zp
d
h

)
dz.

(6.9)

LetM > 0 be fixed, and let

I1
h = {i ∈ Ih : ‖∇u(h)‖Lp 5 M}, I2

h = Ih \ I1
h .

Note that since ∫
(0,Th)2×(0,1)

|∇u(h)|p dz 5 c T 2
h

for some constantc (independent ofh), we have

#(I2
h ) 5 o(1) T 2

h asM → +∞. (6.10)

For all i ∈ I1
h we can apply Lemma 3, and find that forh small enough (inde-

pendent ofi) there exist functionsvih ∈ W1,p(�i,R
3) such that∫

�i

ϕ

(
F + ∇u(h),

zp
d
h

)
dz =

∫
�i

ϕH
(
F + ∇u(h) + ∇vih

)
dz − δ, (6.11)

and ∫
�i

|vih|pdz 5 δp. (6.12)

By using a cut-off argument as above (see Chapter 24 of [14]), fixedt > 0 and
σ > 0 we can find a cut-off functionηij betweeni+(t,1−t)2 andi+Z and a positive

constantc(t, σ ) such that if we setwij = u(h) + ηihv
i
h, Zt = (0,1)2 \ (t,1 − t)2

and�ti = Zt × (0,1), we have∫
�i

ϕH (F + ∇wih) dz

5 (1 + σ)

(∫
�i

ϕH (F + ∇u(h) + ∇vih) dz +
∫
�ti

ϕH (F + ∇u(h)) dz
)

+ c(t, σ )

∫
�ti

|vih|p dz + σ

5 (1 + σ)

(∫
�i

ϕH (F + ∇u(h) + ∇vih) dz

+ 2pc2

∫
�ti

(1 + |F|p + |∇u(h)|p) dx
)

+ c(t, σ )δp + σ.

(6.13)
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If we define

ũ(h) =
{

wih on�i, i ∈ I1
h ,

u(h) otherwise,

then we have∫
(0,Th)2×(0,1)

ϕH (F + ∇ũ(h)) dz (6.14)

5
∑
i∈I1

h

∫
�i

ϕH (F + ∇wij ) dz +
∑
i∈I2

h

∫
�i

ϕH (F + ∇u(h)) dz +
∫
Ch

ϕH (F) dz

5
∑
i∈I1

h

∫
�i

ϕH (F + ∇wij ) dz + 2pc2

∫
Dh×(0,1)

(1 + |F̄|p + |∇u(h)|p) dz

+ 8Thc2(1 + |F̄|p),
where

Dh =
⋃
i∈I2

h

(i + Z).

Note thath2|Dh| = h2#(I2
h ) = o(1) asM → +∞.

By (6.11)–(6.14) we get∫
(0,Th)2×(0,1)

ϕH (F + ∇ũ(h)) dz

5
∑
i∈I1

h

{
(1 + σ)

(∫
�i

ϕH (F + ∇u(h) + ∇vih) dz

+ 2pc2

∫
�ti

(1 + |F̄|p + |∇u(h)|p) dz
)

+ c(t, σ )δp + σ

}

+ 2pc2

∫
Dh×(0,1)

(1 + |F̄|p + |∇u(h)|p) dz + 8Thc2(1 + |F̄|p)

5
∑
i∈I1

h

{
(1 + σ)

(∫
�i

ϕ

(
F + ∇u(h),

zp
d
h

)
dz

+ 2pc2

∫
�ti

(1 + |F̄|p + |∇u(h)|p) dz
)

+ c(t, σ )δp + σ + δ

}

+ 2pc2

∫
Dh×(0,1)

(1 + |F̄|p + |∇u(h)|p) dz + 8Thc2(1 + |F̄|p)

5 (1 + σ)

{ ∫
(0,Th)2×(0,1)

ϕ

(
F + ∇u(h),

zp
d
h

)
dz

+ 2pc2

∫
(Dh∪Eh)×(0,1)

(1 + |F̄|p + |∇u(h)|p) dz
}

+
(
c(t, σ )δp + σ + δ)T 2

h + 8Thc2(1 + |F̄|p
)
, (6.15)
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where

Eh =
⋃
i∈I1

h

(i + Zt).

Note that|Eh| 5 4tT 2
h .

Changing back variables we obtain

1

T 2
h

∫
(0,Th)2×(0,1)

ϕH (F + ∇ũ(h)) dz

5 (1 + σ)

{ ∫
(0,1)3

ϕ

(
F̄ + ∇pω(h)|1

h
ω
(h)
,3 ,

zp
d

)
dz

+ 2pc2

∫
(hDh∪hEh)×(0,1)

(
1 + |F̄|p +

∣∣∣∣∇pω(h)|1

h
ω
(h)
,3

∣∣∣∣
p)

dz
}

+ c(t, σ )δp + σ + δ + 8hc2(1 + |F̄|p).

By the equi-integrability of(|∇pω(h)| 1
h
ω
(h)
,3 |p) we have

2pc2

∫
(hDh∪hEh)×(0,1)

(
1 +

∣∣∣∣F̄|p + |∇pω(h)|1

h
ω
(h)
,3

∣∣∣∣
p)
dz 5 ζ(|hDh ∪ hEh|),

where lims→0+ ζ(s) = 0. Note that|hDh ∪ hEh| 5 c ( 1
M

+ t) for some constantc
independent ofh. Lettingh → 0, we get

QϕH0 (F̄) 5 lim inf
h→0

1

T 2
h

∫
(0,Th)2×(0,1)

ϕH (F + ∇ũ(h))dz

5 (1 + σ) lim inf
h→0

e
(h)
1 [y(h)] + (1 + σ)ζ(|hDh ∪ hEh|)

+ c(t, σ )δp + σ + δ.

Letting, in the following order,δ → 0,M → +∞, t → 0, σ → 0, we obtain the
desired lower bound.

We now construct a recovery sequence for anyy ∈ VS . From Lemma 2.1
in [36], the bulk homogenized energy densityϕH satisfies the same growth and
Lipschitz conditions (2.4)–(2.5) onϕ (see alsoBraides & Defranceschi [14]). It
follows thatϕH0 given by(6.3)2 is well defined and the infimum is achieved. Further,
Proposition 1 ofLe Dret & Raoult [21] shows thatϕH0 (F̄) satisfies the growth
and coercivity estimates (2.4) and is continuous. Therefore, the relaxation theorem
of Dacorogna [19] yields the existence of a sequencey(δ) which converges weakly
to y in W1,p(S,R3) such that∫

S

ϕH0 (∇py(δ))dzp →
∫
S

QϕH0 (∇py)dzp asδ → 0. (6.16)
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The Lipschitz domainS permits a sequence of piecewise affine functionsy(δ,ε) →
y(δ) in W1,p(S,R3) asε → 0 for fixedδ such that∫

S

ϕH0 (∇p y(δ,ε))dzp →
∫
S

ϕH0 (∇p y(δ))dzp asε → 0. (6.17)

Let {Si} be a finite partition ofS into open setsSi (except for a set of measure
zero) such that∇p y(δ,ε) = F̄(δ,ε)i constant forzp ∈ Si . Further, there exists a

constant vectorb(δ,ε)i such that

ϕH0 (F̄
(δ,ε)
i ) = ϕH (F̄(δ,ε)i | b(δ,ε)i ) (6.18)

for eachi. LetF(δ,ε)i =
(
F̄(δ,ε)i |b(δ,ε)i

)
. On each subdomainSi , using the definition

of ϕH (6.3)3, there existsω(δ,ε,η)i ∈ W1,p
0 (k(η)Ẑ,R3) such that

1

k(η)
3

∫
k(η)Ẑ

ϕ(F(δ,ε)i + ∇ω
(δ,ε,η)
i , zp)dz → ϕH (F(δ,ε)i ) asη → 0, (6.19)

whereẐ = (0,1)3 andk(η) ∈ N. Further, letb̃(δ,ε,η)i ∈ C∞
0 (Si,R

3) be such that

b̃(δ,ε,η)i → b(δ,ε)i in Lp(Si,R3) asη → 0. Now on each subdomainSi , consider
the sequence

ỹ(δ,ε,η,h)i (z) = y(δ,ε)(zp)+ h b̃(δ,ε,η)i (zp)z3 + d ω
(δ,ε,η)
i

(
zp
d
,
h

d
z3

)
. (6.20)

Using the coercivity estimate (2.4) and the Lipschitz conditions (2.5) onϕ and
recalling (6.19), we have∫

Si×(0,1)
ϕ

(
∇pỹ(δ,ε,η,h)i | 1

h
ỹ(δ,ε,η,h)i,3

,
zp
d

)
dz →

∫
Si×(0,1)

ϕH
(
F(δ,ε)i

)
dz (6.21)

ash → 0 first, and thenη → 0. Further appealing to a standard diagonalization
process and a similar argument used in Lemma 2.1.(a) ofMüller [36], we can
construct a sequenceỹ(δ,ε,η(h),h)i such that(

ỹ(δ,ε,η(h),h)i − y(δ,ε)
)

|∂Si×(0,1) = 0

and (6.21) holds for this sequenceỹ(δ,ε,η(h),h)i . Now extend
(
ỹ(δ,ε,η(h),h)i − y(δ,ε)

)
by zero in(R2\Si)× (0,1) and define

y(δ,ε,η(h),h) = y(δ,ε) +
∑
i

(
ỹ(δ,ε,η(h),h)i − y(δ,ε)

)
. (6.22)

Setb(δ,ε)(zp) = ∑
i b(δ,ε)i χSi ∈ Lp(S,R3) whereχ is the characteristic function.

From (6.18), (6.21) and (6.22), we have∫
�1
ϕ

(
∇py(δ,ε,η(h),h) | 1

h
y(δ,ε,η(h),h),3 ,

zp
d

)
dz →

∫
�1
ϕH

(
∇py(δ,ε)|b(δ,ε)

)
dz

=
∫
S

ϕH0

(
∇py(δ,ε)

)
dzp (6.23)
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as h → 0. Let ε → 0 first andδ → 0 next in (6.17) and (6.16) and recall
(6.23). We obtain the desired recovery sequence by further appealing to a standard
diagonalization argument ony(δ,ε,η(h),h) (see, e.g.,Attouch [4, Corollary 1.16]).
ut

If κ 6= 0 andκ
d

→ α < ∞ ash → 0, then using the same change of variables

(6.1) above, we can rewritee(h)1 as

h2
∫ 1

0

∫
S
h

{(κ
d

)2
(
d

h

)2

| ∇2ŷ |2 + ϕ

(
∇ŷ,

ẑp
d
h

)}
dẑp dẑ3. (6.24)

Comparing (6.24) with equation (2.4) andγ = 1 in [24] suggests that̄ϕ is obtained
by averaging and homogenizing the bulk heterogeneous material first, and then
passing to the thin-film limit, or

ϕ̄(F̄) = QϕAH0 (F̄),

ϕAH0 (F̄) = inf
b∈R3

ϕAH (F̄|b), (6.25)

ϕAH (F) = inf
k∈N

inf
ω∈W1,p

0 (kẐ)∩W2,2
0 (kẐ)

−
∫
kẐ

{
α2| ∇2ω |2 + ϕ(F + ∇ω, zp)

}
dz.

It can be shown easily that Theorem 5 still holds ifα = 0. Forα > 0, we conjecture
that (6.25) can be confirmed by following the approach similar to that of Theorem 5
if the appropriate version of Lemma 2 can be established.

Finally, our Theorem 1(i) includes the caseϕ = ϕ(F, zp
d
), κ
d

→ α = ∞ as
h → 0. Note that the ratio ofκ andh turns out to be irrelevant in this case (see
Remark 6).

7. Applications

7.1. Shape-memory effect in polycrystalline thin films

Shape-memory effect is a phenomenon observed in certain martensitic materials
where deformation suffered below a critical temperature is recovered on heating.
The source of the shape-memory effect is the martensitic phase transformation.
The most characteristic observable feature of a martensitic phase transformation is
the microstructure it generates.Ball & James [5,6] have proposed a theoretical
framework to model these fine phase mixtures based on the minimization of the free
energy. According to this theory, the energy densityϕ has a multi-well structure,
and each well represents a phase or variant. The strains that can be recovered in the
shape-memory effect are exactly those that can be attained by the rearrangement
of coherent martensitic variants. Thus, they are contained in a set on which the
relaxation (quasi-convexification) ofϕ vanishes in a single crystal.Bhattacharya
& Kohn [11] have extended this theory to polycrystalline bulk martensites by using
the framework of nonlinear homogenization. A polycrystal is an aggregate of a
great number of single crystal grains with different orientations. The texture of a
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polycrystal (the orientation of the grains) is described by a rotation-valued function
R(x) : � → SO(3). When subjected to deformationy(x), the total energy stored
in this polycrystal is∫

�

ϕ(∇y(x), x) dx =
∫
�

ϕ
(∇y(x)R(x)

)
dx.

The strains recoverable on heating in a polycrystal are contained in a set on which
this energy vanishes.

Our main interest is the study of shape-memory behavior in a polycrystalline
thin film. Specifically, we want to find all possible deformations that can be recov-
ered on heating for this film. In bulk polycrystals, there are several important factors
influencing the class of recoverable strains and we refer readers toBhattacharya
& Kohn [10,11] andShu & Bhattacharya [37]. In thin films, we now show that
this class can also crucially depend on the ratio of different length scales.

7.1.1. Model example.We consider a two-dimensional model problem where the
deformationy is replaced by a scalar-valued functionη : R

2 → R andR : R →
SO(2) represents the texture of our polycrystal film. We assumeR(z1) is periodic
with period[0,1]. The microscopic energy density has the form

ϕ
(
f ,
z1

d

)
= ϕ

(
RT

(z1

d

)
f
)
.

The total energy of the film per unit thickness is

e
(h)
1 [η] =

∫
�1

{
κ2
(∣∣∣∣∂2η

∂z2
1

∣∣∣∣
2

+ 2

h2

∣∣∣∣ ∂η∂z1

∂η

∂z2

∣∣∣∣
2

+ 1

h4

∣∣∣∣∂2η

∂z2
2

∣∣∣∣
2)

+ ϕ

(
∂η

∂z1

∣∣∣∣1h ∂η∂z2
,
z1

d

)}
dz (7.1)

whereS = (0, L) is the one-dimensional film and�1 = S × (0,1). The limiting
energy per unit thickness is

e
(0)
1 [η] =

∫
S

ϕ̄

(
∂η

∂z1

)
dz1. (7.2)

Assume the film thickness is comparable to the grain size and the interfacial energy
is negligible, i.e.,h

d
→ β > 0 andκ

d
→ 0 ash → 0. It follows from (5.1) thate(h)1

0-converges to the functionale(0)1 if the effective energy densitȳϕ(ξ) of the film
is given by

ϕ̄(ξ) = inf
k∈N

inf
ω∈Âβk

−
∫
�
β
k

ϕ

(
RT (z1)

(
ξ + ∂ω

∂z1

∣∣∣∣ ∂ω∂z2

))
dz (7.3)

where

�
β
k = kZ × (0, β), Z = (0,1), (7.4)

Â
β
k = {ω : ω ∈ W1,p

per (�
β
k ,R)}, (7.5)
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where elements ofW1,p
per (�

β
k ,R) are periodic only inz1 with periodkZ. Notice that

we have replacẽAβk in (5.3) byÂβk in (7.5); a slight refinement of the argument of
Müller [36] shows we can minimize (7.3) over either of these two spaces.

Let ϕ̂ be therelaxationof ϕ and consider the analogue of (7.3)

inf
k∈N

inf
ω∈Âβk

−
∫
�
β
k

ϕ̂

(
RT (z1)

(
ξ + ∂ω

∂z1

∣∣∣∣ ∂ω∂z2

))
dz. (7.6)

These two expressions (7.3) and (7.6) are in some sense equivalent since the min-
imizing sequences for the former converge weakly to the minimizers of the latter,
and the minimizers of the latter give rise to minimizing sequences for the former
[2]. Therefore, from now on, we will not distinguish between minimizing sequences
and minimizers but usêϕ in (7.6) to replaceϕ in (7.3). Further, in our particular
problem below,ϕ̂ is convex and it suffices to takek = 1 [36].

We state a useful lower bound forϕ̄. Let

ψ∗(g) = max
f

{f · g − ψ(f )}

be the Fenchel transformation of the functionψ . Let ω ∈ Â
β
1 and consider any

vector fieldg = (g1, g2)
T which is periodic inz1 with period[0,1]. If we assume

∇ · g = 0 in�β1 andg · n = 0 atz2 = 0 andβ wheren = (0,1)T is the outward
normal, it follows that

−
∫
�
β
1

ϕ̂(RT (f1 + ω,1|ω,2)), dz = −
∫
�
β
1

{f1g1 − ϕ̂∗(RT g)} dz.

Optimization overω andg gives

ϕ̄(f1) = max
∇·g=0

g·n=0onz2=0, β

−
∫
�
β
1

{
f1g1 − ϕ̂∗ (RT (z1)g(z)

)}
dz (7.7)

whereg is periodic inz1 with period[0,1].
We now specialize and consider a two-variant material with microscopic elastic

energy

ϕ(f ) = min
{

1
2

(
(f1 − 1)2 + f 2

2

)
, 1

2

(
(f1 + 1)2 + f 2

2

)}
(7.8)

wheref = (f1, f2)
T . It can be shown that, in this case,

ϕ̂(f ) = 1
2

{
(|f1| − 1)2+ + f 2

2

}
(7.9)

with the convention thata+ = max{a,0}. The explicit expression of the Fenchel
transform ofϕ̂ is

ϕ̂∗(f ) = 1
2|f |2 + |f1|. (7.10)
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Our main interest is the study of the shape-memory behavior or stress-free con-
figuration of the film. In other words, we want to determine the “set of recoverable
strains for the polycrystalline thin film” which we define as (c.f. [11])

Pf = {ξ : ϕ̄(ξ) = 0}.
A single crystal is the special case of the polycrystal. In that case, clearly,P contains
a line segment[−1,1]. But for films with general texture,P is expected to be smaller
than this line segment. The extent of this reduction of recoverable strains in thin
films also depends on the parameterβ and our task is to determine it. We do so in
detail for the special polycrystal shown in Fig. 3(a).

Proposition 1. Consider the polycrystal with the texture

R(z1) =
{

R1 m 5 z1 < m+ 1
2 (“grain 1,”)

R2 m− 1
2 5 z1 < m (“grain 2,”)

wherem ∈ Z and

R1 =
(

cosθ − sinθ
sinθ cosθ

)
and R2 =

(
cosθ sinθ

− sinθ cosθ

)

in the “grey” and “white” rectangles of Fig. 3(a) for0 < θ < π
2 . If β 5 1

2 cotθ ,
then

P = {ξ : |ξ | 5 cosθ − 2β sinθ}; (7.11)

if β = 1
2 cotθ , then there exist positive constantsc andC such that

c|ξ |3 5 ϕ̄(ξ) 5 C|ξ |3 for ξ sufficiently small (7.12)

and clearlyP = {0}; finally, if β > 1
2 cotθ , then there exists a constantC > 0

such that

ϕ̄(ξ) = C|ξ |2 (7.13)

and once againP = {0}.

Proof. Consider the caseβ 5 1
2 cotθ first. We wish to construct a test functionη

with zero energy. This requiresRT∇η to be parallel toe1 a.e. and|∇η| 5 1. This
motivates the following construction:

∇η =



a(cosθ, sinθ)T in the darkly shaded region of “grain 1,”

a(cosθ,− sinθ)T in the darkly shaded region of “grain 2,”

0 otherwise,

(7.14)

as shown in Fig. 3(b) for some|a| 5 1. This test field is compatible since∇η is
piecewise constant, and on every interface[[∇η]] · t̂ = 0 where[[ ]] denotes the
jump across the interface andt̂ is the tangent. Furthermore, the area of support of∇η
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Fig. 3. (a)A polycrystalline thin film with the texture containing two orientations.(b) The
test field∇η. The darkly shaded regions form the support of∇η and the straight lines within
them are level sets ofη. (c) The test divergence-free flowg. The darkly shaded strips form
the support ofg and the arrows within them point out the direction of the flow.(d) The test
field ∇η whenβ = β0 = 1

2 cotθ . The darkly shaded regions form the support of∇η and

the straight lines within them are level sets ofη. (e)The recoverable strain (= 1
2 |P|) versus

different valuesβ. (f) The behavior ofϕ̄(ξ) for ξ near zero with different valuesβ. Notice
that ϕ̄(ξ) grows quadratically ifβ > β0, becomes flat (zero) ifβ < β0, and has an exact
cubic growth near the origin ifβ = β0.

is greater than zero sinceβ 5 1
2 cotθ . The average−∫ ∇η = a(cosθ − 2β sinθ)e1

and hence we obtain a lower bound of

P ⊃ {ξ : |ξ | 5 cosθ − 2β sinθ}.

Next we show thatP contains no other points. Indeed, this is equivalent to
showing thatϕ̄(ξ) > 0 if |ξ | > cosθ − 2β sinθ . We can accomplish this using the
lower bound (7.7). Consider the dark strips shown in Fig. 3(c). Taking the slopes
of these strips as±(β − µ)/(1

2 + µ) whereµ > 0, set

g =



(1

2 + µ,µ− β)T in the darkly shaded strip of “grain 1”,

(1
2 + µ, β − µ)T in the darkly shaded strip of “grain 2”,

0 otherwise.

(7.15)
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It is easy to verify that∇ · g = 0 andg · n = 0 atz2 = 0 andβ. Substituting the
test fieldτg into (7.7) and using the formula (7.10) forϕ̂∗, we obtain

ϕ̄(f1) = τ −
∫
f1g1 − τ2

2
−
∫

|g|2 − |τ | −
∫

|e1 · RT (z1)g|

= A

2

{
− [(1

2
+ µ)2 + (µ− β)2]τ2 + (1 + 2µ)f1τ

− [(cosθ − 2β sinθ)+ 2µc0]|τ |
}
,

(7.16)

whereA = µ(1+2β)
β(1+2µ) is the area fraction of the strips andc0 = sinθ + cosθ . To get

the optimal lower bound we maximize (7.16) overτ . It follows thatϕ̄(f1) > 0 if

(1 + 2µ)|f1| − [(cosθ − 2β sinθ)+ 2µc0] > 0.

Notice that if|f1| > (cosθ − 2β sinθ), then the above inequality holds for suffi-
ciently smallµ; and hencef1 /∈ P. This proves (7.11).

We now turn to the caseβ > 1
2 cotθ . We obtain the desired lower bound from

(7.7) by using the same test fieldτg as above with

µ = 2β sinθ − cosθ

2(sinθ + cosθ)
> 0. (7.17)

Then (7.16) gives

ϕ̄(f1) = A

2

{
−
[(1

2
+ µ

)2 + (µ− β)2
]
τ2 + (1 + 2µ)f1τ

}
. (7.18)

Maximizing overτ , we conclude that for someC > 0 independent off1,

ϕ̄(f1) = Cf 2
1 .

Finally, we come to the caseβ = 1
2 cotθ . We start with the lower bound first.

Using the divergence-free fieldτg in (7.15) and substituting it into (7.7), we have

ϕ̄(f1) = A

2

{
−
[(1

2
+ µ

)2 + (µ− β)2
]
τ2 + (1 + 2µ)f1τ − 2µc0|τ |

}
,

(7.19)

wherec0 = sinθ + cosθ . This bound is positive if(1 + 2µ)|f1| > 2µc0 or

µ <
|f1|

2(c0 − |f1|) .

Now maximizing (7.19) with respect toτ and choosingµ = a|f1| with a < 1
2c0

,
we have for somec > 0

ϕ̄(f1) = µ(1 + 2β)

2β(1 + 2µ)

(
(|f1| + 2µ(|f1| − c0))

2

4[(1
2 + µ)2 + (µ− β)2]

)

= c |f1|3 +O(f1)
4 for f1 near 0.
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Next we return to the upper bound. We chooseε > 0 such thatθ − ε > 0 and
construct a fieldη as shown in Fig. 3(d):

∇η =




1

cosε
(cos(θ − ε), sin(θ − ε))T

in the darkly shaded region of “grain 1,”

1

cosε
(cos(θ − ε),− sin(θ − ε))T

in the darkly shaded region of “grain 2,”

0 otherwise.

(7.20)

By geometry, the area fraction of these darkly shaded strips is

A = 1 − 2β tan(θ − ε) = sinε

sinθ cos(θ − ε)

since cosθ = 2β sinθ . It follows that

f1 = −
∫

∇η = 1

cosε
(cos(θ − ε)− 2β sin(θ − ε)) = tanε

sinθ
.

The local energy is
ϕ̂(RT (z1)∇η) = 1

2 tan2 ε

whenever∇η 6= 0. Therefore, this test field gives an upper bound

ϕ̄(f1) 5 1

2

(
sinε

sinθ cos(θ − ε)

)
tan2 ε

5 sin2 θ

2 cos(θ − ε)

√
1 + sin2 θ f 2

1

f 3
1

5 sin2 θ

2 cosθ
f 3

1 . ut

This example shows quite dramatically the effect ofβ (film thickness over the
size of heterogeneity) on the shape-memory behavior. The recoverable strain1

2|P|
versusβ is shown in Fig. 3(e). Further, the growth ofϕ̄(ξ) as it departs fromP
also significantly depends on the ratioβ. As shown in Fig. 3(f), there exists a point
β0 = 1

2 cotθ such that forβ > β0, ϕ̄(ξ) grows quadratically and this film behaves
like a linear elastic material without shape-memory effect; forβ < β0, ϕ̄(ξ) is
flat (zero) and this film displays the shape-memory effect; forβ = β0, ϕ̄(ξ) has
an exact cubic growth forξ near the origin and this film behaves like a nonlinear
elastic material with soft modulus.

In this example we only dealt with a simple texture with two orientations. But
we can generalize our method to a texture withN orientations within the cell. The
exact set of recoverable strains and the behavior ofϕ̄(ξ) for ξ near the origin can
also be predicted similarly. However, our current analysis is texture-dependent and
it would be very useful to develop texture-independent bounds to explore the full
range of behavior of a film.Bhattacharya & Kohn [11] have used the translation
method to predict the shape-memory behavior for bulk materials. Unfortunately,
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it does not work here. For example, consider the following identity which plays a
central role in their analysis. Ifη = f · z andζ = g · z at ∂�β1 , then

−
∫

det(∇η,∇ζ ) = det(f ,g). (7.21)

Unfortunately (7.21) does not necessarily hold if we only knowη andζ on part
of the boundary∂Z × (0, β) rather than an entire boundary∂�β1 . Notice that the
test fieldω in the definition of variational principle (7.3) is periodic only inz1 and
does not satisfy any boundary condition on the top and bottom parts of the film.
This lack of information prevents an identity like (7.21) and we cannot use their
method. Similarly, in the lower bound (7.7), the divergence-free flowg must meet
an additional requirementg · n = 0 on the top and bottom parts of the film. This
adds another difficulty in developing useful bounds.

7.1.2. Martensitic thin films. We now turn to the physically relevant problem in
three dimensions using the geometrically linear theory of martensites. Let

ϕ(F) = ϕlin(E[F]),

where

E = 1

2
(F + FT )− I

is the linear strain andI is the identity matrix. To describe a martensite, the energy
density is endowed with a multi-well structure – one well for each phase or variant,
i.e.,

ϕlin(E) = min
i=1,··· ,k

{
1
2|E − E(i)|2

}
(7.22)

whereE(i) is the transformation strain fori = 1, · · · , k. Notice that we have
restricted our analysis to some fixed temperature below the transformation temper-
ature, and have assumed elastic constants are equal to the identity for simplicity.

Shape-memory thin films are often made by sputtering [27,28,39,33,18,17].
The grains in these films are typically columnar (e.g., see Fig. 2 of [28]). So we
assume

ϕlin
(
E,

zp
d

)
= ϕlin

(
RT

(zp
d

)
E R

(zp
d

))
,

whereR : R
2 → SO(3) is a given function describing texture and is assumed to be

periodic with period[0,1]2.
Let us consider the single crystal film first. Let5 be the matrix that projects

any 3× 3 matrix into a 3× 2 matrix:

5 =

1 0

0 1
0 0


 .
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Then,

ϕ0(F̄) = inf
b∈R3

ϕlin

( 1
2(F̄p + F̄Tp )−5T5 1

2(bp + F3p)

1
2(bp + F3p)

T b3 − 1

)

= inf
a∈R3

ϕlin

(
Ē ap

aTp a33

)
= ϕlin

0 (Ē),

(7.23)

where F̄p = 5T F5, Ē = 5TE5; F3p = (F31, F32)
T , bp = (b1, b2)

T and
ap = (a1, a2)

T . For the multi-well energy density defined by (7.22),ϕlin
0 can be

shown to be

ϕ lin
0 (Ē) = min

i=1,··· ,k

{
1
2|Ē − Ē(i)|2

}
(7.24)

Ē(i) = 5TE(i)5. (7.25)

We defineSf , the set of recoverable strains in a single crystal filmwith orientation
e3, to be

Sf = {Ē : Qϕlin
0 (Ē) = 0}.

This is exactly the set of strains that the material can accommodate by making a
mixture of martensitic variants. In general, this setSf is hard to determine. However,
if all variantsĒ(i) are pair-wise compatible, i.e.,

Ē(i) − Ē(j) = a ⊗ n + n ⊗ a (7.26)

for some vectorsaandn and for alli, j = 1, · · · , k, then the associatedSf is simply
their convex hull [8]. One can show that this is true for materials undergoing cubic–
tetragonal, cubic–trigonal and cubic–orthorhombic transformation irrespective of
the orientation of the film. Unfortunately, cubic-to-monoclinic martensites which
are the most commonly used shape-memory materials have transformation strains
that are not pair-wise compatible in general. But they can be compatible in certain
orientations in thin films. Indeed, letR denote the crystal orientation, the orientation
that takes the film basis{e1,e2,e3} to the crystal basis{f1, f2, f3}, fi = Rei for
i = 1,2,3, and notice that

1
2|RTER − E(i)|2 = 1

2|E − RE(i)RT |2 = 1
2|E − U(i)|2, (7.27)

whereU(i) = RE(i)RT . It is well known that two 2× 2 symmetric matrices̄U
andV̄ are compatible if and only if det(Ū − V̄) 5 0 [29]. Settingf ∗

i = RT ei for
i = 1,2,3 andA = (E(i) − E(j)), we have

det(5TRART 5) 5 0 ⇐⇒ det

(
f ∗
1 · Af ∗

1 f ∗
1 · Af ∗

2
f ∗
2 · Af ∗

1 f ∗
2 · Af ∗

2

)
5 0

⇐⇒ f ∗
3 · adj(E(i) − E(j)) f ∗

3 5 0. (7.28)

Notice that (7.28) is the linearized version of (5.12) in Proposition 5.1 ofBhat-
tacharya & James [9]. It follows that Sf is the convex hull of transformation
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strains5TU(i)5 if (7.28) is satisfied for alli, j = 1, · · · , k. The vectorf ∗
3 is in-

terpreted as follows. Let{hkl} denote the film normal in the cubic crystal basis,
i.e.,

e3 ‖ h f1 + k f2 + l f3.

Using the definition offi andf ∗
i yields

f ∗
3 ‖ he1 + k e2 + l e3.

It turns out that all pairs of monoclinic variants are pair-wise compatible for{100}
and {110} films in Ti-Ni and {110} and {111} films in Cu-Zn-Al [38] andSf is
the convex hull of these variants. In contrast, not all pairs are compatible for{111}
films in Ti-Ni and{100} films in Cu-Zn-Al. In these cases, the setSf becomes more
complicated [38].

We now turn to polycrystalline thin films. We define theset of recoverable
strains of a polycrystalline thin film

Pf = {Ē : ϕ̄(Ē) = 0}. (7.29)

Our task is to determine the setPf . However, this is very difficult and its calculation
requires knowledge of the shape and orientation of each grain which is also difficult
to obtain. One possibility is to estimate the setPf using texture-independent bounds.
The bound which we believe to be the most useful bound is the Taylor bound based
on the use of a constant-strain test field [11]. This gives an upper bound forϕ̄ but
is an inner bound forPf . The accuracy of the Taylor bound can be assessed in the
recent work byBhattacharya & Kohn [11] for geometrically linear theory and
by Kohn & Niethammer [30] for geometrically nonlinear theory. Indeed, in our
model example above, one can show that the exact recoverable strain is the same as
that predicted using the Taylor bound forβ = 0 and∞. Unfortunately, the Taylor
bound is only suitable for homogenization; and consequently, there is no analogy
for the case 0< β < ∞.

We now give the expression of the Taylor bound on two extreme cases,β = 0

andβ = ∞, assumingα = κ
d

h→ 0 and all grains are columnar in both cases.
Considerβ = 0 first. The Taylor bound on the setPf is

T 0 =
⋂

zp∈Z
Sf (zp) = {Ē : Qϕlin

0

(
Ē; R(zp)

) = 0, for a.e.zp ∈ Z} (7.30)

where

ϕ lin
0 (Ē; R(zp)) = min

i=1,··· ,k
1
2

∣∣∣ Ē −5T
(
R(zp)E(i)RT (zp)

)
5

∣∣∣2 . (7.31)

In sputtered films, very often all grains have a common crystallographic axis{hkl}
as the film normal. Therefore, the setSf (zp) can be determined exactly for allzp
in (7.30) for certain textured cubic–monoclinic films. Consequently,T 0 is fully
determined.
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Now considerβ = ∞. Let P be the set of recoverable strains in bulk or thick
films:P = {E : ϕH (E) = 0} whereϕH is given by(6.3)3 in terms of geometrically
linear theory. Then, it can be shown easily that

5TP5 = {Ē : ϕH0 (Ē) = 0}.
So if this functionϕH0 is convex, then the implication is thatPf = {Ē : QϕH0 (Ē) =
0} = 5TP5. But in generalPf ⊃ 5TP5 ⊃ 5T T ∞5 whereT ∞ is the Taylor
bound onP and is given by

T ∞ =
⋂

zp∈Z
S(zp) = {E : Qϕlin

(
R(zp)TER(zp)

)
= 0 for a.e.zp ∈ Z}. (7.32)

When subjected to uniaxial in-plane tension in theξ direction, the Taylor bound
of maximum recoverable extension is

e0
R = max

Ē∈T 0
(ξ · Ē ξ) for β = 0,

e∞R = max
Ē∈5T T ∞5

(ξ · Ē ξ) for β = ∞.
(7.33)

Table 2 contrasts the behavior of films with long or rod-like (h >> d) grains
and films with flat or pancake shaped (h << d) grains [37]. It lists the predicted
recoverable strains for films with different textures in Ti-Ni and Cu-Zn-Al. Note that
they are larger for flat grains compared to long grains as we expected. We also note
here that neither the random nor{110} sputtered texture which is common for BCC
materials [27,39] are ideal textures for large recoverable strain. The ideal textures
appear to be{100} for Cu-Zn-Al (this texture can be produced by melt-spinning)
and{111} for Ti-Ni.

Before closing this subsection, we should mention the effect of the ratioκ
d

of
the size of the microstructure to that of the grain. Above, we took this ratio to
be zero; however, this may not be appropriate when the grain size becomes very

Table 2. The predicted uniaxial recoverable extension for various textures.ε∞
R

andε0
R

are
the Taylor bounds for films withβ = ∞ andβ = 0 respectively. Notice thatSmono is
unknown in bulk cubic–monoclinic martensites. So we use the bigger setScmono which is
the convex hull of all monoclinic variants in (7.32) and(7.33)2 to calculateε∞

R
(see [37] for

more details).

Texture
Recoverable strains (%)

Ti-Ni Cu-Zn-Al

ε∞
R

ε0
R

ε∞
R

ε0
R

random 2.3 2.3 1.3 1.7

{111} film 5.3 8.1 1.9 5.9

{100} film 2.3 2.3 7.1 7.1

{110} sputtered film 2.3 2.3 1.7 1.7
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small (on the order of tens of nanometer). In that situation(κ >> d), Theorem 1
shows that it costs materials more energy to form microstructure inside each grain
to accommodate deformation and consequently strains cannot be recovered unless
the texture is exceptional.

7.2. Effective Conductivity

We now turn to study the influence of different ratios of length scales on the
conductivity of heterogeneous thin films. It will be evident that similar results
should also hold in other linear properties.

Consider a conducting thin strip made by mixing two anisotropic conducting
materials as shown in Fig. 4(a). LetPij andQij be the anisotropic conductivities in
the “grey” and “white” regions of Fig. 4(a). Let 05 λ 5 1 be the volume fraction
of the grey region. The energy is given by

ϕ(f , z1) =
{

1
2

(
P11f

2
1 + 2P12f1f2 + P22f

2
2

)
, m 5 z1 < m+ λ,

1
2

(
Q11f

2
1 + 2Q12f1f2 +Q22f

2
2

)
, m+ λ 5 z1 < m+ 1,

(7.34)

wherem ∈ Z and f is interpreted as the electric field. The usual symmetry as-
sumptionPij = Pji andQij = Qji is assumed and the positive definiteness of the
energy density requires

1P = P11P22 − P 2
12 > 0, P11 > 0, 1Q = Q11Q22 −Q2

12 > 0, Q11 > 0.
(7.35)

For the conducting strip shown in Fig. 4(a), Theorem 3 implies that the ef-
fective energy density takes the form:ϕ̄(ξ) = 1

2C̄
β ξ2 whereC̄β is the effective

conductivity at the ratioβ. The following proposition shows that̄Cβ depends onβ.

Q P QP

g

(b)

(c)

(a)

λ1 − λ η

β

Fig. 4. (a)A heterogeneous thin film mixing with two anisotropic conducting materials.
(b) The test field∇η. The darkly shaded regions form the support of∇η and the straight
lines within them are level sets ofη. (c) The test divergence-free flowg. The darkly shaded
strips form the support ofg and the arrows within them point out the direction of the flow.
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Proposition 2. For the thin strip shown in Fig. 4(a), the effective conductivityC̄β

satisfies

C̄0 5 C̄β 5 C̄∞ for 0< β < ∞, (7.36)

where

C̄∞ = C∞
11C

∞
22 − C∞2

12

C∞
22

(7.37)

C̄0 = P̄ Q̄

λQ̄+ (1 − λ)P̄
(7.38)

andC∞ is defined by

C∞ = (λP + (1 − λ)Q · S) · (λI + (1 − λ)S)−1 (7.39)

with S given by

S =
(
P11
Q11

P12−Q12
Q11

0 1

)

andP̄ andQ̄ defined by

P̄ = P11P22 − P 2
12

P22
= 1P

P22
andQ̄ = Q11Q22 −Q2

12

Q22
= 1Q

Q22
. (7.40)

Further, ifQ121P − P121Q = 0, then

C̄0 = C̄β = C̄∞. (7.41)

Finally, if the volume fractionλ = 1
2, then

C̄0 5 C̄β 5 C̄0

(
1 − β C̄0

( |P12|
P22

P̄
+

|Q12|
Q22

Q̄

))−1

for β small, (7.42)

C̄∞ = C̄β = C̄∞
(

1 − |Q121P − P121Q |
2β (P111Q +Q111P )

)
for β large. (7.43)

Proof. Let us calculateC̄∞ first. Whenβ = h
d

h→ ∞, the macroscopic energy
density is obtained by homogenizing the bulk conductor and then by passing to
the thin-film limit (see Section 6). LetC∞ be the effective conductivity of the
bulk material. We can calculate it by noticing that we have a rank-one laminate in
two dimensions. Assuming constant gradient in each layer [34], we can obtainC∞
defined by (7.39). The bulk energy densityϕH becomes

ϕH (f ) = 1
2

{
C∞

11f
2
1 + 2C∞

12f1f2 + C∞
22f

2
2

}
.
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The effective energy density for this thin conducting strip is obtained by passing to
the thin-film limit, i.e.,

ϕ̄∞(ξ) = QϕH0 (ξ) = ϕH0 (ξ) = inf
b∈R

1
2

{
C∞

11ξ
2 + 2C∞

12ξb + C∞
22b

2
}

= 1
2 C̄

∞ξ2,

where the effective conductivitȳC∞ is defined by (7.37).
On the other hand, if the ratioβ = h

d
→ 0 ash → 0, the effective energy density

is obtained by passing to the thin-film limit first, followed by homogenization (see
Section 4). Indeed, after passing to the thin-film limit, the local energy densities
within the grey and white regions become

1
2 P̄ ξ

2 and 1
2 Q̄ ξ

2,

whereP̄ andQ̄ are defined by (7.40). Now the effective energy density is obtained
by homogenization and is given by

ϕ̄0(ξ) = 1
2 C̄

0 ξ2,

where the effective conductivitȳC0 is defined by (7.38).
We now show (7.36). The Fenchel transformation ofϕ is given by

ϕ∗(g, z1) =
{

1
21P

(
P22g

2
1 − 2P12g1g2 + P11g

2
2

)
, m 5 z1 < m+ λ,

1
21Q

(
Q22g

2
1 − 2Q12g1g2 +Q11g

2
2

)
, m+ λ 5 z1 < m+ 1.

(7.44)

Substitutingg = (τ,0)T into the lower bound (7.7) and optimizing overτ yields
C̄β = C̄0 for all β > 0. Further, consider the test functionfP = (aP , b)

T and
fQ = (aQ, b)

T . Using the definition of̄ϕ in Theorem 3 and minimizing the energy
over all possibleaP , aQ andb, we haveC̄β 5 C̄∞ for all β > 0.

SupposeQ121P = P121Q. Direct calculation on̄C0 andC̄∞ shows that these
are equal, and this implies (7.41) due to (7.36). An interesting example of this type
isP12 = Q12 = 0 when there is no coupling between the thickness and the in-plane
directions; so the effective conductivity does not depend on the ratioβ.

We prove bounds (7.42) and (7.43) forλ = 1
2. Consider (7.42) first. To show

the right-hand side of (7.42), consider the test functionη constructed by

∇η =




τ

P̄
(1,−P12

P22
)T in the darkly shaded region of the grey domain,

τ

Q̄
(1,−Q12

Q22
)T in the darkly shaded region of the white domain,

0 otherwise,
(7.45)

as shown in Fig. 4(b). The area fraction of these darkly shaded regions isA1 =
1
2 − β

|P12|
P22

andA2 = 1
2 − β

|Q12|
Q22

respectively. Using this test function, we have

ϕ̄(f1) = 1
2 C̄

β f 2
1 5 1

2

(
A1

P̄
+ A2

Q̄

)
τ2, (7.46)
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where

f1 =
(
A1

P̄
+ A2

Q̄

)
τ. (7.47)

The inequality (7.42) is obtained by substituting (7.47) into (7.46) and using the
definition ofC̄0 in (7.38) forλ = 1

2.
We now turn to (7.43). To show the right-hand side of (7.43), consider the

lower bound (7.7) and the Fenchel transformation ofϕ given by (7.44). The test
divergence-free flowg is chosen to be

g =


(σ,−ε)T in the darkly shaded region of the grey domain,

(σ, ε)T in the darkly shaded region of the white domain,

0 otherwise,
(7.48)

as shown in Fig. 4(c). AssumeQ121P − P121Q = 0 (otherwise changeε to −ε
in (7.48) and the corresponding flow direction in Fig. 4(c)); choose

ε = Q121P − P121Q

(P111Q +Q111P )
σ. (7.49)

Then, the area fraction of the support ofg is (1 − ε
2βσ ). Substituting (7.48) and

(7.49) into (7.7) gives

ϕ̄(ξ) = 1

2
C̄βξ2 = 1

2

(
1 − ε

2βσ

)(
2ξσ − σ 2

C̄∞

)
. (7.50)

Maximizing the above inequality overσ gives (7.43). ut
We comment on the result ofDamlamian & Vogelius 0[20] who obtained

optimal bounds for a composite thin structure made of two isotropic conductors.
They consider the caseϕ = ϕ(f , zp

h
, z3) (β = 1 in our notation and fully three

dimensions). However, their optimal bounds areβ-independent and hence their
bounds hold for allβ. Further, their optimal microstructure arez3-independent.
Our Proposition 2 above shows that theirβ-independent bound may not be optimal
if the conductivity is anisotropic and the film normal is not an eigenvector of the
conductivity tensor. We speculate that their lower bound is optimal only forβ = 0
and upper bound only forβ = ∞. The problem of deriving goodβ-dependent
bounds are complicated due to reasons discussed at the end of Section 7.1.1.

Finally, it is clear that similar results must hold for elasticity, and there is some
suggestive experimental evidence in this direction.

7.3. Multilayers

Consider a multilayered thin film made up of a finite number of alternating
layers of a martensitic material and a purely elastic material. Letλ be the volume
fraction of the martensitic material and letεm be the mismatch strain of the elastic
material relative to the austenite phase of the martensitic material. The effective
behavior is some combination of the behavior of these two materials; however, the
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λ

κ
h � 1 κ

h � 1

Fig. 5. The effective behavior of a multilayer thin film is determined by the energies above
for small and large values ofκ

h
.

nature of the behavior depends on the ratioα′ = κ
h

of the microstructure size to the
thickness. For example, assume the local energy densityϕ : R

2 × (0,1) → R has
the following form

ϕ(f , z3) =
{
ϕmart(f ) = 1

2((f
2
1 − 1)2 + f 2

2 ), for m−1
M

5 z3 <
(m−1)+λ

M
,

ϕelas(f ) = 1
2((f1 − εm)

2 + f 2
2 ), for (m−1)+λ

M
5 z3 <

m
M

(7.51)

for m = 1, · · · ,M. From Theorem 4, the effective energy densities for small and
large values ofα′ are given by

ϕ̄0(ξ) = λ

2

{
(ξ2 − 1)+

}2 + 1 − λ

2
(ξ − εm)

2 for α′ = 0,

ϕ̄∞(ξ) = Q

{
λ

2
(ξ2 − 1)2 + 1 − λ

2
(ξ − εm)

2
}

for α′ = ∞,

whereQ denotes the operation of quasi-convexification. The result is also schemat-
ically shown in Fig. 5. The effective energy forα′ small is shown on the left while
that forα′ large is obtained by the quasi-convexification (or convexification in this
case) of the multi-well energy shown on the right-hand side of Fig. 5. The thin dark
line is the energy of the martensitic material and the thick light line is the energy of
the elastic material. The behavior of the multilayer is shown by lines of increasing
greylevel for decreasing volume fractionλ (also see [9]). For smallα′, the marten-
sitic material freely forms microstructure and the multilayer can accommodate this
mismatch strainεm and behaves like an elastic material with soft-modulus. For large
α′ on the other hand, the multilayer behaves like a phase transforming material: it
has two variants with transformation strains which may be different from that of the
original martensitic material, and one variant is preferred over the other. Hence, this
multilayer film will display a two-way shape-memory effect. Further notice that
the multilayer is internally stressed so that the minimum energy is not zero. Finally,
the multilayer can form “macroscopic twins”: these are not twins confined to the
martensitic material but encompass both the elastic and the martensitic material.
Thus, multilayers promise to be a means of making apparently new materials with
interesting and novel properties.
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