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Abstract

We study the effective behavior of heterogeneous thin films with three com-
peting length scales: the film thickness and the length scales of heterogeneity and
material microstructure. We start with three-dimensional nonhomogeneous nonlin-
ear elasticity enhanced with an interfacial energy of the van der Waals type, and
derive the effective energy density as all length scales tend to zero with given limit-
ing ratios. We do not require amypriori selection of asymptotic expansion or ansatz
in deriving our results. Depending on the dominating length scale, the effective en-
ergy density can be identified by three procedures: averaging, homogenization and
thin-film limit. We apply our theory to martensitic materials with multi-well energy
density and use a model example to show that the “shape-memory behavior” can
crucially depend on the ratios of these length scales. We comment on the effective
conductivity of linear composites, and also on multilayers made of shape-memory
and elastic materials.

1. Introduction

Martensitic thin films have recently attracted much interest because of their
potential for application as microactuators [27,28,39,33,18,17]. Martensitic ma-
terials undergo a diffusionless phase transformation during which there is a sud-
den change in the crystal structure at a certain temperature. The high temperature
austenitephase is cubic while the low temperatunartensitgphase has less sym-
metry. This gives rise to symmetry-related variants and these variants usually form
microstructures or fine-scale mixtures. Crystals undergoing a thermoelastic marten-
sitic transformation often exhibit the shape-memory effect. Below the transforma-
tion temperature, they are extremely malleable — sustaining a huge deformation
with strains as large as 10% under very small forces. When they are heated above
the transformation temperature, the specimen springs back to its original shape as
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Fig. 1. A heterogeneous thin film with three different length scales.

all the strain is recovered. Actuators utilizing the shape-memory effect are predicted
to have the largest energy output per unit volume per cycle among a variety of com-
mon actuator systems [33]. But bulk shape-memory actuators have enjoyed limited
success in temperature sensitive applications because the response is slow due to
thermal inertia. On the other hand, the enhanced rate of heat transfer in thin films
makes these alloys ideal for microactuators, micropumps and microelectromechan-
ical system (MEMS) applications.

Typically, martensitic films are polycrystalline rather than monocrystalline. A
polycrystal consists of a large number of single crystal grains with different orien-
tations. The behavior of a polycrystal can be very different from that of a single
crystal because of the constraining effect of neighboring grains. Depending on the
deposition technique, the size of grains within the film can be larger than, com-
parable to or smaller than the thickness of film. Furthermore, depending on the
material, the length scale of the microstructure can also be larger than, comparable
to or smaller than that of grains. The behavior of the film can critically depend on
the relative magnitudes of these length scales, and we seek to understand this.

Consider a heterogeneous (possibly multilayer) thin film shown in Fig. 1. It
occupies a reference domain

Q" ={xeR3: (x1,x2) € 5,0 < x3 < h}, (1.1)

wheresS is a bounded Lipschitz domaitix1, x2, x3} are relative to an orthonor-
mal film basis{er, e, e3}, and# is the film thickness. Le§ : ©" — R3 be the
deformation of the film. The total energy of the heterogeneous thin film is

s 9] — 2y292 g oL X2 X3
é [y]—/m[/c IVl +¢(Vy,d,d,h)}dx (1.2)

whereg : M3%3 x R? x (0, 1) — R is the elastic free energy density of the film
andM™*" is the set of alln x n matrices. We assume thatis periodic in the
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in-plane variables; andx, with period[0, 1]2. Sod scales like the typical grain

size. Further, since we wish to model martensit€E, -, -, -) may have a multi-well
structure and consequently nonconvex energy densities. Note that we have included
the interfacial energy of the typ€?|V2§|2. Minimizers of the energy (1.2) have
oscillations on a length scale that scales witnd hence we cadl the length scale

of the microstructure. We are interested in finding the limiting behavior of the film
when all length scales, d andh tend to zero. Therefore, we take

Kk =k(h) >0, d=d(h) >0, Ilimolc(h) =0, ]Iimod(h) =0, (1.3
— h—
and assume that they have fixed limiting ratios:

h K
“"'Lnd p=lmg @ =my (1.4)

In bulk materials, the homogenization of cellular elastic materials with non-
convex energy density has been studied BrapEs [13] andMULLER [36]. The
same problem including the interfacial energy has been studiés AycrorT &
MULLER [24]. However, microstructure in thin films can be significantly different
to that in bulk materials, endowing materials with dramatically distinct properties
(for example, see [3]). RecentlBHAaTTACHARYA & JAMES [9] have developed a
theory of single crystal martensitic thin films which captures this effect. Related
work on the modeling of thin structures with convex (quadratic) energy density
includes, for exampl&KoHuN & VoGeLIUS [31,32],DAMLAMIAN & VOGELIUS [20]
andCaILLERIE [16]; and related problems with nonconvex energy density include,
for example Acerst et al.[1], LE DRET & RaouLt [21] andFoNsEcA & FRANC-

FORT [22]. We wish to combine homogenization with the thin-film analysis for non-
convex energies and apply it to heterogeneous martensitic Biraspes, FONSEca
& FrRANCFORT [15] have studied a similar problem wikh= 0.

Our approach is variational. We study the “variational limit” of (1.2)dends
to zero. Since the energy defined in (1.2) scalesAikesh tends to zero, we shall
be interested in the limiting energy per unit thickness, i.e.,

1
e =2,
h

We expect the minimum values and the minimizers of the functiéf?élto
converge to those of a “limiting energy%lo), which we try to find. In this context,
the natural tool ig°-convergence as proposed By Giorai [25] andDE GIORGI
& Franzoni [26] which under a suitable technical hypothesis is nearly identical
to that of convergence of minimizers (see also Remark 1). Using this notion, we

show that the limiting energy is always given by

50 y dy
e; lyl= / (8x Py z)dxldxz,

whereg is the effective energy density and only depends on the in-plane gradient of
deformatiory and not explicitly on the position. It describes the overall behavior of
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Table 1. Summary of the effective behavior of a heterogeneous thindilmeans averaging,

H means homogenizing affdmeans thin-film limit.TH denotes that the effective energy
densityg is obtained by taking the thin-film limit first, and then homogenizing in the plane of
the film. On the other hantiT denotes homogenization first followed by the thin-film limit.
Finally, a stacked symbdl denotes the simultaneous performance of these two operations.

Theorem 1 Theorem 1 Theorem 1
AT AT AT
Kk>d >
Kk~h
<
Theorem 2 Theorem 3
A A
k~d T A H T
H H
T (?)
Theorem 2
Theorem 3 Theorem 5
TH
Kk <Ld /<>~>h H HT
< T
Theorem 4
h<d h~d h>d

the heterogeneous thin film after taking into account the martensitic microstructure,
grains and multilayers.

In the following, we give a non-technical description of our main results which
are summarized in Table 1. The most important finding is that the effective energy
densityg crucially depends on the limiting ratios of these three length scales.

1. Strong interfacial energ{k >> d). Assumep = ¢(F, 3, 7#). Our Theorem 1
shows that the effective energy densijtys obtained by averaging the micro-
scopic energyp over the period, then passing to the thin-film limit. It costs
materials more energy to form microstructures within each grain as a result of
strong interfacial energy. Material is internally stressed. The result is also true
if o = (F, );—1, ’;—2, #)andifx >> d andx >> h.

2. Flat grains (d >> h). Assumep = ¢(F, 77, 72). If the length scale of the
microstructure is much smaller than that of grains (i.e¢, ¥ < d), then The-
orem 2(i) shows that the elastic energy dominates the interfacial energy and
materials can form microstructures freely. As a result, the macroscopic energy
densityg is impervious to the presence of interfacial energy. Furipes,ob-
tained by taking the thin-film limit first, and then homogenizing in the plane
of the film. The thin-film limit says that only the in-plane compatibility is im-
portant and this allows a wider class of microstructures to be formed in thin
films than in bulk materials. On the other hand, if the length scales of grains and
microstructure are of the same order of magnitude (i.e.xfd), Theorem 2(ii)
shows that the interfacial energy explicitly contributes to the effective energy
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densityg. Materials can form only a limited amount of microstructure because
of competing energies between elastic energy and interfacial energy.

3. Comparable graingd ~ h). Assumep = ¢(F, 7, 7, 32). Our Theorem 3
gives the expression of effective energy dengitwhen all length scales are
comparable. This case apparently has no simple explanation since the averaging,

homogenizing and thin-film limit are taken into account together.

4. Long grains(d << h). Assumep = ¢(F, 71, 32). Theorem 1 includes the case
d << k.0Onthe other hand, if = 0 or« << d, Theorem 5 says that the effec-
tive energy density is obtained by homogenizing the bulk material, then passing
to the thin-film limit. Finally, if« andd are of the same order of magnitude and
both are much smaller than(x ~ d << h), we conjecture that the effective
energy density is obtained by taking averaging and bulk homogenization first,

and then passing to the thin-film limit.

5. Multilayers (« versush). Assumep = ¢(F, 2). In such a situation, only two
physical parametens and’ are relevant. Our Theorem 4 gives the expression
of ¢ containing through-the-thickness variations.

We apply our results in Section 7. We use examples to show that the macroscopic
behavior of films can significantly depend on the limiting ratios of these length
scales. In our first example, we are interested in the shape-memory behavior of a
polycrystalline martensitic film. Shape-memory materials are modeled with a multi-
well energy densityy, each well representing a phase or variant. The relaxation
of ¢ has the degeneracy, i.€¢ = 0 on a setS. This setS contains all strains
recoverable on heating in a single crystal. Similarly, the strains recoverable on
heating in a polycrystal are contained in the #bn which ¢ vanishes [11].
While the setS can be obtained in most martensitic materials, thePsist rather
difficult to calculate. The estimation of this sftin bulk martensitic materials
have been studied in [10,11,37]. We extend this framework to thin films. Our
result shows that, for strong interfacial energy (ikex> d), the shape-memory
behavior is expected to be negligible in general polycrystals since materials cannot
form microstructures within each grain to accommodate deformation. On the other
hand, for smallinterfacial energy (i.e..<< d), materials can form microstructures
freely and our model example shows that thisBetignificantly depends on the
limiting ratio of%. We further consider cubic-monoclinic shape-memory thin films.
We show that recoverable strains in thin films with flat columnar grains £ h)
differs from (are larger than) those with long columnar graihsc< /). We also
establish that films made by sputtering can recover only relatively small strains in
Ti-Ni and other common shape-memory alloys.

Next, we consider effective conductivity of linear composites. We show that in
general the effective conductivity of composites made of anisotropic materials can
depend on the ratié. We also provide bounds to estimate it in our model example.
We compare this result with the optimal bound®afMrLamIAN & VoGEL1us [20].

Finally, we consider a multilayered thin film made of a finite humber of al-
ternating layers of a martensitic material and a purely elastic material. We find
quite different behavior whefi tends to zero and infinity. We conclude that such
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a multilayered thin film provides an opportunity to design materials with unusual
transformation properties.

2. Preliminaries

It is convenient to work on a fixed domain instead of a varying dorfinso
we introduce the following change of variables:

z, = (z1,22) = Xp = (x1,%2), 3= %x:g, x e Q" (2.1)
and set
Ql=95x(0,1). (2.2)
With each deformatiofi : Q" — R3 we associate a deformatign Q1 — R3 via
yze) =y, xeQ".
We use the notatioR, for the gradient in the plane of the film, i.e.,

Voyy=y1®e+Yy2® e,

_ ﬂ ay1 dy2 0y3\T. (h)
andy = = (33, 322> 355) » €tc. We now change varlablesj,l;ne using

(1.2) and (2 1) and get
_ 1, .
egh)[Y] = Ze(h)[y]
1
- /Ql { ('V Y+ h2|pr,3|2 + ﬁly,sslz) (2.3)

<Y1IY2| Y3, — ,zs>}d2-

We have used the notation
F=flffs) =f1@ea+H@e+fz@es

for F e M3<3,
We assume the energy densitygatisfies the following conditions:

[E=Y

. ¢(F, z) is Caratl®odory and nonnegative.

2. Periodicity in the plane of the filnu(F, z,, z3) is periodic in the in-plane vari-
ablez, = (z1, z2) with period[0, 1]2 for all F € M>*3 andz3 € (0, 1).

3. Growth and coercivity conditions:

caa(FI”P =D = o(F, 2 S c2(FI” + 1) (2.4)

for all F € M3 and for a.ez = (z,, z3) € R? x (0, 1).
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4. Lipschitz condition:
l9(F,2) — ¢(G,2)| < c2(1+ [FI” 1+ |G HIF - G| (2.5)

for all (F, G) € M3*3 x M3*3 and for a.ez = (z,, z3) € R? x (0, 1).

Above, 0< c¢1 < ¢z andp satisfies 1< p < oo.
For anyy € W7 (@1, R3), we extend the functionéﬁh)[y] to

S(h) - 2201 R3
g - Jep 'yl if ye Wa(Q R,
eyl {+oo otherwise (2.:6)

Now our goal is to compute the-limit of egh) ash, d andk tend to zero with fixed
limiting ratios (1.4). To this purpose, we recall that
Definition 1. A family eg”) of functionals onW1-7(Q1, R3) (1 < p < o0) is said

to I'-converge(in the weakWw 17 (Q1, R3) topology to ego) if and only if
(1) every sequencg™ with
y® <~y in wtP(@QLR® ash— 0,
satisfies the “lower bound”

lim inf ely™1 = 21yl

(I) for everyy € W7 (Q1, R3), there exists a sequeng®’ called the “recovery
sequence” such that

y® <~y in wt?@QLR% ash— 0
and

lim ¢1”ly®1 = 71yl

Remark 1. The limiting functionalego) is, by construction, lower semicontinuous
with respect to weak convergence W7 (Q!, R3) [14] and, therefore, attains
its minimum value due to the coercivity condition (2.4). Further, using the fact
that the L2 norm is sequentially lower semicontinuous and Rellich’s compact-
ness theorem, one can show tb%f admits a minimum for any fixed > 0 (cf.
FRANCFORT & MULLER [24]). Therefore, minimizers oégh) converge to those of
eg‘” by the fundamental theorem bfconvergence (see, for exampBRAIDES &
DEFRANCESCHI [14]).
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Inthe following, we will show that, forany € W7 (Q1, R3),e\" I-converges

toa functionaleio) of the form

2(V,Y)dz if Vs,
O = | Jgomaz W yev 2.7)
400 otherwise

whereg will be determined explicitly and’s is defined by
Vs={y:ye Wr?@QL R% andys=0 fora.ezinQ'} (2.8)

which is canonically isomorphic t& -7 (S, R3). The following lemma is the first
step towards proving (2.7); with it we only need to computeltHamit of eY’) for
y € Vs.

Lemma 1. Lete!"” be defined by2.6)and assumg ¢ Vs. Thenliminf;,_qe!"”
[y™] = +o0 for any sequencg™ such thay™ — yin w7 Q! R3) ash — 0.

Proof. We prove it by contradiction. Suppose there exists a sequéhasonverg-
ing weakly toy in W17 (Q1, R3) with lim inf o e{” [y"] = M finite. Therefore,
there exists a subsequenc® (not relabeled) such that

e&h)[y(h)] — M < 400 ash — 0.
By coercivity, %yfg‘) is bounded in.? (21, R3) and this implies
yfg) — 0 strongly inL? (21, R3) (2.9)
ash — 0. Sincey™ converges weakly tg in W7 (Q1, R3) ash tends to zero,
this gives
yO Lys inLr@l R (2.10)

Combining (2.9) and (2.10), we haye; = 0 a.e. by the uniqueness of the weak
limit. Thusy € Vg, which contradicts the assumption, and this completes the proof.
]

3. Strong interfacial energy

Theorem 1. Lete(lh) andego) be defined by2.6)and(2.7). Then,eih) I'-converges
to the functionakgo) if
() ¢=¢F 2), %~ coash — 0,and
#(F) = 0go(F),
@o(F) = inf_¢(F|b), 3.1
beR3
iF) = [ oz dz,

where Q¢ is the lower quasi-convex envelopeg@f F € M**? and Z =
©, 1%



Heterogeneous Thin Films of Martensitic Materials a7

(i) ¢ = o(F,2,23), & — 00,% — oo ash — 0, and@ is given by(3.1);,
(3.1), with (3.1)3 replaced by

G(F) = / o(F. 2)dz: (3.2)
Zx(0,1)

(i) ¢ = ¢(F,z3), j; — oo ash — 0, andg is given by(3.1)4, (3.1), with (3.1)3
replaced by

1
G(F) = /0 o(F. 23) dzs. (3.3)

Remark 2. It is clear thatp(F) enjoys the same growth and coercivity conditions
(2.4) and s continuous by virtue of the Lipschitz condition (2.5poh follows that

@o given by(3.1), iswell defined and the infimum is achieved. Further, Proposition 1
of LE DRET & RaouLT [21] shows thatpo(F) satisfies the growth and coercivity
estimates (2.4) and is continuous.

Proof of Theorem 1.We begin with case (i}p = ¢(F, ) and% — ocash — 0.
We first construct a recovery sequence for gny Vs. Recalling Remark 2 and
invoking the relaxation theorem due BncorooNa [19] we find a sequencg®
which converges weakly tpin W17 (S, R®) such that

/S Go(V,y*) dz, — fs 0@o(V,y)dz, ass — 0. (3.4)

Since the infimum ofyg is achieved (see Remark 2), an argument like that used by
LE DReT & RaouLt [21] shows that for each element of the sequeyiék there
exists a measurabl#® e LP(S, R3) such that

Go(Vpy®) = g(V,y@1p®). (3.5)

Further, we may also assume at the moment that §6tiz,) andb®(z,) are
smooth functions because of the Lipschitz characté@iSofsee Remark 3). Define

yor =y® @) + hb® z))zs (3.6)
and substitute it int@(lh) . We have
ey = / % (1V2y®) 4+ nV26D 232 + 217, 2)
Q1

z
+ 0 (Voy? + 1V, (0029 b, 2) | gz (3.7)

The first term of the integrand? (|V1§y(‘” +hV2b® 232 4 2|V,b® |2), vanishes
for any fixeds sincex (h) — 0 ash — 0. Therefore, using the Lipschitz condition
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(2.5) ong, we get
h 5\ g
egh)[y(a,h)] — /S/Z¢(pr(5)(zp)|b(5) (Zp), 2p) d2, dz),

= /S (V¥ (z,)Ib® (2,)) dz,

/S G0(V,y® () dz,,. (3.8)

Above in (3.7), we have approximatéd,y® | b®) by a piecewise constant ele-
ment inL? (S, RY), passed to the limit as in (3.8) using the Lemma A.1Bay.L
& MuraT [7]}, and then use the estimate (2.5)@®again to complete the whole
argument.

Recalling (3.4) gives us

lim suplim supe{” [y®"] = ¢21y]. (3.9)
§—0 h—0

Now appealing to the standard diagonalization argumeAtobucH [4, Corollary
1.16]yields asequeng® ") that converges weakly tan W7 (Q*, R ash — 0
and satisfies

}lliﬂ,]o eih) [y(ﬁ(h))] — ego) yl. (310)

To complete the proof, we need to establish the lower boun(yql_)e{ﬁ\ y e Vg
in W7 (Q1, R3). We may assume that lim ipf, o "’ [y ] is finite; else the result
follows. We may also restrict ourselves to a subsequgti¢¢not relabeled) which
achieves the liminf.

For anys > O letS’ cc S with |S\S’| < §. Define

Pl ={z,€d2?:z,+dZ c S},
s'= | @ +d2),

d
z,eP

Qb =57% 0,1 and Q' =5 x (0,1).
Clearly s c §'. For eact in Q14 define

A A 1 1 N .
Y® (2, 23) = d_Z/ (pr(h)|ﬁyf'§)> dz,, 2,€z,+dZ, z,e P’
Z,+dZ

(3.11)

One can check easily that

1
YOt < H (v,,y“)myf?) (3.12)

Lp(Ql.d)

1 Suppose K p < co. Letg(x) € Lﬁ,c(]Rm) be[0, 1] —periodic. Therg(%) converges

weakly in L? (£2) to its mean value as — 0 for any bounded open subset
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Using the Poincarinequality for each small squareS$fi at fixedzz, summing all
such squares, and integrating oyeffrom O to 1, one can deduce that

1
HY““ - (v,,y<h>|—y(§)>
h™ LZ(QLd)

d\? o (ies 1
(h)|2 (h) 2
<cC <;> /Ql,d" <|vpy 2+ 515 ) dz (3.13)

2

whereC is some constant that does not depend odsing the fact thag — Oas
h — 0 and the finiteness of limipf. o eih)[y(h)], we have

1
- i)

Thus, we can apply Egoroff’'s theorem to assert the existence of a measurable subset
A of € such that, for sufficiently small, A ¢ Q14 |Q"\A| < § and

— 0 askh — 0. (3.14)
LZ(Ql,d)

1 .
vy _ (pr(h>|zyfg)> — 0 uniformly onA (3.15)

ash — 0 for some subsequenc{é{(h) - (pr(h)|%yfg))) (not relabeled). Us-

ing the Lipschitz condition (2.5), (3.12), (3.15) and the uniform boundedness of
[ (pr(h)I%Y,(g)) ||LI’(Ql), we have

n L _ (h) } () _Zp
(/AgD(Y ,d)dz /A<p<vpy |hy,3,d>dz>—>0 ash — 0.
(3.16)

Let A,, be the projection of the slice of at the constangs, i.e.,

Az = {(z1,22) : (22, 22, 23) € A}. (3.17)
Also, pick anyz, € P? and let

Os=2,+dZ, andQ ={(z,,23):2, € Qs, z3€ (0,1}, (3.18)

and notice thaly ™ is constant oveiQs for any fixedzz € (0, 1). Thus, using
Fubini’s theorem, we have

/;me(Y(h)’ %P) dz = /OlmeAza(p(Y(h)’ %p) dz, dz3

and

Z Z Z
/ ¢ (Y<h>, —”) dz, = / ¢ (Y<h>, —”) dz, —/ ¢ (Y(h), —”) dz,
0sNAz, d 0s d 05\Azy d

> /Q FOYD)dz, — caL+ YD) |05\ AL,
S

(3.19)
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where we have used the second inequality in (2.4). Using the other inequality in
(2.4), we have

/ ¢ (Y<h>, Z—”) dz, 2 c1 (()Y?)P — 1) [Qs N Al (3.20)
QSmAzg d
Combining (3.19) and (3.20), we obtain

Z
[ ey 2)azz [ w0@e M)z -2c [ p D@z,
05N d 0s 0s5\Azg
(3.21)

where
c1|Qs N Azl
c1|Qs N Azl + c2| Os\ Azl
€1 chp+dz XA, (Zp)dZ),

= —— forze Q (3.22)
(c1—c2) ]czp+dz XAz (2p)dZp + c2

n@ =

andy_, is the characteristic function of the set,. Integrating (3.21) overs from
0 to 1 and summing the same equation ovezalh P4, gives

y4
f o (YO, %) a2 f HD@DFYP)dz - 2¢5 / 1D @) dz.
A d Ql,d Ql,d\A
(3.23)

Invoking the Lebesgue point theorem on (3.22)/as- 0 ash — 0 for each fixed
z3, we have

C1X A4 (Zp)
C1XAL, (Zp) +c2(1 — xa,,(Zp)) (3.24)
= XA, (2Zp) ae. onsY/,

1Pz, 23) —

and (3.23) becomes
i ® %\ g7 > limi @ 750y ™
In}mrg)f/A(p(Y , d) dzzllr}P;BfLM @e(Y'")dz. (3.25)
Recalling (3.16), (3.25), (3.15), and the fact thds nonnegative, we obtain
1 z 1 z
i =y “4r > fimi =y “4r
I|2n_18f/9go<vpy |hy73, d) dz 2 "T_lgf A<p<V,,y |hy73, d) dz
z
— liminf vy 2P
i [ o (¥, %) a2
> Iiminf/u(d)(z)é(Y(h))dz
h—0 Ja
1
— limi @ (5 (7 .y Zy®
"Q’L'BffA“ (Z)<p< 3% Ihy,3>d2

> Iizniraf / 1D @Go(V,y M) dz. (3.26)
- A
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Egoroff’s theorem tells us that there exists a measurable suliset A with
|A\A’| < & such that for some subsequence (not relabeled)

' — xa, =1 uniformlyon A’

asd — 0 ash — 0. Therefore, for any; > 0, we have
lim inf / w2 go(V,y ™) dz > liminf / 1w D@0 (V,y ") dz
h—>0 A h—)O A/
Zliminf [ (= 0QGo(V,y M dz. (327
— A’
If we defineG : W17 (Q1, R%) — R by
Gy = /91 0¢o(Vpy)dz

and setb : M3 — Rtobed (f1|f2|f3) = QFo(f1|f2). SinceQdo is quasiconvex,
itcan be shown [21] thab is also quasiconvex, bounded belowby , and satisfies
growth and coercivity conditions similar to (2.4). Théhis sequentially lower
semicontinuous o -7 (Q1, R3) (seeAcersI & Fusco [2]). Applying this result
to [o1(1— m)xar Q@o(V,y")dz, we have

lim intf / (1 — ) QFo(Vpy™ydz = f (1 — ) Q@o(V,y)dz.
— A/ A/
By letting 8’ andn tend to zero, we have

im inf / 1D @Go(V,yMydz > / 0@o(Vpy)dz.
— A A

Combining this with (3.26) yields

lim inf / @ <V,,y(h)|}y(§), Z-”) dz > [ 0do(V,y)dz.
h—0 Ja h™ d A
Using the fact thaP@o(V,y) belongs taL1(Q?) and|Q1\ A| < 23, we obtain the
desired lower bound by lettingy— O.
We now consider case (iig = ¢(F, %, z3) and% — oo, 7 — oo ash — 0.
We can construct the recovery sequence in a way similar to the previous case
without any difficulty. The proof of the lower bound is also similar, except we have
to replace (3.11) by

, 1t 1 S e
YW (@, == / / (v,,y<’”|—yf§) dz,dZs, 2, € z,4+dZ, 1z, € P’
dc Jo Jz,4az h
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Note that (3.12) remains valid, but (3.13) becomes
v (®) my L,m
-\ Vpy |Zy,3
LZ(Ql,d)
e \v4 (h),2 i) v/ (h),2 d
C(K) fQK (| YU+ IV ) dz

4o (! ? 2 iIV (h)|2+i| M2\ 4

K Qld « h2 Y3 h4 Y33

whereC is some constant that does not depend dgince both; — oo, 7 — o
ash — 0, we obtain (3.14). The rest of the proof is similar and we omit it here.

Finally, case (jii) ¢ = ¢(F, z3) andj, — oo ash — 0) follows from case (ji).
o

2

A

Remark 3. In (3.6), we have assumed that’ andb® are smooth functions to al-
low the second derivative. Indeedyif) € W7 (s, R®) andb® e LP(S, R?), the
bounded Lipschitz domain permits the existence of sequeyit&se C> (S, R3)
andb®® e €5°(S, R3) such that

y@ 5 y® strongly in wh? (S, R®)

b@# — b® strongly in L?(S, R®)
ase — 0. Then, (3.6) is replaced by

yO e @) =y* @) +hb® ()23
and (3.9) now becomes

lim sup lim sup lim sup egh)[y(‘s’**h)] = e§°> [yl

§—0 e—0 h—0

Appealing to the already quoted diagonalization argument, we find that there exists
a recovery sequence labeled only in termg aihd thus (3.10).

4. Film thickness much smaller than heterogeneity

Theorem 2.Suppose = ¢(F, 2), * — aand’ — 0ash — 0. LetF € M3*?,
Z = (0, 1) and egh) be defined by2.6). Then,e(lh) I'-converges to the functional
% defined by2.7)if
(i) «=0and
@(F) = inf inf ][ 9o(F + V,, 2,)dz,, (4.1)
keN weWy? (kz) Jkz

0o(F,z)) = inf_(FOIb, z,); (4.2)
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(i) «>0and

G(F) = inf inf ][ {az (|V2w|2+2|V b|2>
keN (!)EWl "(kzmw kz) JkZ u r
beL? (kZ)NWi2(kZ) (4.3)

+ ¢(F + V,olb, zp)}dzp;

(iii) « = oo and
¢(F) = 0go(F),
go(F) = inf ¢(Flb), @(F) = / ¢(F,2,)dz,
beR3 V4
whereQ ¢y is the lower quasi-convex envelopezgf
Note that we have used the notatigp - - - = |_SlZ\ Jo:

Remark 4. It can be shown that the effective energy dengisatisfies the growth
and Lipschitz condition for & « < oo, i.e.,
c1(IFI” = 1) £ ¢(F) < c2(IFI” + 1) (4.4)
8(F) — (G)| < cH(L+ |FIP~H+|G|PHIF - G| (4.5)

for all (F, G) € M®*? x M3*?. Indeed, consider & « < oc. The upper bound
is obtained by settingg = b = 0 in (4.3) and using (2.4) op. To show the

lower bound, note that for every> 0, there exist& € N, w € Wé”’(kz, R3 N
W&2(kz,R% andb € L?(kZ, R3) N Wy(kZ, R3) such that

@(F) < ][ {a2 (|v§w|2 + 2|vpb|2) + o+ V,0lb, z,,)} dz,
kZ

< @(F) +e.

(4.6)

Using (2.4) ony yields

@(F)+e2>c1 |F+pr|b|pdzp—1)

IF + V,0l” dz, — 1)

4
_ 1>

V4

2a(f,

>c (‘ (F + V,0) dz,
k

c1([FI” =1
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since] - |7 is convex andF|b|3x3 = |Fax2 for all b € R3. To prove the Lipschitz
condition, we choose the sameeandb as the test functions f@#(G). We have

¢(G) —g(F) < ]{Z |(9(G + V,0lb, 2,) — (F + V,0lb, 2,))| dz, + ¢
<c(1+ =G + v,elb]?, (4.7)
71 - -
+LEs Vyob[],) " 6 —F|+e.
Now invoking the growth conditions ap, ¢ and (4.6), we get

< |IF+ Vyolb?, — 1) ][¢(ﬁ+v,,w|b,z,,)dz,,

SR +eZFIP+1) +¢

(4.8)

and

1 .-
56+ V0], <c(16-Fr+5 HF+Vw|b||Lp). (4.9)

Combining (4.7)—(4.9) gives us
3(G) — ¢(F) < cH(L+ [FIP L+ 1GIP HIF - G| +e. (4.10)

We have the desired inequality as-> 0. The opposite inequality can be obtained
by interchanging- andG. The casex = 0 anda = oo can be treated similarly.

Proof of Theorem 2.The caser = oo is a corollary of Theorem 1. The proof for
finite @ = 0 consists of two parts. First, we prove thdimit in the case where the
limit function is affine (Part A). We then prove the general case by approximating
an arbitrary function by piecewise affine functions (Part B).

Part A. Supposg = Fz, with F € M3¥2. We begin by constructing a recovery
sequence for the case where> 0. It follows from the definition ofp that there
exist sequences® e N, 0 ¢ Wé”’(k(g)Z, R3) N WG2(k® 2z, R3), andb® €
LP(k© 7, R3) N W2 (k® Z, R3) such that

1

o2 /k( ) {az (|v§w<s>|2 + 2|Vpb<s>|z) + @(F + V,0® | 0@, Zp)} dz,
8z

— ¢(F)
(4.12)
ase — 0. We usew® andb® to construct our recovery sequence. Unfortu-
nately,b® may not be smooth enough to allow second differentiation. However,

an approximation argument similar to Remark 3 shows that we may assume that
b® e C°(k® Z, R3). Define

y#O — Ez, 4 dw® (%’) + hb® (%’) z, (4.12)
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wherew® andb® are extended periodically in the plane of the film siatg =

30© /on = b® = 3b® /an = 0 ondk® Z inthe sense of trace. Clearjy"*) %4
I_:zp for eache > 0. Substituting (4.12) integh) defined by (2.6), we have

ey ™ = i
Ql

_ h Z
+¢ (F + V,0® + S Vrbz3 | b, E”) }dz. (4.13)

2
K h « K
Ve o gvpzb“)“’ +2[5v,b

If we assume thag — O0and; — aash — 0, and impose the Lipschitz condition
(2.5) ong, we get

11
k©2 J,

e(lh)[y(h,a)] = {az (|V§w(e)|2 i 2|Vpb(£)|2)
©z

¢ (F+ V09 169,2,) dz,  (4.14)

ash — 0.Above, we have applied the property of mean vatoé4.13) in deriving
(4.14). Then, using (4.11) gives

lim sup lim sup e{”[y"*)] = |2 3(F) = |S| 3(F) = e yl. (4.15)

e—0 h—0

Recalling (4.12) and (4.15) and appealing to the standard diagonalization argument,
we find that there exists a sequeng® = y¢™) that converges weakly to
y = Fz, in w7 (Q!, R3®) and satisfies
lim Wy — 0 )
h—>Oel 1] €1 [yl
The case oft = 0 is similar. Indeed, an argument similar to that in Remark 2

shows that (4.2) is well defined and the infimum is also achieved. From the definition
of ¢, there exists sequence$’ e N, w® ¢ Wol”’(k(”Z, RR3) such that

1 _ .
e fk() 00 (F+V,0.2,) dz, > 6(F)
O¥/

ase — 0. Following an argument like the one used in (3.5), we find measurable
functionsb® e L?(k® z, R3) such that

oo + 9,0, 2,) = (F + 9,09 b, 2,) (4.16)

for almost allz, € k® 7. The rest of the proof follows similarly.

2 ibid 1.
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Setw™ =y — Fz,. A slight refinement (see Lemma 2.1MLLER [36])
shows that the recovery sequeryt® can be constructed such that

do®
on

onX = 3S x (0, 1) in the sense of trace.
We now turn to the lower bound whenis an affine function and > 0. We
assume tha$ is a square domain with side lengtland

(4.17)

- b
o =y® _Fz, 50 inwlr(Ql R3),
(h)
on

(4.18)

onX = aS x (0, 1) in the sense of trace. We may also assume that Iimjaﬁzgh)
[y is finite; otherwise the proof is trivial. Choogec N to be smallest integer
such thak d > s + d. We can find a squar&“ with the side lengtftd such that
S C 5@ and the corners of @ are indz?, i.e., 5 = d(z0 + kZ) for some

29 e 7. Now extendings™ to §@ x (0, 1) by

o o™, for zeSx(0,1),
10, for ze (SD\S) x (0,1),

we have

2 2 2 1 2
Wy (7 _ 2 ‘ 2~<h>‘ ‘ ~<h>‘ ‘~<h> )
e = K Viw + V,® + ®
1 Y™l /§<d>x(o,1){ ( » 2| Vr®3 14933

- y4
—/~ P (F|o, —”) dz
(3@\$)x(0,1) d

=11— I

The second integrak-Io > —co(1 + |F|?)|S@\S| converges to zero since
IS@\S| < (s + 2d)% — s2 — 0 asd tends to zero as tends to zero. Chang-
ing variablesz, — d(zg +2,) andzz — %23, using the periodicity ofy and
Fubini’s theorem, we have

h
d d . 2 ~(h 2
nzdt i 1 (e 2 ot

+o (ﬁ + V0" 6%, z,,) } d2,dz3
where

NOY A 1. . d.
w(h)(zp, 73) = Ew(h) <d2p, EZ3> . (4.19)
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Notice that for almost everyg € (0, 1), the functmnwf}’)(z ) = @"(2,, 23)
belongs toW0 P(kzZ,R3HNW, (kZ R3). Similarly, for almost everys € (0, 1),
&)(g) belongs taL? (kZ, R3) ﬂ fy 2(kz, R3). It follows that

h
d (4 _ _ )
nza-f fo K2 G(F)dzs = (d025EF) = s25(E).

Thus, we have shown that lim ipf, o egh) [y?] = s2G(F) = e] Ory] which is the
desired lower bound.

For the general domaifi, assume the sequeng®’ satisfies (4.18). Consider
a squareQ which containsS. Using the fact that the recovery sequence can be
obtained such that (4.17) is satisfied for the dom@n.S) x (0, 1), we can also
obtain the lower bound.

Now let S be any open bounded Lipschitz domain andylét R y = Ifzp in
wLr(Q!, R3). No further assumption such as (4.18) is imposed8h We use
the argument oDE Giorai [25] (see alsdFRANCFORT & MULLER [24]) to obtain
the lower bound. FixSg open and compactly contained$nLet

R = 3dist(So, 35).

For any strictly positive integer, define
S; = {z,, e S : dist(z,, So) < ’-R}, 1<i <,
Vv

and scalar functions; (z,) € C3°(S) such that

0=n =1,
=1 in S;_1 andp =0inS \ Si, (4.20)
Vpnil < 22 and|V2n;| < (4542

Moreover, IeISZl.1 =S x(0,1)fori =0,---,vandset

. _
y" =Fz, + ;i (Y — Fz,).

Then, for eacti, y""’ converges weakly tg = Fz, in W17 (Q!, R3) ash tends to
(h)

zero andy,"’ — Fz,) satisfies (4.18). Therefore, it follows from the previous result
that

I|m |nf y™ ol = A2y; @4, (4.21)
Now

P @l = ePry®; @b 1+ P y™; ohet 1] +ePry; @heH
< eMy®; @l 4 M y™; @l
+ea2(1+ [Py 19N\ Q3. (4.22)
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Using the growth condition (2.4) apand the definition of); (z,),
" o2ty

2
scf {KZ ('sz('”ler—IV YD+ iy
= Q}\Qil—l p h2 24 4

4 _12
+(%) y®™ — Ez,| +4< ) v,y —F
+£ vl 2| (h)|2 (4.23)
2"k ) V3

_ 1
+(1+|F|P+|V,,y(h) F|”+<v+ ) ly®™

)

2
Notice that we have used the inequa(tzfvzl |a; |> <N YN | Ja;il? in deriving

- 1
_sz|[7 + ‘Zy,(g)

. ho= o -
(4.23). Sincey™ —~ Fz, in whr(Q1, R3), this impliesy™ LY Fz, in LP(Q1;
RR3) by Rellich’s compactness theorem and

1\” _
/1 (%) y® —Fz,/Pdz—> 0 ash — 0. (4.24)
ol\@

By the assumptions of finiteness of lim jnf o egh)[y(h)] and non-negativity o,
it is concluded thaH "Vy(") H . is uniformly bounded irk. Further since

Lo

and 1y(3) is uniformly bounded irL” (©21; R3) due to coercivity ofp, the Poinceg”
inequality implies

N

< Ck —~Y3

Lr(QY)

y(g) —~0 inw*?@Q% R% ash— 0.

Similarly, ||« V2y® | L2(, i uniformly bounded irk. Using the Poincarinequal-
ity twice implies that

ky® ~0 inw??Q% R% ash — 0,

from which it is deduced that

) Bl 1
/ K2 {|y<h> —Fz, P+ |V,y® —FP + |—yf’3”|2} dz— 0, (4.25)
ahol, h
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ash — 0. Collecting (4.21) to (4.25) gives

2y] < lim inf Py M+ 1+ [FI7)QN\Q3)

2
2 22 , < (h) 2 (h) 2
+Cf9,-1\9,-1_1{K <|pr 1+ 5 1VY s 1P+ h4|y 3l )

_ _ 1
+ (1+ 1P +V,y" —F)P + |Eyf’§>|l’) } dz.  (4.26)
Summing (4.26) over = 1, - - - , v and dividing byv gives

71yl < liminf & 1y™] + c2(1+ [FIP) QN2

c 2 (o202, 2 yO2 4 Lyt
- v2yh =
+v/91{K (| YR+ Iy 1+ 4|y )

+<1+|ﬁ|f’+|vpy<’”—ﬁ|1’+| (’”lp)}dz. (4.27)

Recall the assumptlon of finiteness of lim info ¢{"’ [y ] and note tha} v,y —
Fllzr 1 and ||hy,3 Il Lr 1) are uniformly bounded ik sincey®™ — Fz, in

wir(Ql, R3) andy enjoys the coercivity (2.4). This concludes the proof by letting
v — +00 andQ(lJ — QL
The proof for the case whese= 0 is almost exactly the same except we use

W 2. ) > o™, %
<F+Vw | a)3 d) <po(F+V d>

after (4.19).

Part B. In the case wherg is the piecewise affine function, the proof for the
lower bound is obvious. The recovery sequence can also be constructed by virtue
of (4.17).

For generaly € Vg, the existence of a recovery sequence can be deduced
as follows. The Lipschitz bounda®s of the film guarantees the existence of a
sequence of piecewise affine functign® such that

y® -y inwlr(s,R% ass— 0. (4.28)

For each piecewise affine functigi?’, there exists a recovery sequegte? such
that

y® ~y® inwlr@t R%  andel’[y"P] - £Py®]  (4.29)
ash — 0. Define

F0.8) = [ ty® 01— eOy1| + [y -y

LP(QL)
g ’egh) [y(h,8)] _ = 6:([0)[)/]‘
(h.8) _ ) H ©) _ ) 4.30
+Hy y LP(QL) Y y Lr(h ( )
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The Lipschitz condition of (4.5) for the homogenized energy defsitygplies that
eiO) [y(‘”] — eio) [yl - 0 as§ — 0.

It follows that lim sug_, o limsup,_,q f(h,8) = 0. A standard diagonalization
argument establishes the existence of a recovery sequence.

It remains to prove the lower bound for geneyale Vs. Lety® — vy
in whr(Q! R3 ash — 0. Without loss of generality, we may assume that

liminf,_o egh)[y(h)] is finite. First, the regularity o8 S permits the existence of a
sequence”) € C*(S) such that

o >y inwlr(s, R3),
kV2e" — 0 inL2(S, R (4.31)

ash — 0 (cf. FRANCFORT & MULLER [24]). For anys > 0, there exists a partition
{S;} of S into open sets such that

Z/ IV,y —FilPdz, <8 with F; =][ V,ydz,. (4.32)
i Si S

i

Lety? = F;z, + y® — 0™ forz € Q! = §; x (0, 1). Clearlyy™ — F;z, in
wir @l R3) ash — 0. Using the previous result for piecewise affine functions,
we have after summation,

lim inf Mg, ol > ©) Fiz,: Si1. 4.
im in IZel ARE ,]721.:61[ Zp; Sil (4.33)

Notice that from (4.31), we have

IA

25/(h) _ ewzy® 25(h) _ 2y ()
R P P S AR

L2} L2(@h L2(eh

-0 (4.34)

_ 2 (h)
= |k Viw
H P L2(Qh

ash — 0. Using (4.32), (4.34) and the Lipschitz conditionsgoandg, we obtain

1
ey @ =Y ey @l < ¢ 57 (4.35)
i
_ 1
X1yl =Y eV [Fizy: Si]' <C.87 (4.36)

i

for sufficiently smalli. Collecting (4.33), (4.35) and (4.36) concludes the proof.
]
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5. Film thickness comparable to heterogeneity

Theorem 3.Supposey = ¢(F, 2,z3), ¥ — «and? — g > 0ash — 0. Let
F e M32 ande!” be defined by2.6). Thene!” I'-converges to the functional
¢\? defined by2.7)if
() «=0and
@(F) = inf inf ) <ﬁ + Vy0|©3, 2, Z—3> dz, (5.1)
keN weal Jaf p

where

QF =kZx(0,8), Z=(0,1% =F=0kZx(08), (52

Af ={w:0c W Q) RY), wlgs =0); (5.3)
(i) « >0and
@(F) = inf inf ][ {a2|v2w|2+¢<ﬁ+va|w,3, zp,z—3>}d2 (5.4)
keN(z)eAf Q P
where
0w
Ay =100 e WL R) NWAAQL RS, 0I5 = 2 |ns = O):

(5.5)

(iii) & = 0o and
@(F) = Qgo(F),

Go(F) = inf G(EIb), G(F) = / o(F. 2)dz
beR3 Zx(0,1)

where Q¢ is the lower quasi-convex envelopegef

The proof of Theorem 3 for finite = 0 is very similar to that of Theorem 2.
If g = f, we construct a recovery sequence for an affine fungtienFz, using
the scaling
_ hz3
W _Ez +d Zp N3 5.6
v =Fa, o (2152, (5.6)
wherew(z) € Af. The proof of lower bound also follows exactly that of Theorem 2
by using the same scaling (5.6). The case oo is a corollary of Theorem 1(ii)
sinces = £ 4 — oo ash — 0in this case.
We have a similar theorem when the in-plane heterogeneity vanishes.

Theorem 4.Suppose = ¢(F, z3) andX — o’ ash — 0. LetF € M3*2 ande}"

be defined by2.6). Thenef” I'-converges to the functionaio) defined by(2.7)if
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(i) «’ =0and

@(F) = inf inf 9(F+ Vy0|® 3, 23) dz (5.7)
kereA% Q]%

whereQ2} and A} are defined by5.2)and (5.3)
(i) @’ > 0and

#(E) = inf inf {a’2|v2w|2+¢(r:+v,,w|w,3, z?,)} iz (5.8)
kereA% Q/}

whereQ2} and A} are defined by5.2)and (5.5)
(iii) &’ = oo and

¢(F) = 0go(F),
1
dolF) = inf G(FID). 5(F) = [ p(F.za)dza,
beR3 0
whereQ¢yg is the lower quasi-convex envelopezgf

Remark 5. If our film is homogeneous and the interfacial energy is negligible
(o = o/ = 0), all our results coincide with that &ft DReT & RaourT [21], i.e.,

@(F) = Qgo(F). Thisis obvious in Theorem 1 and Theorem 2, but notin Theorem 3
and Theorem 4. So we explain this in some detail. Consider a homogeneous film
with energy density = ¢(F) and let

po(F) = inf_o(F|b).
beR3

Assumey satisfies (2.4) and (2.5). A similar argument used in Remark 2 shows
that ¢ is well defined and the infimum is achieved. Furthgy,also enjoys the
growth and coercivity estimates (2.4). Hen#él-? quasi-convexification is equal

to W1->° quasi-convexification an@¢g can be expressed as

Q(po(l_:) = inf ][ (po(l_: + V[,é)) de, (5.9
wewyl(2)/)z

whereZ = (0, 1)2. On the other hand, for homogeneous fil@siefined in (5.1)
becomes

@(F) = inf inf o(F+ Vy0 |0 3)dz (5.10)
keN weAl f

for any finiteg > 0. We wish to showp = Qgp.
First, it is clear that . .
¢(F) = Qgo(F).

To prove the reverse inequality, notice that there exist sequenczf;‘ss of W&’p
(Z,R3) andb® € L?(Z, R3) such that

][ 9o(F + V,&°) dz, =][ 9(F 4+ V,6°b%)dz, — Qpo(F) (5.11)
V4 V4
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asé — 0. SinceC(Z,R3) is dense inL?(Z,R3), we may assum&’ e
C5°(Z, R3) (see Remark 3). Lét € N and define

Y = Fzp + k6" (2) +0° (2) za (5.12)

Itis clear thaty*¥ — Fz,) e Af defined by (5.3). Therefore,
ﬂhgfgwww”mu (5.13)
Qk

for all k € Nands > 0. Notice that by changing variablg = andz3 = z3,
(5.13) becomes

_ 1 B _ s 1 o . o
o(F) < E/ / %) (F + V,,w’s(z,,) + ;Vpb‘s(z,,)za | ba(z,,)> dz,dzz. (5.14)
0 Jz
Letk — o0, 8 — 0in (5.14) and recall (5.11). We have

@(F) < Qgo(F).

Remark 6. If the film does not contain any out-of-plane heterogeneity, ges

o(F, Z”) then Theorem 1(i) and Theorem 2(i) imply that the rgtics irrelevant

to the effective energy. In particular, the effective energy of a homogeneous film is
independent of the ratip. This ratio is important only if the film contains out-
of-plane heterogeneity such as discussed in Theorem 4. We provide an example to
explainthis. Lets = (0, L), @1 = $x (0, 1), andy : @ — R?be the deformation.

The energy per unit thickness for this homogeneous thin film is

2 1 1
Ply) = /Ql {Kz (Iy,nl2 + ﬁ|)’,lz|2 + Fly,zﬂz) +¢ <y,1lﬁy,z)} dz

(5.15)

and the effective energy as— 0 is

e(o) /ng < )le

Notice that the effective energy densifyis independent of the rati§. Let us
now explain this using the following example. Consider the material with the local
energy density™® (F) : M?*2 — R of the form

1
oV F) = 2| (= VP + (Fi = VP + Flp+ (F2— 1},
The minimizers ofp™ are

10 10
FY = (1 1) S <_1 1). (5.16)

Suppose the edge of this thin film is clamped. We now show that the total energy
eﬁh) tends to zero ai tends to zero irrespective of the rafjo First consider the
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Ty |

@ (b) ©

Fig. 2. A heterogeneous thin film with clamped edg@).The sequence that minimizes the
energy with densityy for o’ > 0. Here the darkly shaded and white regions represent

F(ll) and F(zl) defined by (5.16)(b) The sequence that minimizes the energy with density
9@ only for o’ = 0. Here the darkly shaded and white regions repre§§2ﬂtand Féz)
defined by (5.18)c) The sequence that minimizes the energy with ders® for o’ > 0.
Here the darkly shaded and white regions repreE&tandF(zz) defined by (5.18).

casec = 0. Then, at each > 0, the sequence shown schematically in Fig. 2(a) is
clearly a minimizing sequence and it follows that

eih)[y(h)] — 0 ash — 0.

If « # 0 butis small, i.e.’ = 3 LY 0, a slight refinement establishes the same

result. On the other hand,df > O, it is not clear whether Fig. 2(a) minimize%l)
as it contains too much interfacial energy. Now set

for0<z; < 3,
1) = :Z_l A

Let x™ e C3°((0, 1)) converges strongly tg in Wy*((0, 1)) asm — oc. For
each fixedn, extendy ™ periodically toR and consider

Z
N N S T (d—lL) +hza, (5.17)

where Yd(h) is chosen to be the largest integer such that(k) < 1/./k(h).
Substituting (5.17) into (5.15), we find that the energy is driven to zére-f O first
andm — oo next. By standard diagonalization process, we can find a subsequence
y® such thakgh)[y(’”] — Oash — 0.

Next consider another material with the local energy dersfy(F) : M?*? —
R of the form

02 =3 {(Fu— D2+ F+ (Fh— 12+ (Fo — D2}

The minimizers for@ are

11 1-1
FP = (0 1), FP = (o ! ) (5.18)

Now if the edge of the film is clamped anddf= 0 ora’ = 0, Fig. 2(b) is clearly
one sequence minimizing the energy of this strip. On the other hardif0, it can
be shown that the sequence in Fig. 2(b) does not minimize the energy. Instead, the
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sequence that minimizes the energy in this case looks like that in Fig. 2(c). Indeed,
setg(z1) = 1 and lety™ e C§°((0, L)) converge strongly tg in L4((0, L)).
Consider

2 2
W =z £ k™ c1za, yE™ = hza. (5.19)

Using an argument similar to the above, we can find a subseqy&heich that
egh)[y(h)] — 0ash — 0.

In summary, material can form microstructure freely with interfaces which are
perpendicular to the film (Fig. 2(a)) and such interfaces cost vanishing energy as
h — 0 independent of . Further, material does not need to form the out-of-plane
fine-scale microstructure to reduce the energy (Fig. 2(c)) as long as there is no
out-of-plane heterogeneity contained in the film.

6. Film thickness much larger than heterogeneity

Let us consider the case = 0, ¢ = ¢(F, 22) and the following change of
variables

A Z “ PPN X A
2, = f, 23=123, hy(2,,23) =Yy(hz,,23). (6.1)

Then,eY') becomes

1 A

K2 / / o (vy, %”) d2, dzs. 6.2)
o J$ 7
h h

Sinceg — oo ash — 0, (6.2) suggests thatis obtained by homogenizing bulk
heterogeneous material first, and then passing to the thin-film limit. This is precisely
phrased by the following theorem.

Theorem 5. Supposey = ¢(F, %”), k=0 andg — oo ash — 0. Then,e(lh)

I'-converges to the functionaio) defined by(2.7)if
#(F) = Qug' (F),
0§ (F) = inf o (Fib), (6.3)
beR3

o"(F) = inf  inf ][ ¢(F+ Vo, z,) dz,
keN wewy? (k2) JkZ

where Qpf! (F) is the lower quasi-convex envelopegdf, Z = (0, 1) andF =
(F|b) € M3*3,
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The establishment of the lower bound [12] will be based on the following two
lemmas.

Lemma 2. Supposey”” — y in WLP(QL,R%) ash — 0 and assume
liminf ;o e{"” [y ]is finite. Then, there exists a subsequeyit(not relabeled),
and a sequencg® such that

| Enl = {y" #9®yuivy® vy} -0 (6.4)
ash — 0, IV, y™|P) and(|iy(§)|l’) are equi-integrable, and
Le (D ()] < i ing () ()
I|2n_13f 2\ ]:Ilzn_lgf e '[y™] (6.5)

Proof. Due to the coercivity (2.4) oap, it is clear that

Sup/ (‘v yo | + ‘ ®

By passing to a subsequenc® (not relabeled), we may assume this subsequence
achieves the liminf_o e(h)[y(h>] We extend the definition of” to S x R, first
definingy®™ on S x (0, 2) by y"(z,,z3) = y®(z,,2 — z3), and then by 2-
periodicity in thezz-direction.

We then define 1
0" (z,, 23) = y" (z,,, EZS) .

) < +o0. (6.6)

We have

1
f IV, 0" |P dz = h/ IV, y?|Pdz < h [[— + 1“ / IVoy™|P dz,
ot sx(0.4) h ol
1 1
/ |w<§)|1’dz=h/ ‘ ~y% dz§h[[—+lﬂ/
ot sx(o.4) |7 h ot

where[[x]] denotes the largest integer which is smaller thabsing the Decom-
position Lemma 1.2 in [23], we can find a subsequean®e (not relabeled), and a
sequence of functions™ in w17 (Q1, R3), such that

1wl
_yf3)

dz,
h

lim [{u® £ o™} U {vu® £ ve®} =0,
h—0

and(]Vu|P) is equi-integrable. Moreover, following the construction in the proof
of Lemma 1.2 in [23], we see that the functiari¥ can be chosen to béeriodic
in the zz-direction.
Now let
¥ 2y, 23) = u" (2, hza).

If A cQl Ay =1{(z),hz3) : z€ A} and

A = J{An + 2khes : k € Z, (Ay + 2khes) N QL # 0},
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then we have

1
/ |pr(h)|[7dz= _/ IV, u(h)|pd2§ 2/ |Vpu(h)|'"d2,
A h Ja, A

p
)
Since we havéA’| < c|A|, these inequalities show tha¥, ) |7) and(|1¥ 3|”)

are equi-integrable.
Let

Ey’S

1
dz:—/ |u<§’|l’dz§2f u%? dz.
hJa, = A

En={y" £y uvy® # vy®).
We have thenEy,| — 0 ash — 0 and

- 1.0 2 - 1.0
/ o(v,y"ZyD 2 dzgcz/ 14 |V,y®1P 4 | Zg®
Ej, ]’l ’ d Ej, h ’

ash — 0. Therefore, we have

p
)d2—>0

lim inf e{" [y
oo ‘1 ™

1 z 1 z
= liminf v, y01Zy® 2 4z / v, §®1 2§D 22 4z
e </§21\Eh(p< rY |hy,3 p + Ehﬁ" rY |hy,3 7
1 z
= liminf v, y® =y P 47 < liminf e y®
h—0 Ql\Eh(p( a4 |hy’3 " d ~ h—>0 er Iyl

by the equi-integrability above. This concludes the prodat.
The next lemma is suggested BULLER [35] (see also [14], Chapter 22).

Lemma 3.Let S c R? be a Lipschitz set anft! = § x (0, 1). Forall M, > 0
there existsg > 0such that for als < g andu € W17 (Q1, R3) with | Vul|» <
M there existy € W7 (Q1, R3) such that

y4
/Ql(p (Vu, ?”) dz> /91 ol (VU + Vv)dz— s, (6.7)

and|v|Lr < 8. The choice ofg can be uniform for all§’ translations ofS.

Proof. The proofis by contradiction. Suppose thatthere eis¢ > 0, a sequence
(¢;) of positive numbers converging to 0, and a sequéngen W17 (Q1, R3) with
[VujliLe < M such that

/ 1) <Vuj, Z—”) dz < inf { / " (Vu;j + VV)dz: |V]lLr £ 8 } —45. (6.8)
Q1 Sj QL

By passing to a subsequence (not relabeled), we can supposa thebnverges
weakly inw17(©1, R3) to a functionu, and that

1)
U —Uuller £ =
luj = uller £ 5
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for all j. Note that the last inequality implies that
inf{/ o™ (VU; + VV)dz: |V[Lr < 5]
Ql

< inf{/ltpH(VW) dx : W —ullLr < t}
Q

forall¢ < §/2. Hence, by (6.8) and by the lim inf inequality Bfconvergence, we

get
V4
/ o (Vuydz < Iim'inf/ (p(VUj, _p) iz
Qt J Qt &j

< supinf{/lpr(VW)dZ: Iw—ullLr < z} -8
Q

t>0

=liminf | ¢ (Vw)dz—3$

W—u ot

= / el (Vu)dz — s,
Ql

which is a contradiction.

It is clear that by the translation-invariance argument irgfhglane, it suffices
to consider all the sets, + S with z, € [0, 1]2 in order to prove that the thesis
of the theorem holds uniformly. In this case, the proof above still works with an
additional compactness argumentfgr 0

Proof of Theorem 5.We start with the lower bound. It suffices to consider the
case thay = Fz,. The extension to arbitrary function follows Part B of the
proof of Theorem 2. Ley” — Fz, in W(Q!,R3) ash — 0 and assume
liminf ;o e(lh)[y(")] is finite; else the result follows. We further assutfie=
(0, 1)%; it will be clear that the proof is insensitive to this assumption.

Setw” =y — Fz,. Using a cut-off argument near0, 1)2 (or the so-called
fundamental estimate in Chapter 24 of [14]), we can suppose that waHzve 0
if dist(z,, 3(0, 1)2) < 2h, and, by Lemma 2, we can also suppose that the sequence
(Y, w(")|%wf§))|P) is equi-integrable.

We set

1 1 _
WWD=EwWMQJQ,7%=z,F=%E®-
Note that
1

z
ePry®] = _2/ o (F+vu®, L) dz,
T J.1)2x (0. W

and thau” = 0 if dist(z,, 3(0, T;,)?) < 2.
Define

Li={ie?Z?:1<i1,i<T -2}, Z=(0,1% Qi =(G+2)x(01

Note that
G +2) =@ um -1

iely
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so thatu™ = 0 on
Ch = (0, Tw)?* x 0, D)\ [ -

iely

We can write

z z
/ p|F+vu® 2 d2=2/ o|F+vu® T a4z
(0.7)2x(0,1) g  Jo, d

Let M > 0 be fixed, and let
IF={iel:IVuP |, <My}, IZ=1I,\1

Note that since

/ [VuM|P dz < ¢ T7?
(0,71)2x(0,1)

for some constant (independent of), we have
#(12) < 0(1) T? asM — +oo. (6.10)

Foralli € Ihl we can apply Lemma 3, and find that fosmall enough (inde-
pendent of) there exist functions, € W17 (;, R®) such that

Z ,
/ 0 (F +vu®, 7”) dz> / ot (F +vu® 4 VV;) dz—8,  (6.11)
Q; n Q;

and
/ IVi|Pdz < 8P (6.12)
Q;

By using a cut-off argument as above (see Chapter 24 of [14]), fixe® and
o > Owecanfind acut—offfunctiom; betweeri+ (¢, 1—t)? andi +Z and a positive

constant:(z, o) such that if we sew;. =u® +pivi, Z, = 0,12\ (t,1—1)?
andQ! = Z, x (0, 1), we have

/ o (F+ Vw!) dz

i

i

§(1+0)</ ¢H(F+Vu(h)+ijq)dz+/ (p”(F—i—Vu(h))dz)
+c(t,cr)/ Vil dz + o
o
§(1+o)</ " (F+vu® + wvi)dz
Q;

+ 2pc2/ 1+ |F|” + |Vu(h)|”)dx> +c(t,0)8” + 0.
Qf
(6.13)
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If we define
) ) 1
u®  otherwise
then we have

/ o (F+ vi®)dz (6.14)
(0.73)2x (0,1)
§Z/ ¢H(F+VW;)dz+Z/ ¢H(F+Vu(h))dz+/ o (F) dz
ielt i iel? & Ci

< Z /Q ¢H(F+VW§)dz+2Pcz/ 1+ [E)P + [Vvu?|P) dz
i D,

iEI,:lL h><(0,1)
+ 8Tjc2(1+ |FIP),
where
Dy =G+ 2.

iel?
Note thath?| Dy | = h?#(I?) = o(1) asM — +oo.
By (6.11)—(6.14) we get

/ o (F+va®™ydz
(0,T,)2%(0,1)

< Z{(HU)(/Q_ o (F+vu® + Vi) dz
. 11 i

+ 2pcz/ 1+ |F|1” + |Vu<h>|P)dz> +c(t, 0)87 + 0}
Q

+2re / L+ [EIP + [Vu®|P) dz + 8Tyca(l + [EIP)
Dj,x(0,1)

< Z{(l—l—o)(/ﬂgo(F—i—Vu(h),z?p) dz

iell
+ 2pc2f 1+ |FI1” + |Vu(h)|”)dz> +c(t,0)8" + 0 + 5}
@

+ 2Pc2/ L+ [FI” + VU™ |P) dz + 8Tyca(1 + [FIP)
Dpx(0,1)

z
<(A+o0) / o |F+vu® 2 dz
(0,71)x(0,1) W

+ 2Pc2/ (14 FI” + |Vu(h)|P)dz}
(DyUER)  (0,1)

+ (C(t, 0)8” + 0 + 8)T? + 8T co(1 + |ﬁ|P) : (6.15)
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where
E, = U(l + Z).

o7l
i€l

Note that| E,| < 4T2.
Changing back variables we obtain

1
=3 /(pH(F +via™)dz

h
(0,T3,)2x(0,1)

B} 1 z
< (1+0){ / p (F + pr(h)|zwfg), E”) dz
0.3
= md ml|”
+ 2Py / 1+ [F)P + | V0! 03| ) dz
(hDpUKhEy) % (0,1)
+ ¢(t,0)8” + 0 + 8 + 8hca(1+ |F|P).

By the equi-integrability o(|pr(h)|%wf’§) |”) we have

_ 1
2P ¢y / 1+ ‘F|” + |pr(h)|zwfg)

(hDyURER)%(0,1)

p
)dZ < ¢(|hDp U hER)),

where lim_, g+ ¢(s) = 0. Note thath Dy, URE)| < ¢ (% +t) for some constant
independent of. Lettingh — 0, we get
_ o1 -
0ol (F) < liminf —2/ o (F + vi™)dz
h—=0 T;" J(0,1,)?x(0,1)
< (1+0) liminf PlyM1 4+ 1+ o) (|hDy, U hEy))
+c(t,0)8? +0 +36.

Letting, in the following order§ — 0, M — +o0,t — 0,0 — 0, we obtain the
desired lower bound.

We now construct a recovery sequence for gng Vs. From Lemma 2.1
in [36], the bulk homogenized energy densit{ satisfies the same growth and
Lipschitz conditions (2.4)—(2.5) ap (see alsBRAIDES & DEFRANCESCHI [14]). It
follows that<p6’ given by(6.3), is well defined and the infimum is achieved. Further,
Proposition 1 ofLE DRET & RaouLt [21] shows thatpg’ (F) satisfies the growth
and coercivity estimates (2.4) and is continuous. Therefore, the relaxation theorem
of DacoroGNA [19] yields the existence of a sequely&8 which converges weakly
toy in WL7(S, R3) such that

fs ot (v, y)dz, — /S 0@t (Vyy)dz, ass — 0. (6.16)
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The Lipschitz domairs permits a sequence of piecewise affine functigfis) —
y® in wkr (s, R3) ase — 0 for fixeds such that

/ o0& (v, y©Ndz, — / ot (v, y)dz, ase— 0. (6.17)
S S

Let {S;} be a finite partition ofS into open sets; (except for a set of measure
zero) such tha¥, y®® = F>® constant forz, € §;. Further, there exists a
constant vectobf‘s'g) such that

of (F") = o (7 1) (6.18)
for eachi. Let Fl@’s) = <ﬁ§8’8)|b§8’8)). On each subdomaisy, using the definition

of o' (6.3)3, there exist&)ES’S’”) € Wé’”(k(’”Z, R3) such that

1
k3

/ CpFOD 4 v 7)dz - " (FO?) asp—0, (6.19)
kmz

whereZ = (0, 1)3 andk™ e N. Further, Ietﬁl@’”’) € C3°(S;, R3) be such that

6;5’5’”) — bf‘“’") in LP(S;,R% asn — 0. Now on each subdomai$y, consider
the sequence

. - Z, h
900" 2) =y (z,) + D" ()25 + d w0 (3” Ezs) . (6.20)

Using the coercivity estimate (2.4) and the Lipschitz conditions (2.5 @md
recalling (6.19), we have

1 z
/ ¢ (vpy?’f’”*’” | Zgioemh, —”) dz — / o (F*) dz  (6.22)
Six(0,1) h™t d i x(0,1)

ash — O first, and themy — 0. Further appealing to a standard diagonalization
process and a similar argument used in Lemma 2.1.(&JinfLER [36], we can

construct a sequen@é‘s’s’”(’”’h) such that
~(8.e.1(h).h
(yf R y(a,e)) las;x0,1 =0

and (6.21) holds for this sequenial@’g’"(h)’h). Now extend(yg‘s’g’"(h)’h) — y(a,s))
by zero in(R2\S;) x (0, 1) and define

_(8.2.n(h).
yGenmm — y6.e | Z (yl( en(h),h) _ y(é,s)) . (6.22)
i

Setb®(z,) =Y, bfa’g)xgi e L?(S, R3) wherey is the characteristic function.
From (6.18), (6.21) and (6.22), we have

1 z
/(p<vpy(5,s,n(h),h)|Ey<g,e,n(h),h)’_p) dz—>/ ol (pr(s,g)m(a,s)) dz
ol ’ ol

d
_ / ol (v,,y@f)) dz, (6.23)
S
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ash — 0. Lete — O first and§ — 0 next in (6.17) and (6.16) and recall
(6.23). We obtain the desired recovery sequence by further appealing to a standard
diagonalization argument gi®-¢-7":" (see, e.g.ATToucH [4, Corollary 1.16]).
O

If « #0and% — a < oo ash — 0, then using the same change of variables
(6.1) above, we can rewrikéih) as

1 2 (d\? 2
2 K a 2612 o fr 5 12
h /0/2{(51> (h) V2| +<p<Vy, %>}d2pdzs. (6.24)

Comparing (6.24) with equation (2.4) apd= 1 in [24] suggests that is obtained
by averaging and homogenizing the bulk heterogeneous material first, and then
passing to the thin-film limit, or

¢(F) = Qi (F),

93" (F) = inf o (Flb), (6.25)
beR3

¢ (F) = inf inf ][ {a2|V2w|2+go(F+Vw, z,,)}dz.
keN @eWy'? (k2)NWE2(k2) JkZ

It can be shown easily that Theorem 5 still holds & 0. Fora > 0, we conjecture
that (6.25) can be confirmed by following the approach similar to that of Theorem 5
if the appropriate version of Lemma 2 can be established.

Finally, our Theorem 1(j) includes the cage= ¢(F, 2),* — o = oo as
h — 0. Note that the ratio of andh turns out to be irrelevant in this case (see
Remark 6).

7. Applications

7.1. Shape-memory effect in polycrystalline thin films

Shape-memory effectis a phenomenon observed in certain martensitic materials
where deformation suffered below a critical temperature is recovered on heating.
The source of the shape-memory effect is the martensitic phase transformation.
The most characteristic observable feature of a martensitic phase transformation is
the microstructure it generatéBaLL & JaMEs [5, 6] have proposed a theoretical
framework to model these fine phase mixtures based on the minimization of the free
energy. According to this theory, the energy dengitifas a multi-well structure,
and each well represents a phase or variant. The strains that can be recovered in the
shape-memory effect are exactly those that can be attained by the rearrangement
of coherent martensitic variants. Thus, they are contained in a set on which the
relaxation (quasi-convexification) gfvanishes in a single cryst@8HATTACHARYA
& Konn [11] have extended this theory to polycrystalline bulk martensites by using
the framework of nonlinear homogenization. A polycrystal is an aggregate of a
great number of single crystal grains with different orientations. The texture of a
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polycrystal (the orientation of the grains) is described by a rotation-valued function
R(x) : 2 — SO(3). When subjected to deformatig(x), the total energy stored
in this polycrystal is

/Q P(Vy(x), X)dx = fg 9 (VY(OR(X)) dx.

The strains recoverable on heating in a polycrystal are contained in a set on which
this energy vanishes.

Our main interest is the study of shape-memory behavior in a polycrystalline
thin film. Specifically, we want to find all possible deformations that can be recov-
ered on heating for this film. In bulk polycrystals, there are several important factors
influencing the class of recoverable strains and we refer readBrsstorACHARYA
& KonN [10,11] andSHU & BHATTACHARYA [37]. In thin films, we now show that
this class can also crucially depend on the ratio of different length scales.

7.1.1. Model example.We consider a two-dimensional model problem where the
deformationy is replaced by a scalar-valued functipn RZ — R andR : R —
SO(2) represents the texture of our polycrystal film. We assRag) is periodic
with period[0, 1]. The microscopic energy density has the form

1) = (2)1)

The total energy of the film per unit thickness is

2 2 2
™ :/ {K2< ﬁ 2 |3n on 1 ﬁ )
1 Ql az% h2|9z1 022 h4 81%
an|laon z1
— |-, =) tdz 7.1
w(azl 1 922 d>} (7.1)

whereS = (0, L) is the one-dimensional film ar@d! = S x (0, 1). The limiting
energy per unit thickness is

0
O] = /S ¢ (a—jl) dz1. (7.2)

Assume the film thickness is comparable to the grain size and the interfacial energy
is negligible, i.e.,g — B > 0and; — Oash — 0. It follows from (5.1) thatzgh)

I'-converges to the functiona 9 if the effective energy density(&) of the film

is given by
a-"’)) dz (7.3)
0z2

. . 0
gE) =inf inf £ ¢ (RT(z1> (s + =
keNwedl Jof dz1

where
QF =kZx (0,8, Z=(0,0, (7.4)
Al = (010 e WEP(Q], B)), (7.5)
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where elements d/ﬂ/plé’,’(szﬂ, R) are periodic only i1 with periodk Z. Notice that

we have replacéf in (5.3) byAf in (7.5); a slight refinement of the argument of
MULLER [36] shows we can minimize (7.3) over either of these two spaces.
Let ¢ be therelaxationof ¢ and consider the analogue of (7.3)

g—za;)) dz. (7.6)

These two expressions (7.3) and (7.6) are in some sense equivalent since the min-
imizing sequences for the former converge weakly to the minimizers of the latter,
and the minimizers of the latter give rise to minimizing sequences for the former
[2]. Therefore, from now on, we will not distinguish between minimizing sequences
and minimizers but use in (7.6) to replacep in (7.3). Further, in our particular
problem belowg is convex and it suffices to takke= 1 [36].

We state a useful lower bound f@r Let

. . 0
inf inf ) (RT(zl) (5 + 2@
keNweAl Jof 9z1

v Q) = mfax{f -g—vy ()

be the Fenchel transformation of the functign Let w A’f and consider any
vector fieldg = (g1, g2)7 which is periodic inzy with period[0, 1]. If we assume
V.-g=0in Q’f andg-n = 0 atzp = 0 andg wheren = (0, 1)7 is the outward
normal, it follows that

][ﬁ PR (fi+wilw2)),dz > ][ﬂ{flgl - ¢*(R"g)}dz.
Q1 Q1
Optimization over andg gives

sz max o |ne-d (RTee@)]az @)
V.g=0 of
g-n=00nz,=0,8" "1

whereg is periodic inz; with period[O0, 1].

We now specialize and consider a two-variant material with microscopic elastic
energy

o) =min{}(n-22+7). 3 (n+1?+B)} @8
wheref = (f1, f2)T. It can be shown that, in this case,
o) =3 {an1-12 + F] (7.9)

with the convention that, = maxa, 0}. The explicit expression of the Fenchel
transform ofg is

¢*(f) = I 1> + | ful. (7.10)



76 Y. C. SHU

Our main interest is the study of the shape-memory behavior or stress-free con-
figuration of the film. In other words, we want to determine thet"of recoverable
strains for the polycrystalline thin fillrwhich we define as (c.f. [11])

Pr=1{§:9() =0}

Asingle crystalis the special case of the polycrystal. In that case, clPazbntains
aline segmerit-1, 1]. Butfor films with general texture is expected to be smaller
than this line segment. The extent of this reduction of recoverable strains in thin
films also depends on the parameteasind our task is to determine it. We do so in
detail for the special polycrystal shown in Fig. 3(a).

Proposition 1. Consider the polycrystal with the texture

Ri m<zi<m+3 (‘grainl))

R =
(2) [Rz m— % <z1<m (“grain 2))

wherem € Z and

R: — cosf —sind and R, — €O siné
1=\ sing cosy 2=\ —sing cosy

in the “grey” and “white” rectangles of Fig. 3(a) fol0 < 6 < 5. 1f g < %cote,
then

P ={£:|&] < cosd — 2B sind}; (7.11)
if 8= % cotd, then there exist positive constaatand C such that
cEP < @) < ClglP for & sufficiently small (7.12)

and clearlyP? = {0}; finally, if 8 > %cote, then there exists a consta@t > 0
such that

¢(&) = Cle|? (7.13)

and once agairP = {0}.

Proof. Consider the casg < % coto first. We wish to construct a test functign

with zero energy. This requird®’ vV to be parallel tae; a.e. andVy| < 1. This
motivates the following construction:

a(cosh, sing)’ in the darkly shaded region of “grain 1,
Vn = {a(cosd, —sind)T in the darkly shaded region of “grain 2,” (7.14)
0 otherwise
as shown in Fig. 3(b) for some| < 1. This test field is compatible sinéey is

piecewise constant, and on every interficén]] - t = 0 wherel[[ ]] denotes the
jump across the interface ahid the tangent. Furthermore, the area of suppovtpf



Heterogeneous Thin Films of Martensitic Materials 77

1
ey \l =i g
@ g
h
k‘?Ak‘VA ! loot) ¢
(b) (e)
%
W g
Po
(C) B>Bo B<Bo
p
(d) (f)

Fig. 3. (a)A polycrystalline thin film with the texture containing two orientatiofts) The
test fieldVy. The darkly shaded regions form the suppor¥gfand the straight lines within
them are level sets of. (c) The test divergence-free flor The darkly shaded strips form
the support ofy and the arrows within them point out the direction of the fl¢d).The test

field Vi wheng = Bg = %cot@. The darkly shaded regions form the supporvaf and

the straight lines within them are level setsjofe) The recoverable strain( % |P|) versus

different valuess. (f) The behavior ofp(¢) for & near zero with different valug$. Notice
that@(&) grows quadratically if8 > Bg, becomes flat (zero) B < Bg, and has an exact
cubic growth near the origin i = Bo.

is greater than zero singe< % cotd. The averagef Vi = a(cost — 28 sind)e;
and hence we obtain a lower bound of

P D {&:|&] £ cosh — 285sinb).

Next we show thaf® contains no other points. Indeed, this is equivalent to
showing thatp(&) > 0if |£] > cost — 28 sind. We can accomplish this using the
lower bound (7.7). Consider the dark strips shown in Fig. 3(c). Taking the slopes
of these strips as(8 — M)/(% + w) whereu > 0, set

(3 +u,u—p7T  inthe darkly shaded strip of “grain 1”
g9=1{(}+n B—w’ inthe darkly shaded strip of “grain 2"  (7.15)
0 otherwise
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It is easy to verify thaV - g = 0 andg - n = 0 atz> = 0 andg. Substituting the
test fieldzg into (7.7) and using the formula (7.10) fé¥, we obtain

2
F(fD) =t ][ fm- o ][ 9% — I ][ e -R7 (z1)g|

A

1
= E{ -G+ W2+ (1 — PAe% + 1+ 2w) fir (7.16)

— [(cost — 2B8sinf) + 2MC0]|T|}»

whereA = 4228 is the area fraction of the strips angl= sing + cosf. To get
the optimal lower bound we maximize (7.16) oweit follows thatp(f1) > O if

(14 2w)| f1] — [(cos® — 2B sind) + 2uco] > 0.

Notice that if| f1| > (cos® — 28 sin#), then the above inequality holds for suffi-
ciently smallu; and hencefi ¢ P. This proves (7.11).

We now turn to the casg > % cotd. We obtain the desired lower bound from
(7.7) by using the same test fietd as above with

_ 2Bsind — cost

=_—- - 7.17
’ 2(siné + cosh) g ( )

Then (7.16) gives

A 1 2
¢(f1)2§{—[<§+u) +(u—/3)2] r2+<1+2mf1r}. (7.18)

Maximizing overt, we conclude that for somé > 0 independent of,
§(f1) = CfE.

Finally, we come to the casg = % cotf. We start with the lower bound first.
Using the divergence-free fietdy in (7.15) and substituting it into (7.7), we have

_ A 1 2

¢(f1) 2 2 {— [(5 + M) +(n— /3)2] 4+ (1+2u) fit — Z/Lcolrl} .

(7.19)

wherecg = sinf + cosd. This bound is positive i1 + 2u)| f1| > 2uco or

"< | f1]
2(co— 11D

Now maximizing (7.19) with respect to and choosingt = a| f1| with a < z_io
we have for some > 0

s = LA+ 20) (Al +2u( Al - c0))?
T 280420 \ MG+ w2 + (n— B

=c|f1®+ O(f0)* for finear0
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Next we return to the upper bound. We choese 0 such that — ¢ > 0 and
construct a field; as shown in Fig. 3(d):

1
——(cos(8 —¢),sin@ —e)T
in the darkly shaded region of “grain 1,”

i(cos(e —¢),—sin@ —en’
in the darkly shaded region of “grain 2,
0 otherwise

By geometry, the area fraction of these darkly shaded strips is
sine

A=1-28tan(@ —e) = ———
p ( £) sing cos(f — ¢€)

since co® = 28 sing. It follows that

f —][V _ L (cos(@ —e) —2Bsin(0 —¢)) = ane
1= = Cose € )= Sing-
The local energy is

PR z1) V) = Jtarfe

whenevetVn # 0. Therefore, this test field gives an upper bound

G < = (L> tarf e

2 \ sind cos(® — &)
sir? 6 3

= Nk
2cos(0 — &),/1+si? 6 f? '

< S, 3
2cos

This example shows quite dramatically the effecBdfilm thickness over the
size of heterogeneity) on the shape-memory behavior. The recoverabk%sﬂ?ain
versusp is shown in Fig. 3(e). Further, the growth @t¢) as it departs fronP
also significantly depends on the raioAs shown in Fig. 3(f), there exists a point
Bo = %cote such that fo8 > Bo, ¢(¢) grows quadratically and this film behaves
like a linear elastic material without shape-memory effect; ok Bo, ¢(§) is
flat (zero) and this film displays the shape-memory effectsfee Bo, ¢(€) has
an exact cubic growth fof near the origin and this film behaves like a nonlinear
elastic material with soft modulus.

In this example we only dealt with a simple texture with two orientations. But
we can generalize our method to a texture wtlorientations within the cell. The
exact set of recoverable strains and the behavigr(gf for & near the origin can
also be predicted similarly. However, our current analysis is texture-dependent and
it would be very useful to develop texture-independent bounds to explore the full
range of behavior of a filnBHATTACHARYA & KOHN [11] have used the translation
method to predict the shape-memory behavior for bulk materials. Unfortunately,

A

IN
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it does not work here. For example, consider the following identity which plays a
central role in their analysis. f=f - zand¢ =g-z atan, then

][det(Vn, V) = detf, g). (7.21)

Unfortunately (7.21) does not necessarily hold if we only knpand¢ on part

of the boundar®Z x (0, 8) rather than an entire bounda?yzf. Notice that the

test fieldw in the definition of variational principle (7.3) is periodic onlyinand

does not satisfy any boundary condition on the top and bottom parts of the film.
This lack of information prevents an identity like (7.21) and we cannot use their
method. Similarly, in the lower bound (7.7), the divergence-free flomust meet

an additional requiremert- n = 0 on the top and bottom parts of the film. This
adds another difficulty in developing useful bounds.

7.1.2. Martensitic thin films. We now turn to the physically relevant problem in
three dimensions using the geometrically linear theory of martensites. Let

o(F) = ¢"™(E[F]),

where
1
E=SF+ FT)y —1

is the linear strain antis the identity matrix. To describe a martensite, the energy
density is endowed with a multi-well structure — one well for each phase or variant,
i.e.,

lin _ : 1 @02
o€ = min {}E-EO?) (7.22)

whereE® is the transformation strain far = 1, --- , k. Notice that we have
restricted our analysis to some fixed temperature below the transformation temper-
ature, and have assumed elastic constants are equal to the identity for simplicity.
Shape-memory thin films are often made by sputtering [27,28,39,33,18,17].
The grains in these films are typically columnar (e.g., see Fig. 2 of [28]). So we

assume , , ,
lin ry _ lin T (2P ‘p
¢ (E’ d) ¢ (R (d) ER(d))’
whereR : R2 — SO(3) is a given function describing texture and is assumed to be
periodic with period0, 1]2.
Let us consider the single crystal film first. LAtbe the matrix that projects
any 3x 3 matrix into a 3x 2 matrix:

10
=101
00
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Then,

1E ETYy — 71|l
@o(F) = inf golin (2(FP+FI’) m H‘Z(b” +F3”)>
beR3

1 T
1b, +F by —1
- Z( b+ Fap) ‘ 3 (7.23)
= infsw”“( 1 ) = 5" (B),
acR: ap as3s

whereF, = NTFI, E = NTEMN; F3, = (Fa1. F32)7, b, = (b1, b2)T and
a, = (a1,az)”. For the multi-well energy density defined by (7.2@3{‘ can be
shown to be

= : 1LE_ EG)2
o' &) = min [}E-EOP) (7.24)
EO =nTe®m. (7.25)

We defineSy, the set of recoverable strains in a single crystal filiith orientation
€3, to be

S; = (E: QpliNE) = 0).
This is exactly the set of strains that the material can accommodate by making a

mixture of martensitic variants. In general, thisSgts hard to determine. However,
if all variantsE") are pair-wise compatible, i.e.,

EV—EY —a@n+n®a (7.26)

for some vectoraandnandforalli, j = 1, - - - , k, thenthe associat&} is simply

their convex hull [8]. One can show that this is true for materials undergoing cubic—
tetragonal, cubic—trigonal and cubic—orthorhombic transformation irrespective of
the orientation of the film. Unfortunately, cubic-to-monoclinic martensites which
are the most commonly used shape-memory materials have transformation strains
that are not pair-wise compatible in general. But they can be compatible in certain
orientations in thin films. Indeed, IRtdenote the crystal orientation, the orientation
that takes the film basige;, e, e3} to the crystal basi¢f1, fo, f3}, f; = Re; for

i =1,2,3, and notice that

JIRTER - EV)?2 = L IE-REVRT |2 = JIE- UV, (7.27)
whereU") = RE@RT. It is well known that two 2x 2 symmetric matrices)

andV are compatible if and only if dét) — V) < 0 [29]. Settingf* = R”e; for
i =1,2 3andA = (EY — ED), we have

detTI"RARTTI) < 0 «—s det( 1 AT1 T Al2) < g
= £ Aff 5. AfS ) =
— f} . adfE®” —EY)f; 0. (7.28)
Notice that (7.28) is the linearized version of (5.12) in Proposition 5.RrofT-
TACHARYA & JAMES [9]. It follows that Sy is the convex hull of transformation
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strainsT1? UTT if (7.28) is satisfied for alf, j = 1,--- , k. The vectoif} is in-
terpreted as follows. Lethkl} denote the film normal in the cubic crystal basis,
ie.,

e || hfr+kfr+1fs.

Using the definition of; andf* yields
f3llher+ke+1es.

It turns out that all pairs of monoclinic variants are pair-wise compatibl¢1fo}
and {110} films in Ti-Ni and {110} and {111} films in Cu-Zn-Al [38] andSy is
the convex hull of these variants. In contrast, not all pairs are compatibi&Xay
films in Ti-Ni and {100} films in Cu-Zn-Al. In these cases, the sgtbecomes more
complicated [38].

We now turn to polycrystalline thin films. We define teet of recoverable
strains of a polycrystalline thin film

Pr = {E: ¢(E) = 0}. (7.29)

Our taskis to determine the s@t. However, this is very difficult and its calculation
requires knowledge of the shape and orientation of each grain which is also difficult
to obtain. One possibility is to estimate theBetusing texture-independent bounds.
The bound which we believe to be the most useful bound is the Taylor bound based
on the use of a constant-strain test field [11]. This gives an upper bougddiatr
is an inner bound foPy. The accuracy of the Taylor bound can be assessed in the
recent work byBHATTACHARYA & KoHN [11] for geometrically linear theory and
by Koun & NieTHAMMER [30] for geometrically nonlinear theory. Indeed, in our
model example above, one can show that the exact recoverable strain is the same as
that predicted using the Taylor bound fer= 0 andoco. Unfortunately, the Taylor
bound is only suitable for homogenization; and consequently, there is no analogy
for the case < 8 < .

We now give the expression of the Taylor bound on two extreme césed)

andp = oo, assumingx = % " 0 and all grains are columnar in both cases.
Considerg = 0 first. The Taylor bound on the sg¥ is

70 = ﬂ Sr(zp) = (E: Qpin (E;R(zy)) =0, fora.e.z, e Z}  (7.30)

z,€Z

where
lin . 1le T T 2
ol (E,R(zp))=i:T!pk§‘E—n (R(Zp)E R (z,,))n‘ . (7.31)

In sputtered films, very often all grains have a common crystallographid fakdis
as the film normal. Therefore, the s$8t(z,) can be determined exactly for al}
in (7.30) for certain textured cubic—monoclinic films. Consequen®is fully
determined.
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Now consider = co. Let P be the set of recoverable strains in bulk or thick
films: P = {E : ¢/ (E) = 0} wherep” is given by(6.3) in terms of geometrically
linear theory. Then, it can be shown easily that

7P = (E : o/ (E) = 0}.

So if this functionp{! is convex, then the implication is th&y = {E : Qgl! (E) =
0} = N7 PI1. But in generalPy > M7 PI1 o M7 711 whereT™ is the Taylor
bound onP and is given by

7% = () S@) = (E: 00" (Rz)ER(z,)) =0 foraez, € z}. (7.32)

z,eZ

When subjected to uniaxial in-plane tension ingtdirection, the Taylor bound
of maximum recoverable extension is

¢% = max (¢ -E¢) for g =0,
EeT0
) (7.33)
ey =_max (£-E&) forpg=o0c.

Een”7o°m1

Table 2 contrasts the behavior of films with long or rod-like £> d) grains
and films with flat or pancake shapéed & < d) grains [37]. It lists the predicted
recoverable strains for films with different textures in Ti-Ni and Cu-Zn-Al. Note that
they are larger for flat grains compared to long grains as we expected. We also note
here that neither the random ndr10} sputtered texture which is common for BCC
materials [27,39] are ideal textures for large recoverable strain. The ideal textures
appear to bg100} for Cu-Zn-Al (this texture can be produced by melt-spinning)
and{111} for Ti-Ni.

Before closing this subsection, we should mention the effect of the $atib
the size of the microstructure to that of the grain. Above, we took this ratio to
be zero; however, this may not be appropriate when the grain size becomes very

Table 2. The predicted uniaxial recoverable extension for various textu%sande% are
the Taylor bounds for films witlB = oo and8 = 0 respectively. Notice thafmono is
unknown in bulk cubic—-monoclinic martensites. So we use the bigge$fsgt, which is
the convex hull of all monoclinic variants in (7.32) a(t33), to calculate: %> (see [37] for
more details).

Recoverable strains (%)
Texture
Ti-Ni Cu-Zn-Al
e%o s% 8%0 s%
random 23 23|13 17
{111 film 53 81|19 59
{100} film 23 23|71 71
{110} sputtered film| 2.3 23| 1.7 1.7
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small (on the order of tens of nanometer). In that situation-> d), Theorem 1

shows that it costs materials more energy to form microstructure inside each grain
to accommodate deformation and consequently strains cannot be recovered unless
the texture is exceptional.

7.2. Effective Conductivity

We now turn to study the influence of different ratios of length scales on the
conductivity of heterogeneous thin films. It will be evident that similar results
should also hold in other linear properties.

Consider a conducting thin strip made by mixing two anisotropic conducting
materials as shown in Fig. 4(a). LBt; andQ;; be the anisotropic conductivities in
the “grey” and “white” regions of Fig. 4(a). Let8 1 < 1 be the volume fraction
of the grey region. The energy is given by

, mSzi<m+A,
), m+ir<zi<m+1,
(7.34)

(PirfZ+2P12fifo+ Poaf?)
(011f2+2012f1f2 + Qooff}

1
p(f,z1)=1{2
2

wherem € Z andf is interpreted as the electric field. The usual symmetry as-
sumptionP;; = P;; andQ;; = Q;; is assumed and the positive definiteness of the
energy density requires

Ap=PuuPyp—P5>0 Pi1>0, Apg=Q1102—0%>0 Q11>0.
(7.35)

For the conducting strip shown in Fig. 4(a), Theorem 3 implies that the ef-
fective energy density takes the forg&) = %Cﬂ £2 whereC? is the effective
conductivity at the ratigs. The following proposition shows thét® depends ois.

©

Fig. 4. (a) A heterogeneous thin film mixing with two anisotropic conducting materials.
(b) The test fieldvy. The darkly shaded regions form the supportaf and the straight
lines within them are level sets gf (c) The test divergence-free flogv The darkly shaded
strips form the support af and the arrows within them point out the direction of the flow.
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Proposition 2. For the thin strip shown in Fig. 4(a), the effective conductivity

satisfies
CO<CP<C® for0< B < o0,
where
2
o _ CERC - C
C3%
go___ PO
AQ+(A-1P

andC® is defined by
C®=UP+1A-1Q- -9 - +A-197?
with S given by
% PnglZ
S= ( 61 il )
and P and Q defined by

P11Pyy — P122 . ﬁ 011022 — Q%z _ Ag

P = andQ =

Py P>y 02 02

Further, if Q12Ap — P12Ag = 0, then
CO=CP=cC>.
Finally, if the volume fraction. = 3, then

o AL N R

CO<cP<O(1—peo L Q22 for 8 small
P 0

1 Q12Ap — P12Ag |

2B (P11Ag + Q11Ap)

oY

*>CP>(C> <1 ) for B large.

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

Proof. Let us calculateC™ first. Whenp = g A 0o, the macroscopic energy

density is obtained by homogenizing the bulk conductor and then by passing to

the thin-film limit (see Section 6). L&C*> be the effective conductivity of the

bulk material. We can calculate it by noticing that we have a rank-one laminate in

two dimensions. Assuming constant gradient in each layer [34], we can @jtain

defined by (7.39). The bulk energy densit{f becomes

o6 = 3| f2 + 203 fe + C33 73]
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The effective energy density for this thin conducting strip is obtained by passing to
the thin-film limit, i.e.,

76 = 00§l 6) = 9§l &) = Inf §{C467 +2C56b + C3367| = § 62,

where the effective conductivitg> is defined by (7.37).

Onthe other hand, ifthe ratp = g — Oash — 0, the effective energy density
is obtained by passing to the thin-film limit first, followed by homogenization (see
Section 4). Indeed, after passing to the thin-film limit, the local energy densities
within the grey and white regions become

3P& and 3082

whereP andQ are defined by (7.40). Now the effective energy density is obtained
by homogenization and is given by

@%(&) = 1 C0¢?,

where the effective conductivitg® is defined by (7.38).
We now show (7.36). The Fenchel transformatioa$ given by

99 2) = %(P2281—2P12g1g2+p11g2) m<zy<m+ A,
, z—(szgl 20128182+ 01183) , m+ A< z1 <m+ 1.
(7.44)

Substitutingg = (r, 0)7 into the lower bound (7.7) and optimizing overields
CP > COfor all B > 0. Further, consider the test functibp = (ap, b))’ and
fo = (ag, b)T. Using the definition o in Theorem 3 and minimizing the energy
over all possibletp, ap andb, we haveC? < C* for all 8 > 0.

Suppos&12Ap = P12A . Direct calculation orC? andC > shows that these
are equal, and this implies (7.41) due to (7.36). An interesting example of this type
is P12 = Q12 = 0 when there is no coupling between the thickness and the in-plane
directions; so the effective conductivity does not depend on the gatio

We prove bounds (7.42) and (7.43) for= % Consider (7.42) first. To show
the right-hand side of (7.42), consider the test functi@monstructed by

%( I’Z;g)T in the darkly shaded region of the grey domain
Vi = é( Q12)T in the darkly shaded region of the white domain

0 otherwise
(7.45)

as shown in Fig. 4(b) The area fraction of these darkly shaded regions s
— p 132 andA, = 3 — B 52 respectively. Using this test function, we have

P =5 fE (—_ + %) 2, (7.46)
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where

A1 A2
n=(F+3) (7.47)
The inequality (7.42) is obtained by substituting (7.47) into (7.46) and using the
definition of C%in (7.38) fora = 3.
We now turn to (7.43). To show the right-hand side of (7.43), consider the
lower bound (7.7) and the Fenchel transformatiorp afiven by (7.44). The test

divergence-free flowg is chosen to be

(o, —&)T  inthe darkly shaded region of the grey domain
g= 1 (o,e)T inthe darkly shaded region of the white domain (7.48)
0 otherwise

as shown in Fig. 4(c). Assum@12Ap — P12Ag = 0 (otherwise changeto —e
in (7.48) and the corresponding flow direction in Fig. 4(c)); choose

_ O12Ap — P12Ag ”
(P11Ag + Q11Ap)

Then, the area fraction of the supportgfs (1 — 2/3%). Substituting (7.48) and
(7.49) into (7.7) gives

1- 1 e o2
—ey — —eBE2> T (g _ _o
o) = 5C"% Z > <1 2/30) (Zé‘o @oo>' (7.50)

Maximizing the above inequality over gives (7.43). O

(7.49)

We comment on the result @amLAMIAN & VocELIUs 0[20] who obtained
optimal bounds for a composite thin structure made of two isotropic conductors.
They consider the case = ¢(f, 27” z3) (B = 1 in our notation and fully three
dimensions). However, their optimal bounds #réndependent and hence their
bounds hold for allg. Further, their optimal microstructure arg-independent.
Our Proposition 2 above shows that theimdependent bound may not be optimal
if the conductivity is anisotropic and the film normal is not an eigenvector of the
conductivity tensor. We speculate that their lower bound is optimal onlg ferO
and upper bound only fof = oco. The problem of deriving goo@-dependent
bounds are complicated due to reasons discussed at the end of Section 7.1.1.

Finally, it is clear that similar results must hold for elasticity, and there is some
suggestive experimental evidence in this direction.

7.3. Multilayers

Consider a multilayered thin film made up of a finite number of alternating
layers of a martensitic material and a purely elastic materiala ket the volume
fraction of the martensitic material and kgt be the mismatch strain of the elastic
material relative to the austenite phase of the martensitic material. The effective
behavior is some combination of the behavior of these two materials; however, the
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K<l F>1

Fig. 5. The effective behavior of a multilayer thin film is determined by the energies above
for small and large values df.

nature of the behavior depends on the ratie= ;- of the microstructure size to the

thickness. For example, assume the local energy depsi? x (0, 1) — R has
the following form

gmar(f) = 3((f2 — D2 + f3), for 27t < z3 < 242
v(f, z9) = 1 2 2 (m=D+2
peladf) = 5((f1 —em)” + f5), for F=57= S 23 < 3
(7.51)
form =1,..-., M. From Theorem 4, the effective energy densities for small and

large values o&’ are given by

A 21—
@ =5 -0s] + € —en? fora’=0,
7 = 0 {56212+ TR o] fora =,

whereQ denotes the operation of quasi-convexification. The result is also schemat-
ically shown in Fig. 5. The effective energy fef small is shown on the left while

that fora’ large is obtained by the quasi-convexification (or convexification in this
case) of the multi-well energy shown on the right-hand side of Fig. 5. The thin dark
line is the energy of the martensitic material and the thick light line is the energy of
the elastic material. The behavior of the multilayer is shown by lines of increasing
greylevel for decreasing volume fractiar(also see [9]). For smadl’, the marten-

sitic material freely forms microstructure and the multilayer can accommodate this
mismatch straim,, and behaves like an elastic material with soft-modulus. For large
«’ on the other hand, the multilayer behaves like a phase transforming material: it
has two variants with transformation strains which may be different from that of the
original martensitic material, and one variant is preferred over the other. Hence, this
multilayer film will display a two-way shape-memory effect. Further notice that
the multilayer is internally stressed so that the minimum energy is not zero. Finally,
the multilayer can form “macroscopic twins”: these are not twins confined to the
martensitic material but encompass both the elastic and the martensitic material.
Thus, multilayers promise to be a means of making apparently new materials with
interesting and novel properties.
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