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The conservation laws in anisotropic elasticity developed in an accompanying 
paper are extended to include steady-state thermal elasticity. The conservation 
laws proposed in this paper lead to integrals that do not contain area integration 
and are path-independent. In addition to the extended J- and M-integrals of 
J. K. Knowels and E. Sternberg, also derived are path-independent contour inte- 
grals that yield directly the stress intensity factors when evaluated over contours 
enclosing a crack. The path-independent integral representations of the stress in- 
tensity factors are used to obtain closed form solutions for a finite crack in an 
unbounded thermoelastic medium subject to arbitrary thermal conditions on the 
crack faces. 

1. Introduction 

In this paper the conservation laws for anisotropic thermoelastic materials are 
considered. Wilson & Yu (1979) and Kishimoto et al. (1980) have derived conser- 
vation laws for thermal stress crack problems. The expressions of the conservation 
laws, however, contain area integral terms. The presence of these area integral 
terms is undesirable in linear elastic fracture mechanics in that the energy release 
rate or stress intensity factors associated with a crack tip can not be extracted 
from far-field data alone using the conservation laws. Gurtin (1979) has derived 
a conservation law, valid in both two- or three-dimensional space, for steady- 
state linear isotropic thermoelasticity. The conservation law obtained by Gurtin 
is in the form of a contour integral which is path-independent under certain 
restrictions which are not usually met. Three additional material conservation 
laws for the same problems in the two-dimensional space have been proposed 
by Kuo & Riccardella (1987) by introducing a conjugate temperature variable. 
With the introduction of the conjugate temperature, the conservation laws given 
by Kuo & Riccardella are expressed in terms of contour integrals which are path- 
independent without any restrictions. 

The aim here is to derive anisotropic steady-state thermoelastic conservation 
laws which yield contour integrals that are path-independent. The development 

t This paper was produced from the authors' disk by using the T1E typesetting system. 

Proc. R. Soc. Lond. A (1993) 443, 153-161 () 1993 The Royal Society 
Printed in Great Britain 153 



C.-S. Yeh, Y.-C. Shu and K.-C. Wu 

is based on the ideas that a thermoelastic state can be regarded as the superpo- 
sition of an elastic state in the absence of body forces and another elastic state 
due to effective body forces resulting from non-uniform temperature distribution 
(Clements 1973; Wu 1984; Hwu 1990) and that the conservation laws constructed 
with respect to the state without body forces result in path-independent integrals. 
It is assumed that the temperature is finite at the crack tip so that the singular 
crack tip fields do not alter with non-uniform temperature distribution. Under 
this assumption, the conservation laws proposed here possess the same physical 
meanings as their counterparts for isothermal elasticity. Although the conserva- 
tion laws derived in this work do not include area integrals, use of the conservation 
laws to determine the energy release rates or stress intensity factors involves in- 
tegration along contours including the crack faces in general. In addition to the 
extensions of the familiar J- and M-integrals, also derived are path-independent 
contour integrals that yield directly the stress intensity factors when evaluated 
over contours enclosing a crack. The path-independent integral representations 
of the stress intensity factors are used to obtain closed form solutions for a fi- 
nite crack in an unbounded thermoelastic medium subject to arbitrary thermal 
conditions on the crack faces. 

2. Basic equations of thermoelasticity 
Basic equations and an extended formalism due to Hwu (1990) for anisotropic 

thermal elasticity are introduced. Hereafter, summation over repeated indices is 
implied and a comma stands for partial differentiation; bold symbols represent 
vectors, tensors or matrices. 

With respect to a fixed rectangular cartesian coordinates, the basic equations 
of steady-state linear homogeneous thermoelasticity in the absence of body forces 
and heat supplies consist of (Nowacki 1962): 

(i) equations of equilibrium 

ijj 0; (2.1) 
(ii) energy equation 

qj,j = 0; (2.2) 

(iii) constitutive equations 

cij = CijklUk,l - PijT, (2.3) 
qj - -kijTi. (2.4) 

in which u, T, a, and q are the displacement, temperature, stress, and heat flux 
respectively; whereas C, 3 and k are the elastic constant of the generalized 
Hooke's law, thermal modulus and heat conductivity with the following symmetry 
relations 

Cijkl 
- 

Cklij = Cjikl = Cijlk, l (25) 
3~i -/ 3ji, kij 

- 
k3ji 

Substituting (2.3) and (2.4) into (2.1) and (2.2), we arrive at the governing equa- 
tions in terms of displacements and temperature 

CijklUk,lj - ijT,j 0, (2.6) 

kijTij = 0. (2.7) 
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As (2.6) and (2.7) are uncoupled, to determine the displacement field the tem- 
perature field must be solved in advance with the appropriate thermal boundary 
conditions 

qjnj=qo on OQq, T=To on 19QT, (2.8) 
where the subscript o denotes the specified functions on the boundaries. 

We first consider the two-dimensional steady-state heat conduction problem 
where the temperature distribution is independent of X3. Since (2.7) is similar 
in form as that for antiplane deformation in anisotropic materials, the general 
solutions to the heat conduction problem can be obtained from those for an- 
tiplane deformation problem given by Lehknitskii (1963). The solutions for T are 
expressed as 

T = 2Re[g'(zt)], Zt xl + Tx2, (2.9) 
where g'(zt) is an arbitrary function and prime stands for differentiation with 
respect to its argument; Re denotes the real part; the thermal eigenvalue r is the 
solution of 

k2272 + 2k12T + k11 = 0. (2.10) 
Here, the assumption of positive definiteness of the heat conduction constants kij 
is adopted such that the thermal eigenvalue T can not be a real number in (2.10). 
By defining an heat function Q such that 

aQ/0x2= -ql, OQ/Oxl= q2. (2.11) 

The complex function g'(zt) can be expressed as 

2g'(zt) = T + iQ/k, (2.12) 

where k is the effective heat conductivity defined as 

k 1= /klk2 - k 2 (2.13) 

Alternatively we can also regard the quantity Q/k as a conjugate temperature 
variable, T (Kuo & Riccardella 1987), and write (2.12) as 

2g'(zt) T +iT. (2.14) 

Once the function g in the heat condunction problem is determined, based on 
an extended Stroh's formalism (Stroh 1958) for anisotropic elasticity, the general 
solutions of (2.6) can be expressed as (Clements 1973; Wu 1984; Hwu 1990) 

ui - 2Re{Aikfk(zk) + cig(zt)}, (2.15) 
4ii = 2Re{Bikfk(zk) + dig(zt)}, (2.16) 
Zk = Xl +pkX2, (2.17) 
A= {al, a2,a3}, B= {b, b2, b3}, (2.18) 

where the elastic eigenvectors {a, b} and the elastic eigenvalue p are determined 
by the following eigenvalue problem 

N r pR, NS [N NT. A{b (2.19) 
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where N1 = -T-RT, N2 = T- = NT N3 RT-RT - Q = N, with 

Qik = Cilkl, Rik = Cilk2, Tik = Ci2k2, (2.20) 

the superscript T stands for the transpose of a matrix; while the vectors {c, d} 
are the solution of 

Nr = Tr) + y, - [ N2jii] ri2 {d} (2.21) 

where 31 = ({fil}, 2 = {3i2} and I is the identity matrix. The vector 4' given 
by (2.16) is the stress function defined such that 

c il -4-i,2, Ui2 = O$i,. (2.22) 

The property of positive definiteness of the elastic constants Cijkl implies that the 
elastic eigenvalues Pk can not be real numbers in (2.19). It must be emphasized 
that the general solutions of the system (2.6) given by (2.15) and (2.16) break 
down if the thermal eigenvalue, r, is equal to one of the elastic eigenvalues, p 
since in this case (2.21) fails to determine c and d. However, for T = p, in some 
cases, some information of the solutions can still be derived by making use of the 
following identities 

S = i(2ABT-I), H = 2iAAT, L =-2iBBT, (2.23) 

=-Lc + STd - id, (2.24) 
where the real matrices S, H and L and vector a can be determined directly 
from C and 31, 02 (Barnett & Lothe 1973; Hwu 1990). 

3. Conservation laws 

Let us rewrite (2.15) and (2.16) as 

Ui = ui + u, i = i '+ i, (3.1) 
where 

iiw = 2Re{Aikfk(zk)}, i = 2Re{Bikfk(zk)}, (3.2) 
u* - 2Re{cig(zt)}, = 2Re{dig(zt)}. (3.3) 

The displacements ui and u* basically represent the homogeneous and particular 
solutions, respectively, of (2.6). In fact the expressions for ui and 4i are identi- 
cal in form with the displacement and stress function in Stroh's formalism for 
isothermal elasticity. Consequently, any conservation law for steady-state thermal 
elasticity can thus be established from its counterpart for isothermal elasticity. 
For isothermal anisotropic elasticity, a complete analysis of the first-order con- 
servation laws depending on x, u and the first derivatives of u for the general 
anisotropic isothermal elasticity has been carried out by Yeh et al. (previous 
paper) based on Stroh's formalism. It has been shown that, except for the well- 
known Betti's law, there are three infinite-dimensional families of conservation 
laws, each depending on an arbitrary analytic function Fk(zk, (Ok) of two complex 
variables, where Zk are given by (2.17) and (pk are provided by 

(Pk(Zk) = fk(zk) = Aik&i2 + BikUi,l 

= pkl(-Aik&il + Bikui,2) (no sum over k). (3.4) 
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For example, the well-known J-integral (Rice 1968) and M-integral (Knowles & 
Sternberg 1972) for isothermal elasticity can be defined similarly for steady-state 
linear thermoelasticity as 

J = /(Wni 
- tiui,) ds = Re / 2zk} (3.5) 

k=l 

M = J(W nk k- tiXi,jj) ds = Re { zkdzk , (3.6) 

W = jiiiij,j, ti = jnj, (3.7) 

in which W and ai are the strain energy density and traction, respectively, cor- 
responding to ui; ni is the component of the unit outward vector normal to the 
contour. 

We now turn to the thermal stress problem of linear isotropic elasticity for 
which the elastic and thermal eigenvalues are identical; i.e. pi = P2 = T = i. 
As remarked in the previous section, (2.15) and (2.16) are not valid for isotopic 
materials. However, the decomposition of the actual displacement given by (3.1) 
as well as the forms of the J and M still holds. In fact, the particular solution 
u* can be chosen as the displacement derived from the stress-free thermal strain 
(Muskhelishvili 1953). Thus c and d are given by 

c- i{= d- O. (3.8) 

where al = (1 + v)a with v being Poisson's ratio and a being the thermal 

expansion coefficient. With (3.8), the J and M integrals given by (3.5) and (3.6) 
become 

J= JWn - tiui, + {ol(ti + t2T) ds, (3.9) 

M = {Wxk -- tiui,jXj + alT(tlxl + t2x2) - aiT(tix2 - t2x))} ds, (3.10) 

where T is the conjugate temperature defined by (2.14). The expressions of J and 
M integrals in (3.9) and (3.10) agree with those derived by Kuo & Riccardella 
(1987). 

4. Applications to fracture mechanics 

Consider a thermoelastic solid containing a finite crack Ix11 < a. The crack 
faces are assumed free of tractions mechanically and subject to either heat flux 
or temperature boundary conditions thermally. In the following discussion super- 
scripts + and - are attached to the quantities evaluated on the upper and lower 
crack faces, respectively, and [(.. )] = (...)+ - ( )- is used to denote the jump 
across the crack of the quantity in the bracket. Let F be a contour starting from 
xI = c- on the lower crack face, terminating at xl = c+ on the upper crack face 
and encircling the crack tip at xl = a. The fact that the J integral given by (3.5) 
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is zero for closed integration paths yields 
a 

Jr + / [*2iif,l] dxl = J, (4.1) 
Jc 

where Jy and F0 are the values of the J integral integrated along F and a contour 
infinitely close to the crack tip respectively; i2 is the stress calculated from b* 
given by (3.1). In deriving (4.1), the traction-free conditions ti = 0 have been 
used. If we assume that the temperature is finite at the crack tip, the thermal 
stresses ar- associated with the displacement u* are also finite there. Thus the 
crack-tip fields for u are in the same form as those under isothermal condition 
and Jo is equal to the energy release rate associated with translation of the crack 
tip given by (Barnett & Asaro 1972) 

Jo= -Kppl-Kq, (4.2) 

where L is given by (2.23) and Kp are the stress intensity factors defined by 

Kp = lim 27 rop2 (4.3) r-- o0 r-*o 0=0 

with (r, ) being the polar coordinates with origin at the crack tip. Equation 
(4.1) is similar in form as that for isothermal elasticity except the presence of the 
second contour integral along the crack line. The extra term vanishes only for 
isotropic materials for which v* = 0. Similar discussion for the MA-integral gives 

fa 
Mr + j xl[oaifi,l] dxl = aJo. (4.4) 

Jc 

Equations (4.1) and (4.4) can be used to calculate the energy release rates. 
However, in fracture mechanics one is interested in not only the energy release 
rates but the separate stress intensity factors. In most problems for anisotropic 
thermal elastic materials, all three intensity factors are usually non-zero and can 
not be determined by the energy release rate alone. In linear two-dimensional 
anisotropic isothermal elasticity, path-independent integrals directly related to 
the stress intensity factors of a straight crack of finite length are derived by Wu 
(1989). With similar arguments as those for the J integral, the path-independent 
integrals of Wu can also be extended to include steady-state thermal effects as 

Kp = / ( (Gpi i - Hpiti) ds 
as 

71 J-a a?+ xi + 2- / a(Re{d}(T+ + T-) - k-Im{d}(Q+ + Q-)) a di,x (4.5) 

where Im denotes the imaginary part and 

Gpi (zk) = Im(BBik (4 6) pra Zk -a 

1 R. Soc. Lond. A (1993)a 
p?I\) ia 

m\ 
4 Zk.- a7) 
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Equation (4.5) is for the stress intensity factors associated with the tip at xl= a. 
The contour F is arbitrary provided that it encloses the crack tip at xl = a 
and possibly the tip at xi = -a but no other elastic or thermal singularities. 
The expressions for the tip at xl = -a can be derived similarly. The expressions 
given by (4.7) for G and H are for anisotropic materials. The corresponding 
expressions for isotropic materials can be obtained by regarding them as slightly 
orthotropic. Using (4.5) to compute the stress intensity factors only requires the 
gradients of ii and the tractions t on an arbitrary contour enclosing the crack in 
addition to T and Q on the crack faces. 

As an application of (4.5), let the medium containing the crack be unbounded 
and the stresses in the medium be solely due to the thermal boundary conditions 
on the crack faces. In this case, we can stretch the contour to infinity and denote 
it as ro. By letting z -+ oo in G and H of (4.7), (4.5) becomes 

KpGi(o) .Jr & ds - Hpi(oo) J tids 

J oot as d -Gp ) JrOO ds+Hpi(0o)f t*ds 

1 ea a X + i2 Oraa (Re{d(T+ + T-)} - k-1Im{d}(Q+ + Q-)) dx1, (4.8) 

in which 

G(oo)= L (oo)= -, (4.9) 2 i-a ' 2/ra 
where L and S are given by (2.23). As there are no body forces or dislocations 
present in the medium, we have 

IaOO U ds=o, Jr tids=O. (4.10) 

With (4.10) and (3.3), (4.8) is simplified as 

1 (Sag+ a- K= r- Re (-Lc + d) 9'(zt)dt+d (9 + ')dxl}. 
V? ra J-a V 

- xi J 
(4.11) 

Note that (4.11) is expressed in terms of the analytic function g' only and thus 
can be calculated once the steady state heat conduction problem is solved. 

Consider the case where the heat flux, q2, normal to the crack line is prescribed 
as q2 qo(xi) on the crack faces. Use of the standard technique of analytic 
continuation leads to the following Hilbert problem: 

9g+ + g"- = iqo/k, (4.12) 

on Ix1i < a. If g" is assumed to approach zero as zt -- oo and g' is assumed single 
valued except on the crack line, the solution to (4.12) is given by 

i 1 ra q,/(a2 s2) 
g = ^ ^ 

// 
(zt 2d.. (4.13) 

g"( 
27rk ,/(zt - a2) -a - t 

(4.13) 
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From (4.13), it can be shown that 

/ g(zt) dzt = -k- J qoa2 -sds (4.14) 

where g' is assumed to approach zero as Zt approaches infinity. Furthermore, 
integrating (4.12) with respect to xl, we have 

'(s)+ + g'(s)- = (i/k)Qo(s), (4.15) 

where Qo(s) = f q(s) ds. Substituting (4.14) and (4.15) into (4.11), we obtain 

K = Re (Lc- STd) qoV - ds + id Qo s (4.16) 
k,ra kc J-a J-i-a a a-s 

Since 

JQ Qo ds qoVa2 sds a + ds, (4.17) 
-a a-?s -a J-a 

(4.16) can also be expressed as 

K= -k {Re}F qoV 
- sds + am{d} a2 ds , (4.18) 

kr\cn-a -a Ja va2 - s2 

where - is given by (2.24). It is remarkable that the stress intesnity factors are 
affected by thermal conductivities only through the effective conductivity given 
by (2.13). Moreover, anisotropy of materials basically alters the direction of the 
vector K through Re{^} and Im{d}. If qo is an even function, the second term 
on the right-hand side of (4.18) vanishes and k is simply given by 

K =- -k Re{f} AqoV/ - s2ds. (4.19) 

As mentioned previously a can be directly computed from the elastic constants 
and thermal conductivity so (4.19) is valid for either degenerate or non-degenerate 
materials. The result for uniform qo calculated by (4.19) agrees with that reported 
by Hwu (1990), which is obtained by solving the full boundary-value problem. 
On the other hand, if qo is an odd function of s, the first term on the right-hand 
side of (4.18) vanishes and K is given by 

2 a Qo 
K-- Im{d}j ds. (4.20) K V JO V/a2 - S2 

In particular, for isotropic materials, d = 0, and the stress intensity factors given 
by (4.20) are zero. The stress intensity factors due to temperature To prescribed 
on the upper and lower crack faces can be derived by a similar procedure discussed 
above. The result is given by 

K=- L{I m{-y}J a To ds -aRe{d} a T ds . (4.21) K= TTO L -a Va/2S -sa Va2 - S2 

Similar to (4.18), the first term on the right-hand side of (4.11) is zero if To is an 
even function while the second term is zero if To is odd. Equation (4.21) implies 
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that for isotropic materials K = 0 with a symmetric distribution of temperature 
on the crack faces. It should be pointed out that in deriving (4.21), g' as well 
as g" is assumed to vanish at infinity so that the case where To is uniform is 
precluded since the corresponding solution is either uniform in the entire body 
or becomes unbounded at infinity (Clements 1973). 

5. Conclusions 

A class of conservation laws for anisotropic steady-state thermoelasticity has 
been developed. The proposed conservation laws lead to path-independent inte- 
grals that can be applied numerically to determine the energy release rates or 
stress intensity factors for thermoelastic crack problems with finite geometries. 
This application to thermal elastic fracture mechanics requires in general the val- 
ues of the displacements and tractions as well as temperature and heat function 
on any convenient contour and possibly on the crack faces. The path-independent 
integrals can also be used analytically for problems concerning infinite media. In- 
deed, using one of the path-independent integrals, analytic expressions for the 
stress intensity factors are obtained for a crack subject to arbitrary heat flux or 
temperature conditions on the crack faces. 
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