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A complete class of first order conservation laws for two dimensional deforma- 
tions in general anisotropic elastic materials is derived. The derivations are based 
on Stroh's formalism for anisotropic elasticity. The general procedure proposed 
by P. J. Olver for the construction of conservation integrals is followed. It is 
shown that the conservation laws are intimately connected with Cauchy's theo- 
rem for complex analytic functions. Real-form conservation laws that are valid 
for degenerate or non-degenerate materials are given. 

1. Introduction 

It is a well-accepted fact that conservation laws play an important role in math- 
ematics, physics and engineering science from both a theoretical and practical 
standpoint. Determination of conservation laws of a system of differential equa- 
tions provides a basic tool in the analysis of the properties of the solutions and 
associated valuable physical implications. In particular, conservation laws pro- 
vide a powerful means in elasticity for the study of inhomogeneities including 
cracks, dislocations, and inclusions within a body. Eshelby (1956) has first intro- 
duced the concept of the force on the inhomogeneity of the body by evaluating 
a path-independent integral representing a conservation law over any surface en- 
closing the inhomogeneity. This integral, which was also derived independently 
and named as the J integral by Rice (1968), has been used extensively in the 
study of crack propagation and proved to be of great practical utility due to its 
path-independency. 

It is never a trivial task, in general, to find out non-trivial conservation laws of 
a given system of differential equations. However, for systems derivable by varia- 
tional principles, Noether (1918) has provided a remarkable result that for each 
infinitesimal transformation which leaves the variational action integral invariant 
there exists a non-trivial conservation law. Thus, construction of conservation 
laws can be developed from a direct study of the variational action integral. 
This is indeed a very powerful tool to derive conservation laws systematically for 
most physical systems are admitted by certain variational principles. For exam- 
ple, in the case of isotropic hyperelasticity, the strain energy density plays the 

t This paper was produced from the authors' disk by using the T_X typesetting system. 
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role of the lagrangian density in its variational formulation. Thus, homogeneity 
and isotropy of physical space lead to invariance of the associated action inte- 
grals under translation and rotation of physical space respectively. Applying the 
Noether's theorem and symmetry group theory, Olver (1984a) gave general meth- 
ods and conditions of the existence of variational and generalized symmetries in 
elasticity. For linear isotropic elasticity in both two and three dimensions, the 
general structure of the conservation laws was completely determined by Olver 
(1984b). In a subsequent paper, Olver (1988) further extended the result to pla- 
nar anisotropic elasticity involving only two in-plane displacement components. 
Because of the restrictions of transformations on the material coordinates and 
displacements, it appears difficult to generalize Olver's derivation to the more 
general two dimensional deformations for materials without elastic symmetry. 

The aim of this paper is to derive general first-order conservation laws in gen- 
eral two-dimensional anisotropic elastostatics. The deformations considered here 
depend only on two independent variables but three displacement components 
are allowed to coexist. The approach by Olver is adopted here but the deriva- 
tion is carried out using Stroh's formalism (Stroh 1958) for anisotropic elasticity. 
Both the non-degenerate and degenerate cases such as isotropic elasticity are dis- 
cussed. The present derivation has the advantage that the conservation integrals 
obtained can be readily expressed in terms of physical quantities using the or- 
thogonality relations in the Stroh's formalism. In addition, the present derivation 
can be extended to include thermoelasticity. The extension and applications of 
the conservation laws derived in this work to thermoelastic crack problems are 
reported in the following paper. 

The plan of this paper is as follows. In ? 2 Stroh's formalism is introduced. The 
general conservation laws are derived in ? 3. Some real-form conservation integrals 
in terms of physical quantities are given in ? 4. Finally some concluding remarks 
are made. 

2. Stroh's formalism 

A brief derivation of Stroh's formalism (Stroh 1958, 1962; Barnett & Lothe 
1973; Chadwick & Smith 1977; Ting 1986) is introduced in this section for 
Navier's equations which are independent of the coordinate X3 in a fixed carte- 
sian coordinate system (l, x2,x3). Hereafter, summation over repeated indices 
from 1 to 3 is implied unless noted otherwise and a comma stands for partial 
differentiation; boldfaced symbols represent vectors, tensors or matrices. 

Consider the following system of equations 

CijklUk,lj = 0, (2.1) 

where Cijkl is the elasticity tensor. For such equations, the general solution can 
be expressed as follows (Stroh 1958): 

uk = akf(z), z = Xl +PX2, (2.2) 

where p and a are constants and f is an arbitrary function of z. Substitution of 
(2.2) into the (2.1) yields 

(Q + p(R + RT) + p2T)a = 0, (2.3) 
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in which the superscript T stands for the transpose of a matrix and 

Qik = Cilkl, Rik = Cilk2, Tik = Ci2k2- (2.4) 

For non-trivial solutions of a, it follows that 

det(Q + p(R + RT) + p2T) = 0, (2.5) 

where det is the determinant of a matrix. Equation (2.5) provides six eigenvalues 
p and eigenvectors a. These eigenvalues and eigenvectors appear as three com- 
plex conjugate pairs for stable elastic materials for which the elasticity tensor is 
positive definitive. For definiteness, pk (k = 1-3) will be assumed to have pos- 
itive imaginary parts. The materials for which Stroh's eigenvalues are distinct 
are called non-degenerate in this paper. The materials with Stroh's eigenvalues 
appearing as a double or triple root of (2.3) are called degenerate. Isotropic ma- 
terial is an example of the degenerate materials. The discussions to be followed 
hereafter will be for non-degenerate materials except at the end of ?3 where 
degenerate materials will be treated. 

Introduce the vector bk for k = 1-3 as 

bk = (RT + pkT)ak =-P-1(Q +pkR)ak (no sum over k), (2.6) 

and define the 3 x 3 matrices A and B by 

A =(al, a2, a3), (2.7) 
B (bl, b2, b3). (2.8) 

Based on the assumption that the eigenvalues p are distinct, the general solution 
for the system (2.1) can be expressed as 

3 3 

i = E Aikfk(zk) + Z Aikfk(zk), i = 1-3, (2.9) 
k=l k=l 

in which fk are arbitrary analytic functions in their complex arguments Zk = 
x1 + pkx2; the overbar denotes complex conjugate and A is given in (2.7). The 
matrix B is associated with the stress functions /i as 

3 3 

=i = EBikfk(Zk) + 5 Bikfk(Zk), i = 1-3, (2.10) 
k=l k=l 

The stress functions are related to the stresses oij by 

Oil = --)i,2, (2.11) 
ai2 = -i,1. (2.12) 

The matrices A and B can be shown to have the following relations (Stroh 1962): 

ATB + BTA = I = ATB + BA, (2.13) 
AT + BTA = 0 = TB + BA, (2.14) 
AB+ABT = I BAT + BAT (2.15) 

AAT+ AAT O BBT BBT. (2.16) 
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By (2.15), one can let 

AAT = -? iH, (2.17) 

BBT = iL, (2.18) 

where H and L are real symmetric positive-definite matrices. Equation (2.15) 
implies 

ABT =(I-iS), (2.19) 
where S is real. The real matrices H, L and S can be calculated directly from 
the elastic constants (Barnett & Lothe 1973). 

By applying (2.13) and (2.14) to (2.9) and (2.10), one has 

fi = Akik + BkiUk, (2.20) 

In addition, differentiating (2.20) with respect to xl and x2 yields 

pi(zi) = f'(zi) (2.21) 
= Akiak2 + BkiUk,1 (2.22) 

= pi (-Akicukl + BkiUk,2) (no sum over i). (2.23) 

In the sequel (2.22) will be utilized to express the conservation laws in terms of 
such physical quantities as displacements and stresses. 

3. Conservation laws 

Olver (1986) has shown that the non-trivial first-order conservation laws can 
be expressed as 

3 
V. T = Ti, + T2,2 =- QiEi 0, (3.1) 

i=l 

where 
T(x, u, Vu) = (T, T2), Ei CijklUk,lj. (3.2) 

Equation (3.1) holds identically for certain non-zero coefficients Qi which are 
functions of x,u, and Vu. In (3.1) T is a first-order conserved density with 
components T1 and T2. Moreover, according to Olver (1984 b), the components 
of a trivial conservation law of the planar system (2.1) can be written as 

T = R,2, T2 = -R,1, (3.3) 

where R(x,u) is an arbitrary smooth function of x and u. 
In the following we shall derive the first-order conservation laws satisfying (3.1) 

using Stroh's formalism. The general procedure proposed by Olver (1984a) will 
be followed. The procedure is briefly outlined here. Expand (3.1) by the chain 
rule as 

aTk aTk aTk 3 

aXk 
+ 

uVU 0Ui ,VU ik + Ti Ui,k = E QiEi. (3.4) Oxk u,vu 
o 

x,vu Oui, X,u i=1 
Since the first two terms of the left-hand side of (3.4) do not contain second 
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derivatives of u, we must have 

aXk UV + ui,k 
- k0, (3.5) 

&Xk u,Vu ^ x,Vu 

aTk 3 
Ui, Ujk QiEi -- . (3.6) 

1Ui,j X,U 

The conserved density T can thus be found by first solving (3.6) to determine 
its dependence on Vu. Equation (3.5) can then be used to further establish the 
additional dependence of T on x and u. 

To solve (3.6), let us write Pk in (2.21) as 

fk -= Pkl + i9k2, (3.7) 

where pkl and 0k2 are real. According to (2.22) and (2.23), we can change vari- 
ables from ui,l and ui,2 to Pil and Pi2. Effecting the change of variables in (3.1) 
and expanding the resulting equation leads to 

Tl,IPkl Pkl,l + Tl,ipk2ok2,1 + T2,(pkl k1,2 + T2,Wk2(Pk2,2 = 0, (3.8) 
where 

-T1 _T2 Tl,0ki -= 0i T2,ki =a k=1-3, = 1,2. (3.9) 
(9(Pki 

' 
0(P99ki, 

Since, for each fixed k, Ok is an analytic function in Zk, the following relations 
hold: 

A1kl,2 = Pkl(Pkl,l - Pk2Pk2,1 (no sum over k), (3.10) 
Sk2,2 = Pk2iJkl,1 + Pk1 2k2,1 (no sum over k), (3.11) 

Pk = Pkl + iPk2, (3.12) 

where Pkl and Pk2 are the real and imaginary parts of Pk respectively. Substitution 
of (3.10)-(3.12) into (3.8) yields 

(Tl,ikl + PklT2,kl + Pk2T2,pk2)lkl,1 + (Tl,k(2 + Pk1T2,k2 - Pk2T2,pkl))9k2,1 = 0. 

(3.13) 
Since (3.13) holds as an identity in Pkl,1 and pk2,1, we must have 

Tl,Pkl + PklT2,kl + pk2T2,,k2 
- 0 (no sum over k), (3.14) 

Tl,pk2 + PkT2,Wk2 - 2T2,kl = 0 (no sum over k). 

Further analysis shows that all mixed partial derivatives of T1 and T2 with respect 
to pki and ojij vanish for k i 1. Indeed, differentiating (3.14) with respect to 9pj 
and pl2, we have 

Tl,Pklcl = Pk1T2),klll - Pk2T2,fk2tll2, 

Tl,kl,2 = -Pkl T2,Pkl 12 - Pk2T2,Sck21 2, 

Tl,k2pll = -PklT2,(Pk2l + Pk2T2,Wkl3ll, 
1 

Tl,fk2fl2 -Pk1T2,Pck2W2 + Pk2T2, kll'P2 

The fact that the above equations also hold as we interchange k and I leads to 

Pq = O, 
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where 

Pll - Pkl P12 -Pk2 0 (2,k 11) 
p -P12 Pll - Pkl 0 -Pk2 q T2,iPkl (P12 

Pk2 0 Pll - Pkl P12 
' 

T2,2 Pll 
0 Pk2 -P12 Pll -Pkl T2,Pk2 (12 

Moreover, the determinant of P can be shown to be 

det P = (Pll - Pk)4 + 2(plI - Pkl)2(12 + Pk2) + (P12 - p12) > 0 

(no sum over k, 1) if Pk # Pl and k : 1. Hence, we must have T2,Wkilj = 0 for 
k -: 1 and i, j = 1, 2. Furthermore, from (3.15), the mixed partial derivatives of 
T1 with respect to (ki and YVlj also vanish for k =- 1. Therefore , T1 and T2 can 
be expressed as 

3 3 
T- Z= T()(kl, pk2, u), T2 = T2)(k, 2,,), (3.16) 

k=l k=l 

where Tjk) are arbitrary functions. With (3.16), (3.14) is simply a pair of Cauchy- 
Riemann equations for the complex function 

Fk = (Tk) +pklT() + i(-pk2T(k)) (no sum over k), (3.17) 
and (3.16) can be expressed as 

T=1 = (Fkl + 
P 

Fk2) (3.18) 
k=l Pk2 

3 -I1 
T2 Fk , (3.19) 

k=- Pk2 

Fk = Fkl + iFk2, k = 1-3, (3.20) 

where Fkl and Fk2 are the real and imaginary parts of the function Fk = 
Fk (k, x, u). 

To further determine the dependence of Fk on x and u, let us define 

Zk = xl -pkx2, (3.21) 
&Zk - 2(XI -pk -a2) (3.22) 

so that (3.5) can be expressed as 

2Re { i 
(2l kFk + 2Fk kj) } = 0 (3.23) 

where Re denotes the real part. Equation (3.23) can be further rewritten as 

Re{ \ E iP- [20kFk + (Ajr(1 - Pr/Pk)Wr +Ajr( - Pr/Pk)r)Fk,] = 0. 
k,j,r Pk2U 

(3.24) 
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Since, for each fixed k, there are no such terms as kS(zk,), where U(? k) is an 
arbitrary analytic function of its argument pk. Based on this fact, the subsequent 
analysis will be extremely simplified by using the following lemma (cf. Olver 
1988). 

Lemma 1. Suppose 1p, 02 and p3 are independent complex variables and 
the functions Vi, Hij and Gij are complex analytic functions with the associated 
single complex variable for i, j = 1-3, respectively, then 

Re{Vl(pl) + lHI11(i l) + 22G12(Wo1) + _2H12((Pl) + (3G13((p1) 

+(3H13((P1) + V2((p2) + plG21((2) + I1H21((P2) + (p2H22((2) 
+p3G23((2) + (3H23(Q2) + V3((3) + PIG31((P3) + (1H31((3) 

+'(2G32((3) + 22H32((P3)+ 03H33(P3)} = 0, 

if and only if 

Hl((ip) = ihll11 + Sil, H22(P2) = ih22P2 + 822, H33(W3) = ih33(P3 + 533, 

G12((1) = 912(P1 + r12, G21(Wp2) = -912(P2 + r21, G31((3) = -g13(3 + r31, 

H12(W1) = h12p1 + S12, H21(P2) = -h12P2 + 821, H31(o3) = -h13(P3 + 831, 

G13((p1) = 913P1 + r13, G23((2) = 923P2 + r23, G32((3) = -923(3 + r32, 

H13(P11) = h13(1 + 813, H23((2) = h23(P2 + S23, H32((3) = -h23(3 + S32, 

V1(1l) = Vi - (s11 + r2 + 21 + r31 + S31)(1, 

V2(P2) = V2 - (322 + r12 + 812 + r32 + 832)92, 

V3(W3) = -V - 2 - (33 + r3 + 13 + r23 + 823)(3, 
where vi, hiij g, rij, and sij are complex constants in general except that h11, h22 
and h33 are real. Another lemma which will be useful in the derivation to follow 
is also given here. 

Lemma 2. Let Fk(x, u, (k) be given by 

Fk = 2ipk2 ( AikR,ui ) k + 61k(R,2 
- 

PiR,i) (no sum over k), (3.25) 
i=1 

where R(x, u) is an arbitrary smooth function of x and u, A is given by (2.7) 
and 61k is the Kronecker delta. The corresponding densities T1 and T2 form the 
components of a trivial conservation law. 

It is not difficult to verify Lemma 2 by substituting the expression for pk in 
(2.22) and (2.23) and the orthogonal conditions (2.15) and (2.16) into (3.25). 

Now by expanding (3.24) and using Lemma 1, we have the following equations: 

1 2i(pi/P12)F,i, =- Vl - (sll + r21 + s21 + r31 + S31)(P1, 
2 (i/p12)(Pl -Pi)(AiFl,ul +A21F1,2 +A31F1,u3) - ihllP1 + 811, 

3 (i/Pl2)(Pl - P2)(AI2F1, + A22F1,,2 + A32Fl,3) = g12P1 + r12 , 
4 (i/Pl2)(Pl - P2)(A12Fi,u + A22F1,u2 + A32Fi,u3) - h12sP1 + 812, 
5 (i/Pl2)(Pl -P3)(A13Fl,u1 + A23F1,u2 + A33Fl,u3) = 

g13(p1 + r13, 
6 (i/P12) (Pl - -3)(A13F1,u + A23F1,2 + A33F1,3 ) = h13o1 + 813, 
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7 2i(p2/P22)F2,2 -= 2 - 
(812 + r12 + S22 + r32 + S32)9P2, 

8 (i/P22)(P2 - P2)(A12F2,1 + ?A22F2,+2 + A32F2,,3) = ih22(2 + S22, 

9 (i/P22)(p2 - pl)(A11F2,,1 + A21F2,2 + A31F2,3) = -g12(2 + r21, 

10 (i/P22)(p2 - Pi)(AllF2,1 + A21F2,u2 + A31F2,3) = -h122 + S21, 
11 (i/P22)(p2 - 

P3)(A13F2,u1 + A23F2,u2 + A33F2,u3) = 23P2 + 23, 

12 (i/p22) (P2 - 3)(Al3F2,u + A23F2,u2 + A33F2,u3) = h23'2 + s23, 

13 2i(P3/P32)F3,3 =-V - V2 - (33 + r3 + S13 + r23 + S23)9(3, 

14 (i/p32)(p3 - P3)(A13F3,.1 + A23F3,u2 + A33F3,,3) = ih33(3 + S33, 

15 (i/P32)(P3 -pl)(A1F3,u1 + A21i3,u2 + A31F3,u3) 
- 

-13(3 + r31, 

16 (i/P32)(P3 - pl)(AllF3,u + A21F3,2 + A31F3,3) = -h13(3 + S31, 

17 (i/P32)(P3 - P2) (A12F3 , + A22F3,u2 + A32F3,u3) --23a3 + r32, 

18 (i/P32)(p3 - -2)(A12F3,1 + A22F3,u2 + A32F3,u3) -h23(3 + S32. 

First, consider 1, 7 and 13, we can set 

F1 = Fj (zi, i) + , wx,u)WIL +wio(x, ), 

F2 = F*(z2, 92) + 2(x, u)92 + 20o(X i), (3.26) 

F3 - F* (z3, (3) + w3(x, u)03 + W30(x, u), 

where Wk and wko, k 1-3, are arbitrary functions. Next, since hll, h22 and h33 
are real functions, then from 2, 8 and 14, we can further set wl, w2 and W3 as 
follows: 

wi - 2ipi2(AiRl,1 + A21Ril,2 + A31RI1,3), 

w2 = 2ip22(Al2R2,1 + A22R2,~2 + A32R2,U3), (3.27) 

W3 2ip32(A13R3-,u + A23R3,2 +- A33R3,u3), 

where R1(x, u), R2(x, u) and R3(x, u) are arbitrary smooth real functions. Fur- 
ther investigations of 3 and 9, 4 and 10, 5 and 15, etc., allow us to set R1 = 

R2 = R3 = R(x, u) except for the terms that depend only on z. But the contri- 
butions of wi to Fi result in trivial conservation laws if we compare (3.27) with 
Lemma 2. Thus the forms of F1, F2 and F3 for non-trivial conservation laws can 
be expressed as 

F1 - F1*(zi, i) + w*(x)iW, + wl o(x, U) 
F2 = F(2*(2, (2) +W(2)- 2)(p + 20(+ X , U), (3.28) 

F3 - F3 (z3, 3) -+ w3*(X)3 + w30(X, u). J 

It is not difficult to deduce that woi, w20 and w30 are at most linear in u by first 

comparing the coefficients of (1, W2 and (3 in 1, 7, 13, respectively, and, next, 
the other remaining equations. According to Olver (1988), the type of conserved 

density T which is linear in u and Vu must be equivalent to, except for trivial 

densities, Betti's reciprocal law whose components are given by 

T -= ilui* - (ilui, T2 = Oi2Ui 
- o2ui, (3.29) 

in which 

ij = CijklUk,l j =* Cijkl , (3.30) 

u*(x) is any solution of (2.1). In summary the general first-order conservation 
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laws for non-degenerate anisotropic materials with components T1 (x, u, Vu) and 
T2 (, u, Vu) are of the following form: 

3 

Ti (x, u, Vu) - T + T* + (Fkl + Fk2), (3.31) 
k=l Pk2 

3 
T2(x, u, Vu) - T2 + T2 + E -Fk2, (3.32) 

k=- Pk2 

Fk(Zk, Pk) = Fkl + iFk2, (3.33) 

where Tf and T2 are the components of trivial conservation laws; Tj and T2 are 
the components of Betti's law given in (3.29) and (3.30); Fk(Zk, pk) are arbitrary 
analytic functions of their corresponding complex arguments. 

Thus, except for Betti's law, there are three infinite families of conservation 
laws, each depending on an arbitrary analytic function Fk(Zk, ok) of two com- 
plex variables if Stroh's eigenvalues p, are distinct. For degenerate materials, the 
conservation laws can still be constructed by modifying the form of the general 
solutions of the system. For simplicity, we only consider the case where p is a 
double root here. The higher order multiple roots can be treated in a similar way 
without difficulty. If p is a double root, the second independent solution of (2.1) 
can be set as follows (cf. Ting 1982): 

ui = aizf2(z) + a f2(z), (3.34) 

z=X1+pX2, Z=X1- pX2, (3.35) 
where it can be shown directly that a is the eigenvector in (2.3) associated with 
the double root p and f2(z) is an arbitrary analytic function with complex argu- 
ment z. The vector a* can be determined by substituting into (2.1) 

(Q + p(R + RT) + p2T)a* = -2(Q - p2T)a, (3.36) 

where the matrices Q, R and T are given by (2.4). However, the determinant of 
the coefficient matrix of the vector a* is zero for this double root p, the existence 
of the vector a* can hold if and only if 

aT(Q - p2T)a = 0. (3.37) 

Further, it follows from (2.3) that the criterion given by (3.37) can be replaced 
by 

aT{(R + RT) + 2pT}a = 0 (3.38) 
for the existence of the vector a*. 

To illustrate the procedure for degenerate materials, we consider the case of 
linear homogeneous isotropic plane elasticity with the governing equations 

(A + 2/,)ul,11 + IU1,22 + (A + ,)U2,12 = 0, (3 39) 
(A + [)ul,12 + [LU2,11 + (A + 2/L)u2,22 = 0, 

where A, ,/ are Lame constants. The first independent solution of (3.39) can be 
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obtained easily as 

Ui = aifi(z), z = 1 + ix2, (3.40) 

a {l}= . (3.41) 

However, the root p = i are repeated. It can be shown that the eigenvector 
a in (3.41) satisfies the criterion of (3.38) so that the existence of the second 
independent solution is ensured. The vector a* in (3.36) can be chosen as 

a* = (3-4v) {1, (3.42) 

where v is Poisson's ratio related to A and ,u by A = 2,/v/(1 - 2v). The general 
solution of linear homogeneous isotropic plane elasticity can thus be expressed as 
follows: 

2/ { 
u 

Re f) + { j} (z) + (3-4v) {i} (Z)] (3.43) 

where f (z) and f2(z) are arbitrary analytic function with argument z = xl + ix2; 
moreover, this form of solutions given by (3.43) is identical with the famous one 
proposed by Muskhelishvili (1953). 

The first order conservation laws of linear isotropic plane elasticity can be 
developed in a similar way treated in the first part of this section except that the 
general solution given by (2.9) is replaced by (3.43). In fact, all the first-order 
conservation laws of the system of (3.39) have been derived by Olver (1984) and 
we list the primary results here with minor modifications. Differentiating (3.43) 
with respect to the coordinates x1 and x2, respectively, gives 

= f() + f(z) = ) t {(U2,2 - U1,1) + i(u1,2 + U2,1)}, (3.44) 

= f(z) = {4(1 - ))}1/2{(A + 2,U)(Ul,1 + u2,2) + i/(u2, - u1,2)}. (3.45) 

Then, according to the similar arguments for the fully anisotropic case, we can 
change variables from ull,1,ul,2, u2,1 and u2,2 to the real and imaginary parts of 

i and r7 respectively. The fact that 7r is an analytic function of z and the relation 
Qz = i' from (3.44) and (3.45) results in 

T71,1 = 172,2, 171,2=--12,1 i 

[2pt] 1,1- 22,2 = 2 i1,1, (3.46) 
1,2 + -2,1 272,1 

Moreover, let the components of the conserved density T be T1 and T2 respec- 
tively. x - u independent conservation laws of the system (3.39) can be obtained 
by first substituting the general solution ^(3.43) and the relations (3.46)-(3.46) 
into the expansion of (3.1) treating 1i,1, 2,1, i ,1 and I2,1 as independent vari- 
ables. From this approach and without repeating the similar derivations proposed 
by Olver in the subsequent proofs, all the first-order conservation laws depending 
on the material coordinates and deformation gradients are given by (Olver 1986) 

Pro ̂  (G RG SL. 1 

F=- -i ^ + (-z )+ H, (3.47) 
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where F-Ti-iT2, G =G(z; i), H = H(z; ). 
In addition, except for Betti's reciprocal law, the extra conservation law not 
present in the anisotropic case forms the well-known L-integral and is given by 
(cf. Olver 1984b) 

F = i{[(l - V)/pL](Z2 - 2z - _Z2) + wi + (7 + 7i)>}, (3.48) 

where w = ul + iu2. 

4. Explicit real forms 

With the forms of T1 and T2 given by (3.31) and (3.32), respectively, any in- 
tegral form of conservation law which depends on the coordinates and the first 
derivatives of dependent variables can be written in terms of the associated gen- 
erating complex functions 

/(Ti dx2 -T2 dxl) - Im ( Fk dzk) -0, (4.1) 

where Im denotes the imaginary part. Equation (4.1) is valid for arbitrary closed 
integration contour enclosing a region where V T = 0. Moreover, by letting 
Fk = Pk2Fk or Fk = ipk2Fk, it is readily seen that 

dFkdZk,- 0. 
k 

This is consistent with the fact that Fk is an analytic function of zk and integra- 
tion of an analytic function over a closed contour around a region of analyticity of 
Fk vanishes. The analysis here thus shows that the conservation laws are equiv- 
alent to the well-known Cauchy's integral theorem for analytic functions. 

The complex form of the conservation laws can be conveniently separated into 
two real integrals in terms of the physical quantities such as displacements and 
tractions by utilizing the expression for Pk given by (2.22) and the orthogonality 
relations given by (2.13)-(2.16). For example, letting Fk = ~2 or Fk -= zck, 
respectively, leads to 

J-iJ= ZJ 2kdzk, (4.2) 
k k 

2 .in=C/z,~,~ (4.3) M-iM = S Zkkdzk (4.3) 
k 

Equations (4.2) and (4.3) can be expressed in the following forms: 

J-iJ=E Ox fkfds, (4.4) 
k 

k &Asfk 
M-iM=- E rfk ofkds, (4.5) 

k Or Os 

where s is the arc length along the integration contour, r = V/(x + x2) and 
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fk are Stroh's functions. Use of the expression for fk given by (2.20) and the 
orthogonality relations given by (2.13)-(2.16) then gives 

I aO~j 0O7p~ bui ui 
= 2 { (i,lHij- ) -+ i + ij ' - 

as -ijujxl) 
} ds O -s 03- uj,- O+sd$s ( 

12 Oi Ouis M=- ' I(ds + O( 21 ftOu 1 as ) as / ds, 

M = 2 Iz- S( ij r-+ Sij ij r 

1 _ /ui (0u i 0aui \0 i 
2] r Os 

~ 
r Os /r 'd 

in which the matrices H, L and S are given by (2.17), (2.18) and (2.19) respec- 
tively. The J and M integrals are the well-known conservation integrals derived 
by Knowels & Sternberg (1972) in alternative forms. The J and M integrals 
are new. However, it is unclear at this point what physical significance can be at- 
tached to these new integrals. Note that since real-form integrals shown above are 
expressed directly in terms of quantities that do not depend on Stroh's eigenvalue 
p, they are also valid for degenerate materials such as isotropic materials. 

Equations (4.2) and (4.3) can be generalized to obtain interactive conservation 
laws involving two elastic states as 

Jint - iit - k ds (4.6) 
^~^J^k ax lOs' a 

Mint -iMint =-Es r ds (4.7) 

where f and f* are Stroh's functions for two arbitrary elastic states. The corre- 
sponding real-form expressions are given by 

=2j {(, ij Os ) + i ( Siju i S ) ( i Liju1) } ds, Jint = 2--(U,1 , Lijuj, I 

Jint i,ls O ds,) 

OUI 
( rds, 

O as ~ij Or 

1 a(jO4 ' i Ou* Ou\i 
Mint - 

- 3 
2 

a j 
r Os Or as) r ds, 

Similar two-state conservation laws have been discussed in Chen & Shield (1977) 
and Gurtin (1977). 
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5. Concluding remarks 

In this paper we have presented a complete class of first-order conservation laws 
in general anisotropic elasticity. The class of conservation laws are valid for defor- 
mations in which three displacement components are present but are dependent 
only on two coordinates. Based on Stroh's formalism for anisotropic elasticity, we 
have shown that the conservation laws are closely related to Cauchy's theorem 
for complex analytic functions. The orthogonality relations in Stroh's formal- 
ism were utilized to transform the complex conservation laws into those in real 
forms. The real-form integrals contain only quantities that do not depend on 
Stroh's eigenvalues and hence are valid for either non-degenerate or degenerate 
materials. In an accompanying paper we shall extend the present derivations to 
include thermoelasticity with some application of the conservation laws to crack 
problems. 
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