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A cantilever beam-based vibration energy harvester is generally preferred due to its sim-
plicity and effectiveness as compared to a spring mass system. This paper analyses the
use of a spring to amplify the performance of a conventional single degree of freedom
(SDOF) cantilever beam-based vibration energy harvester. A spring was introduced to mod-
ify the conventional SDOF design into a two single degree of freedom (2SDOF) system and a
two degree of freedom (2DOF) system. The motion of the spring was restricted in the ver-
tical motion using a slider and a linear guide rail fixed to the vibrating base, hence intro-
ducing a dynamic friction into the system. Both designs were analysed under three
different cases to observe the effect of natural frequency reduction on the frequency band-
width and power harvested by each design. The vibration-friction interaction in the
designs was modelled based on the concept of relative motion. Two different friction the-
ories were applied and verified with simulation and experiment. It was shown that the
stick condition would not occur in a SDOF system with a dynamic friction interaction. It
was also found that it is possible to tune the friction force of a dynamic friction surface
to induce a favourable output at the isolation frequencies of a 2DOF system. Analysis shows
that the 2DOF design displayed a larger power density than the conventional SDOF design
below a certain natural frequency value, being 78.1% higher at 9.5 Hz. The power densities
of the 2SDOF design were almost similar to the SDOF design. However, the 2SDOF design
displayed a significant drop in power when under the condition of matched natural fre-
quencies. Nevertheless, the frequency bandwidth of the 2SDOF design can be improved
by tuning its two resonant peaks closer to each other.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of generating power from mechanical vibrations to sustain low powered devices was introduced approxi-
mately two decades ago [1]. Since then, research in vibration energy harvesting area have grown due to its promising capa-
bilities [2–4]. The two most common single degree of freedom (SDOF) harvester configuration is by having a mass suspended
on a spring or a clamp-free cantilever beam clamped to a vibrating base. However, the latter is proven to be more popular
due to its simplicity. In addition, Erturk and Inman [5] showed that the output amplitude of a cantilever beam can reach up
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to 56.6% higher than a spring mass system for the same damping and base excitation input. However, using a spring can sig-
nificantly reduce the overall volume of the harvester as compared to using a beam.

Past research have explored the possibilities of different spring mass like systems or cantilever based designs in an
attempt to increase the power output and frequency bandwidth of a vibration energy harvester. Some researchers have used
the repulsive effect of alike pole magnets to act as springs [6–10]. This arrangement resulted in a bi-stable systems in where
the frequency bandwidth was reported to significantly increase. Ooi and Gilbert studied the use of a dual cantilever beam
system in electromagnetic vibration energy harvester application [11]. It was shown that due to the difference in phase angle
between the coil and the magnets, the bandwidth of the system can be increase. Foong et al. suggested a similar concept with
the focus on anti-phase resonance to increase the relative velocity between the coil and the magnets and hence significantly
increase its power output [12]. Wong et al. proposed a multi degree of freedom system to increases the number of resonant
peaks and power output of an electrostatic vibration energy harvester based on the concept of superposition [13]. Similarly,
Liu et al. applied the same concept by using an array of clamp free cantilever beams to increase the bandwidth of a piezo-
electric harvester [14–16]. Nevertheless, not many works has been conducted in the use of an actual spring in vibration
energy harvester applications. Depending on design and application, using a spring has the potential to reduce the volume
of a harvester as compared to a beam.

In theory, the vibration of a mass on a helical spring is assumed to move in only one direction. This would not be the case
in practical applications as depending on the weight of the mass and the stiffness of the spring, the spring can be subjected to
buckling in where the spring bends in the lateral direction. The buckling effect can be suppressed by either vibrating the
mass horizontally on a flat surface or by attaching some sort of guide system to ensure that the mass only vibrates in the
desired direction. However, both cases would inevitably introduce friction into the system. Friction in a vibrating system
is often described as a non-linear phenomena due to its complex interaction. In some cases, non-linear vibration behaviour
is desirable as it was shown to improve the performance of a harvester [17]. One of the most commonmethod used to model
this friction is the Coulomb friction model [18–20]. Several mathematical models have been well established in past litera-
tures, considering cases of a static friction surface [21,22] or a friction surface travelling under constant velocity [23,24].
However, a friction model for the case of a dynamic vibrating friction surface have yet to be demonstrated.

This study explores the use of a spring to modify and amplify the performance of a conventional SDOF cantilever beam-
based electromagnetic vibration energy harvester in terms of its power output, while maintaining the same overall volume.
In addition, the effect of a dynamic surface friction on the performance of the harvester was also studied. For the first mod-
ification, a spring was attached to the magnets and fixed onto the vibrating base while the cantilever beam remain clamped
to the vibrating base, creating two single degree of freedom (2SDOF) systems. The second modification was to apply the
spring to the base of the cantilever beam instead while the magnets remained clamped to the vibrating base. This resulted
in a two degree of freedom system (2DOF). A mechanical slider and a linear guiderail was used to ensure that the spring
vibrates vertically. The mechanical slider was attached to the vibrating mass whereas the linear guiderail was fixed to the
vibrating base. The mathematical models for a single degree of freedom (SDOF) spring mass and cantilever beam system
as well as a two degree of freedom (2DOF) spring mass system were presented. In addition, the friction behaviour for a
dynamic vibrating friction surface was also modelled to account for the friction between the slider and the guiderail. The
theoretical equations were verified with experiment and finite element analysis (FEA) simulations for three different cases.
The effect of friction on the performance of the 2SDOF and 2DOF design was thoroughly discussed. Lastly, the peak power
output and power densities of all three designs were compared and analysed.
2. Basic theory

In this study, two different vibrations systemwill be studied, namely the 2DOF and the 2SDOF systems and compared to a
conventional SDOF cantilever beam-based vibration energy harvester design represented by a clamp free beam. The overall
volume of all harvesters were fixed. This section describes the basic theory and governing equations for a SDOF and 2DOF
spring-mass system with viscous damping and a dynamic surface friction, a cantilever beam with tip mass and the power
output of an electromagnetic energy harvester.

2.1. Mathematical model of SDOF and 2DOF spring-mass system under harmonic base excitation with viscous damping and surface
friction

Consider the following simplified models for a SDOF and 2DOF spring-mass vibration system shown in Fig. 1. Here,mp, kp
and cp refers to the mass, spring stiffness and damping constant of each masses where p ¼ 0;1 and 2, corresponding to the
masses in Fig. 1. xp describes the absolute vertical motion of each mass under a sinusoidal base excitation input of Ysin xtð Þ.
Finally, FR refers to the magnitude of the frictional force between the mass and a frictional surface. The sign change for FRwill
be explained in the next section.

Assuming the spring to be massless, the governing equation for the SDOF model at time t is
m0€x0 þ c0 _x0 þ k0x0 ¼ k0Ysin xtð Þ � FR ð1Þ

whereas for the 2DOF system,



Fig. 1. Cantilever beam with a lumped mass placed on the free-end of the beam.

234 C.K. Thein et al. /Mechanical Systems and Signal Processing 132 (2019) 232–252
m1€x1 þ c1 _x1 þ k1x1 þ c2ð _x2 � _x1Þ þ k2ðx1 � x2Þ ¼ k1Ysin xtð Þ � FR ð2Þ

m2€x2 � c2ð _x2 � _x1Þ � k2ðx1 � x2Þ ¼ 0 ð3Þ

Y ¼ G=x2 ð4Þ

FR ¼ lFL ð5Þ

where Y and G are the amplitude and acceleration of the base excitation input, x is the driving frequency of base, l is the
coefficient of friction between the two contact surfaces and FL is the normal load acting on the contact surfaces. The second
derivative represents the acceleration and the first derivative is the velocity. In most practical applications, masses are usu-
ally vibrated under a constant base acceleration. This will result in a change of the Y value at different frequencies. The
damping constants in Eqs. (1)–(3) can be related to their corresponding damping ratios, fp, as follow
fp ¼
cp

2
ffiffiffiffiffiffiffiffiffiffiffi
kpmp

p ð6Þ
Eqs. (1)–(3) can be solved by assuming the following steady-state solution
xpðtÞ ¼ Bpsin xtð Þ þ Dpcos xtð Þ ð7Þ

The constants Bp and Dp can be determined by substituting Eq. (7) into Eqs. (2) and (3) and equating the sine and cosine

terms. Applying the trigonometrical identities, Eq. (7) can be rewritten as
xpðtÞ ¼ Apsin xt þ hp
� � ð8Þ

Ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bp

2 þ Dp
2

q
ð9Þ

hp ¼ tan�1 Dp

Bp

� �
ð10Þ
where Ap is defined as the absolute steady-state amplitude of the response and hp is the respective phase angle.

2.2. Theoretical friction modelling for a dynamic friction surface

Consider the case wherem0 andm1 are the only masses in contact with the friction surface for the SDOF and 2DOF model,
respectively. Normally the friction surface is usually modelled as a static surface [21,22]. In this case, the friction force direc-
tion will always oppose the motion of m0 and m1. However, if the friction surface was to vibrate together with the base, the



C.K. Thein et al. /Mechanical Systems and Signal Processing 132 (2019) 232–252 235
friction surface would become a dynamic surface. The direction of the friction force is then strongly related to the relative
velocity between the vibrating mass in contact and friction surface. For two sliding surfaces, the direction of friction force
acting on one contact surface would not necessarily be the same as the other surface. For a vibrating mass, the steady-
state velocity of the mass is simply the product of the steady-state amplitude and the vibrating frequency. However, since
the mass in contact and the friction surface are vibrating under the same frequency, the friction direction can be directly
related to the absolute steady-state amplitude of the mass in contact, Ap and the base amplitude, Y . Fig. 2 illustrates the
direction of the friction force acting on the mass in contact for four different cases.

For cases (a) and (c), the magnitude of Ap is larger than Y . This means that the direction of the mass in contact relative to
the friction surface would be equal to the direction of Ap. Hence, the direction of the friction force acting on the mass in con-
tact is opposite to the direction of Ap. For cases (b) and (d), the magnitude of Y is larger than Ap. Therefore, the direction of the
mass in contact relative to the friction surface would in the direction of Y , making the direction of the frictional force to be
equal to the direction of Ap. Overall, the mass in contact would experience an opposing friction force (�FR) when the mag-
nitude of Ap > Y and a contributing friction force (þFR) when the magnitude of Ap < Y . This suggest that the direction of the
friction force in highly dependent on the magnitude of Y and Ap and the phase angle of Ap, as the phase angle of Ap deter-
mines the direction of Ap. Fig. 3(a) describes the change in friction direction for a SDOF system and Fig. 3(b) illustrates the
change in direction between the mass in contact and the friction surface with respect to the phase angle of the mass, hp.

Fig. 3(a) shows that the frequency at which the friction changes direction is located at the intersection between Ap and Y .
This frequency is known as the isolation frequency, xI , in where it is defined as the point at where the output response
changes from higher to lower than the input response or from lower to higher. Fig. 3(b) describes how the direction of Ap

changes according to its phase angle. It shows that be for the resonance frequency, xn, the direction of Ap is aligned with
the dynamic friction surface whereas after, xn, Ap vibrates in the opposite direction with respect to Y . One can note that
Fig. 3(a) only display a single point of intersection between Ap and Y , which is expected for a SDOF system with a single
vibration mode. However, a 2DOF system may experience two or more intersection frequencies depending on the signifi-
cance of the second mode. For this case, the friction direction would be expected to change at each intersection.
Fig. 2. Direction of friction force acting on the vibrating mass for four different scenarios.

Fig. 3. (a) Change in friction direction of a SDOF system. (b) Change in motion direction of SDOF system.
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It is important to understand that the first isolation frequency for a structure under linear base excitation vibration must
be evaluated under the consideration of an opposing friction force (�FR) acting on the mass in contact and not under fric-
tionless condition. This is because friction is already present in the system and will affect the amplitude of Ap regardless
of the base input. In addition, Ap will always be higher than Y before the first isolation frequency and would hence experience
and opposing friction force. After the first isolation frequency, the mass in contact would experience a contributing friction
force (þFR). If a second isolation frequency exist, then it must be evaluated under consideration of þFR.

A SDOF system would generally only have a single isolation frequency. However, a 2DOF system with a significant second
mode may experience more. Therefore, every subsequent isolation frequency must be evaluated depending on the direction
of the friction force. Fig. 4(a) and (b) explain the correct method in evaluating the isolations frequencies of a SDOF and a
2DOF system. The vertical axis in Fig. 4 was plotted using a log scale to aid visually. The black markers represent the isolation
frequencies of the system.

In this paper, the change in friction force direction and magnitude was only considered atxI and was assumed to behave
in two different manners. At other frequencies, the friction force magnitude is assumed to be equal to FR. The first method
(Theory 1) was to assume that the transition of the friction force direction and magnitude at xI behaves in a similar manner
to the transition of the phase angle at each resonance mode. This theory is comparable to a modified Coulomb friction model.
For each intersection point, this change can be estimated based on the following equations
FR ¼ �FR
h

a
� � 1

� �
ð11Þ

h ¼ tan�1 2xxIfp
xI

2 �x2

� �
ð12Þ
where fp ¼ f0 for the SDOF model and fp ¼ f1 for the 2DOF model and a
�
is the average value between the maximum and

minimum value of h. It is worth to mention that h actually represents another form of the phase angle equation for a SDOF
system. The sign change indicate how the friction direction changes, either from negative to positive (þFR) or from positive
to negative (�FRÞ. This assumption assumes that the magnitude and direction of the friction forces changes accordingly at
the isolation frequencies. The rate of change is solely dependent on fp. The second method (Theory 2) was to assume that
the change in friction is abrupt, and changes suddenly from negative to positive at each isolation frequency. In this assump-
tion, only the direction of the friction force changes at the isolation frequencies whereas the magnitude of the force is con-
stant. This theory is similar to the classical Coulomb friction model in terms that the friction force magnitude is independent
of the vibrating velocity [25]. Generally, the coulomb friction law is applied for dry friction cases.

Normally, for an object to move on a friction surface, the force exerted on the object must be larger than the frictional
force acting on the object. Otherwise, the object would remain stuck to the friction surface. This phenomena is commonly
known as the stick-slip phenomena. In general, the stick condition would occur when the resultant force between the force
exerted on the mass and the friction force is smaller than zero and the slip condition would initiate when the resultant force
is larger than zero. For a system under base excitation vibration, the force exerted on the vibrating mass is equal to the base
input force. Hence, the stick condition of a base-excited vibrating system with a dynamic friction surface is
Fj j ¼ kpY � FR < 0 ð13Þ

where Fj j is the resultant force between the force exerted on the base and the friction force. Notice that Eq. (13) corresponds
to the right hand side of Eqs. (1) and (2) under steady-state condition. The slip condition would then be
Fig. 4. Correct method in evaluating the isolations freqeuncies of a (a) SDOF and (b) 2DOF system.
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Fj j ¼ kpY � FR > 0 ð14Þ

Base on Eqs. (13) and (14), it can be deduced that the stick condition would only occur when FR is negative. This means

that for the case of a SDOF system under base excitation vibration with a dynamic friction surface, the sticking condition
would not occur provided that the magnitude of kpY is larger than FR at frequencies lower or equal toxI , since a SDOF system
only has a single isolation frequency and after xI , FR is always positive. In the case of a static friction surface, the sign for FR

would always be negative, indicating that it always oppose the exerted force. Fig. 5 shows the slip-stick region of the 2DOF
system illustrated in Fig. 1 for the case of a dynamic and static friction surface.

It can be seen that the static friction surface case is more prone to sticking as compared to the dynamic case. Theories 1
and 2 predicts different frequencies at where sticking begins due to the difference in their assumptions. One of main differ-
ence between the stick condition for a dynamic friction surface and a static friction surface is that the mass in contact would
theoretically remain stationary if it sticks to a static friction surface. However, since the dynamic friction surface vibrates
together with the vibrating base, this would cause the mass in contact to remain vibrating under the stick condition. Depend-
ing on application, this condition may or may not be desirable.

2.3. Mathematical model of cantilever beam with lumped mass under harmonic base excitation

Consider the case of a clamp-free cantilever beam with a lumped mass attached on its free-end, subjected to a base exci-
tation motion as illustrated in Fig. 6.

Here, E, I, q, m and L represents the Young’s modulus, second moment of area, density, mass and length of the cantilever
beam whereas mt , it and st are the mass moment of inertia and static moment of the lumped mass at position u ¼ L. The
transverse motion of the beam at position x and time t can be described by the following equation.
vabs u; tð Þ ¼ v rel u; tð Þ þ v0eixt ð15Þ

where vabs u; tð Þ is the absolute vertical displacement of the beam, v rel u; tð Þ is the vertical displacement beam relative to its
vibrating base and v0 and x are the vertical amplitude and vibrating frequency of the harmonic base excitation. In most
vibration energy harvesting applications, the geometry of the beams used allows it to be modelled from the Euler-
Bernoulli theory. Using the method of separation of variables, the term v rel u; tð Þ can be separated into its spatial and temporal
components [26].
v rel u; tð Þ ¼
X1
n¼1

unðuÞgnðtÞ ð16Þ
Fig. 5. Slip-stick condition for a 2DOF system subjected to a (a) dynamic friction surface and (b) static friction surface.

Fig. 6. Cantilever beam with a lumped mass placed on the free-end of the beam.
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where unðxÞ is the modal shape function of the beam and gnðtÞ is the regular-response function. These terms can be
described as the following equations
unðuÞ ¼ Kn cosh
kn
L
u� cos

kn
L
u� J1

J2
sinh

kn
L
u� sin

kn
L
x

� �� �
ð17Þ

gnðtÞ ¼
x2v0eixtFn

xn
2 �x2 þ i2fnxnx

ð18Þ

Fn ¼ m
L

Z L

0
un uð ÞduþmtunðLÞ þ st

dun

du
ðLÞ ð19Þ

1
Kn

2 ¼ m
L

Z L

0
sn uð Þ½ �2dxþ snðLÞ mtsnðLÞ þ st

dsn
dx

ðLÞ
� �

þ dsn
dx

ðLÞ it
dsn
dx

ðLÞ þ stsnðLÞ
� �

ð20Þ

snðuÞ ¼ unðuÞ
Cn

ð21Þ
where fn corresponds to the modal damping ratio of the beam and kn and J1
J2
are constants that can be determined from the

boundary conditions of the beam-mass system [27]. Substituting Eqs. (17) and (18) into Eq. (16) and considering only the
first mode parameters at resonance (x ¼ x1Þ results in
v rel u; tð Þ ¼ v0eix1tu1 uð Þ
2f1

F1 ð22Þ
To evaluate the vertical displacement of the beam after u ¼ L, the following extrapolation can be applied
v rel u > L; tð Þ ¼ v0eix1tu1 Lð Þ
2f1

F1 þ ðu� LÞ@u1 uð Þ
@u

				
u¼L

ð23Þ
Subsequently, the phase angle of a vibrating beam, hb, can be determined from the denominator of Eq. (18), resulting in
the similar form to Eq. (12).
hb ¼ tan�1 2xxnfn
xn

2 �x2

� �
ð24Þ
2.4. Voltage output and damping evaluation methods

Based on Faraday’s law of electromagnetic induction and Kirchhoff’s voltage law, the root-mean-square (RMS) peak volt-
age produced at the load resistor when the vibrating coil cuts through a magnetic field is described by Eq. (25).
VL ¼ 1ffiffiffi
2

p NcBlcArelxf
RL

RL þ Rc
ð25Þ
where VL is the induced RMS peak voltage across the load resistance RL, Nc is the number of turns of coil, B is the average
magnetic flux, lc is the effective length of the coil, Arel is the amplitude (peak displacement) of the vibrating coil relative
to the magnets, f is the coil fill factor [28] and Rc is the coil resistance. Under the same base excitation motion, Arel can from
the following equation
Arel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ac

2 þ Am
2 � 2AcAmcosðhc � hmÞ

q
ð26Þ
where Ac and Am are the absolute amplitudes of the vibrating coil and magnets and hc and hm are their respective phase
angles. Applying ohm’s law, the peak power output at the load resistance can then be calculated by
PL ¼ VL
2

RL
ð27Þ
One of the main issue in vibrations is on the damping evaluation of the vibrating system. Normally for an electromagnetic
vibration energy harvester, there are two dominant sources of damping which are the mechanical damping and the electro-
magnetic damping [29]. In this study, the mechanical damping ratio for the spring-mass systemwas determined from exper-
iment. However, the mechanical damping ratio for the cantilever beam was obtained using the critically damped stress
method proposed by Foong et al. [30,31], with the following damping stress equation for first mode vibrations of stainless
steel beams
fm ¼ 2:109� 10�8rcr
0:8447 þ 0:001662 ð28Þ
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where rcr is described as twice the stress at the clamped end of the beam under resonance and critically damped condition
(f1 ¼ 1Þ. For first mode vibrations, this value can be approximated by
rcr ¼ Ehu0
b1

L

� �2

K1F
1

ð29Þ
where h is the thickness of the beam. Note that for macro sized structures, the air damping and thermo-elastic loss of stain-
less steel can be considered negligible [30]. The electromagnetic damping for both the spring-mass system and the cantilever
beam can be estimated from Eq. (30) [32].
fe ¼
NBlfð Þ2

2meqxn Rc þ RLð Þ ð30Þ
where fe is the electromagnetic damping and meq is the equivalent mass of the structure. Therefore, the total damping of an
electromagnetic harvester is equal to the sum of Eqs. (28) and (30) [1,33,34].
f1 ¼ fm þ fe ð31Þ
3. SDOF cantilever beam-based electromagnetic vibration energy harvester

In this section, the voltage output of a conventional cantilever beam-based vibration energy harvester shown in Fig. 7 was
simulated and experimentally recorded. The results in this section would be used to verify the analytical equations and com-
pared to the 2DOF and 2SDOF design. The 2DOF and 2SDOF designs are simply the modified version of Fig. 7 through the
addition of a spring component, while maintaining the same overall volume.

The design in Fig. 8 consist of a stainless steel cantilever beamwith a coil attached on one end and clamped to the base on
the other end. Two pairs of magnets were fixed onto the magnet holder and clamped onto the base. A steel plate was also
placed behind the magnets to concentrate the magnetic field in the air gap between them [8]. Voltage is generated when the
Fig. 7. Conventional cantilever beam-based electromagnetic vibration energy harvester.

Fig. 8. Finite element model mesh and boundary conditions of a conventional SDOF harvester.
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beam vibrates causing a change in magnetic flux as the coil to cuts through the magnetic field of the magnets. Since there are
no relevant surface contacts, frictional interactions are not required to be modelled.
3.1. FE modelling of SDOF cantilever beam-based electromagnetic vibration energy harvester

The cantilever beam and coil was modelled and simulated in ANSYS Workbench 17.2 as a clamp free cantilever beam
using a 20-node SOLID186 quadratic elements with a 0.50 mm element size for the beam and a 2 mm element size for other
components. A fixed boundary condition was applied to the clamped end of the beam. The mechanical damping ratio of the
beam was evaluated by performing a harmonic analysis on the FE model using a damping ratio input of fm = 1 and a base
acceleration input of G = 0.30 g (1 g = 9.81 ms�2). The value of rcr was then determined from the first mode resonance of
the simulated results and substituted into Eq. (28) to obtain the actual value of fm. The electromagnetic damping, fe, was
simply calculated from Eq. (30), in where the equivalent mass of the structure, meq, was obtained from the FE model. The
harmonic analysis was then repeated using the same base acceleration input and a damping ratio value equal to the sum
of fm and fe. The simulation was then repeated for a base acceleration input of 0.35 g, 0.40 g, 0.45 g and 0.50 g. The properties
of the coil and the beam for each different base acceleration magnitude is listed in Table 1.

Since the magnets are directly clamped to the base, their vibrating amplitude and phase is assumed equal to the vibrating
base. Hence, the magnet vibrations were not simulated. The mesh and boundary conditions of the cantilever beam FE model
is illustrated in Fig. 8.

Technically, the amplitude of a vibrating beam would vary with position u. In this study, the average amplitude of the
entire coil is assumed to be equal to the amplitude at the centre of the coil. This position was measured to be at u ¼ Lþ
32.05 mm. As the magnets are fixed to the vibrating base, the absolute amplitude of the magnets, Am, is equal to the ampli-
tude of the vibrating base. Therefore, the amplitude of the coil relative to the magnets, Arel, would correspond to the ampli-
tude of the coil relative to the vibrating base. In the FEA simulation, ANSYS Workbench outputs the base relative amplitude
of a vibrating object at any desired position on the FE model for a set frequency range when using the harmonic analysis step.
This means that the peak voltage output can be directly determined by substituting the simulation results into Eq. (25).
3.2. Experimental verification and discussion of SDOF cantilever beam-based electromagnetic vibration energy harvester

An experiment was performed to validate the FE model and the theoretical equations. The design in Fig. 7 was fabricated
and fixed onto an LDS V406 electromagnetic shaker as shown in Fig. 9.

The shaker was controlled using an analogue output NI-USB 6341 function generator and a closed loop feedback system
was created using an accelerometer (500 mV/g). The feedback accelerometer was connected to an analogue input NI 9229
data acquisition card (DAQ), which is connected to the computer and controlled through LabVIEW. The induced voltage gen-
erated is also connected to the same DAQ. The displacement of the vibrating coil was captured using a separate system con-
sisting of a Fiber optic MTI 2100 fotonic sensor. The experiment was conducted for the same five base acceleration
magnitude as the FEA simulation. The amplitude of the coil at u ¼ Lþ 32.05 mm and the peak to peak load voltage was
recorded for each experiment. The amplitude values recorded from experiment relates to the absolute amplitude. Fig. 10
shows the results of the coil’s absolute amplitude, Ac , and the RMS peak voltage at the load resistor, VL for theory, FEA sim-
ulation and experiment.

Eq. (26) was applied to determine the absolute amplitude of the coil for the theoretical and simulation results. The exper-
iment results recorded a natural freqeuncy of 29.2 Hz whereas the theoretical and simulation results recorded a natural fre-
qeuncy of 29.1 Hz and 29.2 Hz respectively. This result in an error of less than 1.0%. In terms of the base relative amplitude
and load voltage, the theoretical results displayed a maximum error of 16.0% with respect to the experimental results for an
acceleration level of 0.3 g. It can be concluded that a good agreement can be observed for all plotted results in Fig. 10 in terms
of trend and values. This hence verfies the FE model and the theoretical equations applied in this study. Additionally, the
results also validates the mechanical damping evaluation method for cantilever beams applied here.
Table 1
Properties of cantilever beam for the FE model.

Coil Cantilever beam

Nc 250 G (g) 0.30 0.35 0.4 0.45 0.50
B (T) 0.26 E (GPa) 180 180 180 180 180
lc (mm) 44 I (mm4) 0.833 0.833 0.833 0.833 0.833
Rc (X) 6.5 h (mm) 1.0 1.0 1.0 1.0 1.0
RL (X) 22.0 L (mm) 65.0 65.0 65.0 65.0 65.0
f 0.65 q (kgm�3) 7788.5 7788.5 7788.5 7788.5 7788.5

meq (g) 22.98 22.98 22.98 22.98 22.98
rcr (MPa) 3.730 4.352 4.974 5.595 6.217
fm 0.0092 0.0102 0.0112 0.0122 0.0132
fe 0.0146 0.0146 0.0146 0.0146 0.0146



Resistor

Electromagnetic 
shaker

Fiber optic 
MTI 2100 

fotonic sensor

Analogue output

Analogue input

Amplifier

Fig. 9. Experiment setup to determine the voltage output of a conventional electromagnetic harvester.

Fig. 10. Absolute coil amplitude and peak voltage comparison between theory, FEA simulation and experiment.
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4. Modification to 2SDOF system through spring addition

One of the main disadvantages of the conventional SDOF cantilever beam harvester is its limited operational frequency
range. Generally, useful power is only generated when the system vibrates at or very close to its resonant frequency. To over-
come this drawback, a spring was introduced into the conventional SDOF design, replacing the clamp used to clamp the mag-
nets as seen in Fig. 11. This will cause both the coil and the magnet to vibrate when the base vibrates. Note that the overall
volume of the conventional SDOF design is maintained.

The modified design is basically a 2DOF system consisting of two SDOF structures. Since the vibration of the coil and the
magnets are independent to each other, this designwill be referred to as a 2SDOF design. Amechanical slider (HIWINMGW9C
Fig. 11. Design of a 2SDOF electromagnetic vibration energy harvester.
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model) and a linear guiderail was used to ensure that the magnet and spring only vibrates in the vertical direction. This
unavoidably introduced a small friction into the system. The preload between the mechanical slider and the linear guiderail
was given as 55 N [35] and the friction coefficient between these two components was determined to be l = 9.8 � 10�4. This
friction coefficient correlates to the kinetic friction coefficient. The static friction coefficient was not considered as the static
friction would have converted to kinetic friction when steady-state vibration is achieved. Since the mechanical slider is posi-
tioned vertically, it is acceptable to assume that the preload and the friction coefficient between the slider and the guiderail is
independent of the mass attached to the slider, ensuing a constant frictional force magnitude of FR = 0.054 N.

The stiffness of the added spring was determined using Eq. (32) based on the properties of a fabricated spring.
Table 2
Propert

Mag

di (m
Es (G
do (m
Ns

k (N
meq

fm
fe
c (N
k ¼ d4
i Es

8d3
oNs

ð32Þ
where di is the diameter of the spring wire, Es is the shear modulus of the spring material, do is the outside diameter of the
turn and Ns is the number of active turns of the spring. These values are tabulated in Table 2, resulting in a spring stiffness of
1017.8 Nm�1. The mechanical damping ratio of the spring (without friction) was obtained from experiment using the log-
arithmic decrement method based on the voltage reading as shown in Fig. 12 [36], resulting in a damping ratio of 0.0454. The
electromagnetic damping of the design was determined from Eq. (30) and its respective damping constant was then
obtained using Eqs. (6) and (31). It is worth to mention that the initial constant voltage value in Fig. 12 was due to a large
initial displacement that exceeded the limitations of the fiber optic sensor, which have a maximum working range of
approximately ± 4.0 mm.
4.1. FE modelling of 2SDOF design

Since the coil and magnets in the 2SDOF design can act as two individual systems, they can be simulated separately, pro-
vided that both the mechanical and electromagnetic damping are considered in the separate simulations. In addition, the
voltage output of the 2SDOF system must be determined based on the relative amplitude between the coil and the magnets.
Similar to before, the vibration of the cantilever beam with coil was simulated in ANSYS Workbench 17.2 under a constant
base excitation acceleration of 0.3 g using the same cantilever beam properties and dimensions as in Table 1. The simulation
of the beam was conducted for a total of three cases to observe the effect of natural frequency reduction on the behaviour of
the design. Here, Case 3 corresponds to the configuration illustrated in Fig. 7 and Case 2 and Case 1 correspond to the con-
figurations where additional masses,ma, weighing 36.80 g and 87.55 g were added onto the coil holder to reduce the natural
frequency of the beam. The base excitation acceleration was kept at 0.3 g for all three cases. It is easy to notice that the
vibrating coil simulation for Case 1 has actually been conducted in the previous section. For Cases 2 and 3, the additional
masses were modelled added as block masses to replicate available materials.

The vibration of the magnet component was modelled in ABAQUS 2018 due to the reason that convergence issue for non-
linear contact problems are more resolved in the latest version of ABAQUS [37], resulting in a significantly shorter simulation
time. These components were modelled as a simplified two dimensional SDOF spring mass system using CPS4R (a 4-node
bilinear plane stress quadrilateral, reduced integration, hourglass control) elements with a mesh size of 0.25 mm for the
mass and 0.50 mm for the base. The simplification was made to reduce computational time. The masses of the magnets,
magnet holder, clamp and mechanical slider were represented by Mass 0 in Fig. 14, in which Mass 0 is a square geometry
measuring 10 � 10 mm with a density value that reflects the equivalent summed mass of all the said components. An L-
shaped geometry was modelled for the base, ensuring that the tall side of the base makes contact with the Mass 0. A spring
and dashpot element was added to connect Mass 0 to the base. A boundary condition was applied to the base to constrain it
in the horizontal direction. The friction between the mechanical slider and the linear guiderail was defined in the form of a
surface friction between Mass 0 and the tall side of the base in the FE model. A general frictional interaction with a defined
friction coefficient of 9.8 � 10�4 was assigned to the FE model. A pressure load was applied to the mass to generate a normal
force that is equal to the 55 N preload [35].
ies of the magnet-spring and cantilever beam component for the 2SDOF FE model.

nets and Spring Cantilever beam

Case 1 Case 2 Case 3

m) 1.5 ma (g) 87.55 36.80 0.00
Pa) 69 meq (g) 87.73 54.67 22.98
m) 18.3 rcr (MPa) 14.772 8.597 3.730

7 fm 0.0257 0.0169 0.0092
m�1) 1017.8 fe 0.0082 0.0093 0.0140
(g) 217.56 xn (Hz) 13.4 18.9 29.2

0.0454
0.0041

s m�1) 1.48



Fig. 12. Logarithmic decrement plot of spring mechanical damping ratio.

C.K. Thein et al. /Mechanical Systems and Signal Processing 132 (2019) 232–252 243
A transient analysis was performed in ABAQUS using the dynamic implicit analysis step by defining a sinusoidal base
excitation input corresponding to an acceleration of 0.3 g at the bottom of the base. The amplitude of the sinusoidal base
input was determined from Eq. (4). Fig. 13 describes the mesh and boundary conditions of the FE model for the magnet com-
ponent in the 2SDOF design.

The simulation of the magnets and spring component was only conducted once due to the fact that the configuration
remained the same in all three cases. Table 2 tabulates the specifications of the 2SDOF design for Cases 1, 2 and 3.

Since a transient analysis was performed using a dynamic implicit step in ABAQUS, the output amplitude of the vibrating
mass obtained from the simulation would relate to the absolute amplitude of the FE model. The voltage output of the sim-
ulation was then calculated using Eqs. (25) and (26).
4.2. Experimental verification and discussion of 2SDOF design

An experiment was carried out using the same apparatus as in Fig. 5 for Cases 1, 2 and 3 to validate the FEA simulation
results and the analytical equations in Section 2. In the experiment, the peak to peak voltage generated by the design and the
absolute amplitude at position A in Fig. 11 were recorded. For this design, the recorded absolute amplitude correspond to the
absolute amplitude of the vibrating magnets. Fig. 14 displays the comparison between experiment, FEA simulation and the-
ory for the absolute amplitude of at position A, AA, and also the peak RMS load voltage, VL, for all three cases. Under the given
input base acceleration, the magnitude of the input force, kpY , was determined to be larger than the friction force, FR, at fre-
quencies belowxI . Hence, the stick condition would not be predicted by the theoretical equations. The difference due to the
assumptions made in Theory 1 and Theory 2 are highlighted in the zoomed in section for each plot. The first peak in the load
voltage plots for all three cases corresponded to the first mode resonance of the magnets whereas the second peak corre-
sponded to the fundamental resonance of the coil.

Results in Fig. 14 shows a strong agreement between the theoretical calculations and FEA simulation. The isolation fre-
qeuncies,xI were determined to be at 14.7 Hz for all three cases, hence signifying a sudden increase or decrease in voltage at
these regions for when Theory 2 was applied. However, it is observed that the simulation results agree more with Theory 1,
Fig. 13. FE model mesh and boundary conditions of the magnet component in 2SDOF design.



Fig. 14. Absolute amplitude of a point A and RMS peak voltage output for Cases 1, 2 and 3 of 2SDOF design.
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as there are no sudden changes in amplitude or voltage from the simulation results. The reason for this is due to the FEA
program itself. Discontinuities are observed in Theory 2 as the change in friction direction was assumed to be instantaneous,
making it impossible to solve analytically. Hence, the FEA software modifies the Coulomb friction model so that the change
in friction direction is more delayed, instead of instantaneous. At this point, it is unclear as to which theory assumption
agrees more with the experimental results, as the differences between Theory 1 and Theory 2 are very small and may not
be reflected properly in the experiment. It can be seen that the experimental results for the absolute amplitude of the mag-
nets is significantly lower than the theoretical and FEA results at its peak value. This is due to the limitation of the fibre optic
sensors used in the experiment as mentioned earlier. Hence, any amplitude higher than this range will not be captured prop-
erly by the sensors. Nevertheless, a good agreement can be seen between the experimental results and both analytical results
in terms of voltage output for all three cases, suggesting that the FEA simulation and the theoretical equations are correct.

One of the main advantage of the 2SDOF design as compared with the conventional SDOF design is the presence of two
operational resonant freqeuncy. This means that useful power can be generated under two different freqeuncy ranges. The
addition of the spring in the conventional SDOF design causes both the coil and the magnets to vibrate, resulting in two dis-
tinct voltage peaks corresponding to the first mode resonance freqeuncy of the magnets and the coil. In addition, the voltage
between the these two peaks was also improved due to the anti-phase motion between the coil and the magnets within this
region, resulting in a greater relative amplitude. This improvement is more obvious when the two resonant freqeuncies are
closer to each other as seen in Case 1, resulting in an increase in the operational freqeuncy bandwidth. In terms of voltage
output, Case 1 recorded the highest power output at the second peak, which is mostly due to the decrease in the resonance
freqeuncy of the coil from the additional mass. Nevertheless, if Case 3 was to be compared with the conventional SDOF
design for the same base input of 0.3 g, the maximum peak voltage for both designs are very similar. Hence it can be
concluded that while the 2SDOF design can enhance the bandwidth of an electromagnetic harvesters, it produces the same
maximum peak voltage as that of a conventional SDOF design.
5. Modification to 2DOF system through spring addition

Similar to the 2SDOF design, a spring was introduced into the conventional SDOF design to overcome its limitations while
maintaining the same volume. This time, the spring was fixed to the base of the cantilever beam whereas the magnets were
clamped onto the vibrating base as seen in Fig. 15.
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This new design is similar to the 2SDOF design in terms that both designs represent a 2DOF system. However, the vibra-
tion of the coil and the spring in this design are not independent to each other, in where the vibration of the spring in greatly
influenced by the stiffness and the damping of the cantilever beam. Therefore, this design will be referred to as a 2DOF
design. The same frictional force of FR = 0.054 N was also assumed for this design. Since the same spring was used, the stiff-
ness of the spring remains the same. However, the mechanical damping ratio of the spring was experimentally re-
determined to be equal to 0.080.
5.1. FE modelling of 2DOF design

The 2DOF design in Fig. 15 was simplified into an equivalent 2DOF spring mass system as seen in Fig. 1 and modelled in
ABAQUS. The FE model of the 2DOF design is similar to Fig. 13, except that a second mass was added on top of the Mass 1 and
connected to Mass 1 with a spring and dashpot element as seen in Fig. 16. The geometry of Mass 2 was modelled smaller
than Mass 1 to avoid any contact with the tall side of the L-shaped base. Mass 2 represents the equivalent mass of the can-
tilever beam, coil holder and coil whereas Mass 1 represents the equivalent mass of the clamp and mechanical slider. Their
respective spring and dashpot elements corresponds to the stiffness of the components. The same element type, friction def-
Fig. 15. Design of a 2DOF electromagnetic vibration energy harvester.

Fig. 16. FE model mesh and boundary conditions of the 2SDOF design.
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inition, mesh sizes and boundary conditions as the 2SDOF model were applied here, with an additional constraint applied on
Mass 2 to restrain its motion in the horizontal direction. In addition, the same three cases as the 2SDOF design was also anal-
ysed for this design.

Table 3 describes the stiffness, damping and equivalent masses applied to Mass 1 and Mass 2 in the 2DOF FE model. The
mechanical damping ratio of the cantilever beams for all three cases were assumed to be equal to that of the 2SDOF design.
However, the electromagnetic damping ratios will differ according to the natural frequency of the design. The mechanical
damping ratio of the spring was assumed constant for all three cases.

A transient analysis was performed on the FE model using the dynamic implicit step and the absolute amplitude of Mass 2
was recorded at different frequency intervals. The voltage was then calculated based of the relative amplitude of Mass 2 with
respect to the vibrating base.

5.2. Experimental verification and discussion of 2DOF design

The previous experiment was repeated for the 2DOF design by exchanging the position of the magnets and the cantilever
beam. The peak to peak voltage of the design and the absolute amplitude of point A was recorded for different frequency
intervals. Fig. 17 shows the comparison between experiment, theory and FEA simulation results. In the analytical results,
the sticking effect was not predicted in all three cases for the given frequency range. The differences between Theory 1
and Theory 2 are highlighted in the zoomed in section for all plots. A good agreement can be seen between the theoretical,
FEA simulation and experimental results for all cases.

Case 3 recorded a single isolation frequency whereas Case 1 and Case 2 recorded three and two isolation frequencies
respectively. Due to the limitations of the fibre optic sensor stated earlier, the experimental absolute amplitude for Case
1 could not be recorded properly. In addition, it is observed that the experiment results may have experienced a certain
degree of the stick-slip phenomena which may suggest that the friction force fluctuates in the experiment. Similar to before,
the FEA simulation results agree strongly with Theory 1. It is seen that increasing the mass on the beam reduces both the first
and second mode frequencies of the 2DOF system, resulting in the highest maximum voltage output for Case 1. Another
observation made here is the presence of other observable peaks after the first resonance peak in the experimental voltage
output, which is more clearly observed in Case 2 and 3. In addition, this peak was also observed in the experimental absolute
amplitude at point A for Case 3. These peaks were not predicted by the FEA simulation. The peaks do not correspond to any
resonant frequency, but occurs around the isolation frequencies. This suggest that the change in friction force direction in the
experiment was more sudden, hence agreeing more with Theory 2 although the change in the experiment was not as abrupt
as the assumption made in Theory 2. This shows that in practical, friction changes can be more abrupt due to the fact that
while the magnitude of the friction force may fluctuate in the experiment, it is relatively independent to the motion of the
mass in contact and cannot reach zero. Therefore, it is impossible for experimental friction to experience a delayed transition
in friction force as assumed in Theory 1. The voltage value predicted by the theoretical equations and FEA simulation are
observed to be somewhat lower than the experimental results, especially after the first mode resonance. This is due to
the simplification made in converting the coil and cantilever beam into a spring and mass system representation. The ampli-
tude output of a spring mass system corresponds to the amplitude of the cantilever beam at u ¼ L, whereas the voltage out-
put was determined to agree with the amplitude at the centre of the coil at u ¼ Lþ 32.05 mm. The amplitude at u ¼ Lþ
32.05 mm is highly dependent on the free end deflection gradient of the vibrating beam. Therefore, at lower freqeuncies,
the theoretical and simulation results agrees more with the experimental results as the beam does not deflect significantly.
However, as the beam approaches the second mode, it deflects more resulting in a larger difference between the amplitudes
at u ¼ L and u ¼ Lþ 32.05 mm. In addition, the electromagnetic damping at this region would also be lower due to the
increase in modal frequency.

Due to the change in the direction of the friction force at the isolation frequencies for a dynamic friction surface, it may be
possible to tune the behaviour of the harvester’s voltage output by adjusting the friction force. Fig. 18 describes the effect of a
dynamic and static friction surface on the absolute amplitude (at position A) and the voltage output for Case 3 under three
different friction force. Here, Theory 2 was applied. An assumption was made in that under the stick condition, the mass in
contact would vibrate with the friction surface for the dynamic friction surface and remains stationary for the static friction
surface. Therefore, Mass 2 would vibrate as a SDOF system under base excitation at the stick region for the dynamic friction
surface case. The dynamic friction surface predicted the stick condition only when FR = 0.150 N whereas the static friction
surface predicted sticking when FR = 0.054 N and FR = 0.150 N. The number of isolation frequency increased to two when
a friction force of FR = 0.150 N was applied to the dynamic friction surface case.

It can be seen that as the friction force increases in the dynamic friction case, the voltage output before the first isolation
frequency decreases whereas the voltage output after this frequency increases. At the isolation frequency itself, the voltage
output increased considerably, resulting in three significant voltage peaks when FR = 0.150 N. This trend was not observed in
the static friction surface case. For this case, the voltage at both resonance peaks would decrease with increasing friction. In
addition, the frequency at where sticking begins also decreased with increasing friction force, hence decreasing the range of
frequencies where voltage can be generated. The results suggest that the 2DOF design can achieve more significant voltage
peaks by tuning the friction force of the dynamic friction surface. If Case 3 was compared to the conventional SDOF design,
the 2DOF design would actually result in a lower maximum peak voltage at its first resonance peak, despite having a lower
natural frequency value even for the case of no friction. However, this is mainly due to the increase in the overall damping.



Table 3
Properties of Mass 1 and Mass 2 for the FE 2DOF model.

Mass 1 Mass 2

Case 1 Case 2 Case 3

k (Nm�1) 1017.8 621.87 770.96 774.66
c (Ns�1) 1.72 0.57 0.42 0.34
meq (g) 113.12 87.73 54.67 22.98

Fig. 17. Absolute amplitude of a point A and RMS peak voltage output for Cases 1, 2 and 3 of 2DOF design.
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6. Power output and power density comparison between SDOF, 2SDOF and 2DOF.

In this section, the theoretical peak power output at the load resistance and power density between the conventional
SDOF cantilever beam design and the 2SDOF and 2DOF design will be compared for all three cases under a base acceleration



Fig. 18. Comparison between a dynamic friction surface (blue) and a static friction surface (red) for Case 3.
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input of 0.3 g. Generally, different harvester designs would have a different optimum load resistance value (Ropt
L ) that corre-

spond to its maximum power output [38–40]. Previously, the experiment was conducted using an arbitrary load resistance
value of 22.0X. However, the analysis conducted here considered the condition of optimum load resistance, which was
determined by plotting the maximum peak power output against RL.

Usually, the power density of a harvester is defined as the ratio of its maximum power output to its volume and base
acceleration input [41]. By default, all three designs would have approximately the same overall volume since the same
setup was used. However, it is more appropriate to consider the practical volume of the harvester. This volume includes
the space occupied by the harvester during its peak vibration. The solid blue outline in Fig. 19 indicates the actual volume
of the harvester and the dashed outline is the additional volume that must be considered for the design’s practical volume.

Based on Fig. 19, the practical volume of the harvester, Vp, for each design can be defined as
Vp ¼ VLVW Amax þ VHð Þ ð33Þ

where Amax is the maximum vibrating amplitude of the corresponding design. For the case where the coil vibrates higher
than the magnets, the amplitude was recorded at u ¼ Lþ 47:00mm, which corresponds to the maximum length of the coil.
Under the same base acceleration, the power density is
PD ¼ Pmax
L

Vp
ð34Þ
where Pmax
L is the maximum peak power output at the load resistance. Table 4 tabulates the power density parameters for all

designs. xmax in Table 4 refers to the frequency corresponding to Pmax
L . Fig. 20 displays the peak power output and power

density comparison between all three designs for all three cases.The results in Fig. 20 shows that the 2DOF design for Case
1 recorded the highest overall PD, but also the largest Vp due to its high vibration amplitude. However, the PD for Cases 2 and
3 in the 2DOF design is lower than the corresponding SDOF and 2SDOF design. Additionally, an increasing trend in Pmax

L can
be observed at the first mode freqeuncy of the 2DOF design as the mass added increases from Case 3 to Case 1. This is due to
the fact that the first mode response of a 2DOF system is proportional to the un-coupled frequency ratio of Mass 1 and Mass
2 (xr) as shown



Fig. 19. Volume of the harvester for all designs under non-vibrating condition.

Table 4
Optimum load resistance, peak power output, practical volume and power density for each tested designs.

Design Case xmax (Hz) Ropt
L (X) Pmax

L (�10�3 W) Vp (�10�4 m3) PD (Wm�3)

SDOF 1 13.4 15.1 15.6 10.51 14.8
2 18.9 22.2 16.0 10.31 15.5
3 29.2 53.2 10.3 10.08 10.2

2SDOF 1 13.3 15.2 15.0 10.51 14.3
2 18.9 22.2 15.9 10.31 15.4
3 29.2 53.2 10.3 10.33 9.97

2DOF 1 9.5 8.9 27.7 11.64 23.8
2 11.4 7.5 12.5 10.67 11.7
3 13.5 6.8 4.7 10.05 4.7

Fig. 20. Power output and power density comparison between all designs for Cases 1, 2 and 3.
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Fig. 21.
9.5 Hz
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xr ¼ x1

x2
¼

ffiffiffiffiffiffiffiffiffiffiffi
k1m2

k2m1

s
ð35Þ
where k1, k2, m1 and m2 are parameters described in Fig. 1. Increasing xr would increase the first mode response of the sys-
tem, but would also reduce the second mode response. Nevertheless, this suggests that under the condition wherexr is high,
the 2DOF design would be superior to the SDOF and 2SDOF design in terms of power density. The Pmax

L and PD of the 2SDOF
design is very similar to the SDOF design. However, the 2SDOF design is observed to have two operational natural freqeun-
cies corresponding to the coil and the magnets. In addition, the power output generated between the two natural freqeuncies
are larger than the SDOF design, becoming more significant when the two natural freqeuncies are closer to each other as
observed in Case 1, hence improving its operational bandwidth.

The mass of the added mass on the coil cantilever beam was then increased in the analytical analysis to match the natural
frequency of the SDOF and 2SDOF design with the 2DOF design. It was not possible to analytically compare the 2DOF design
beyond 13.5 Hz, as that would require a change in the spring constant value, k1 (for the sake of maintaining the same vol-
ume), in where the new spring damping, c1, would then be unknown. However, the damping for the cantilever beam in the
SDOF and 2SDOF design can be predicted using Eq. (27). Fig. 21 illustrates the comparison for Pmax

L , PD and Vp for all three
designs.

Fig. 21 shows that Pmax
L decreases with xmax for the SDOF design. However, the amplitude of the SDOF design can be seen

to increase with decreasing xmax, as implied by the increase in Vp. This contradicts the common belief in where the maxi-
mum power output of a vibration energy harvester increases with decreasing natural frequency when under a constant base
acceleration input. The reason for this is due to the large damping at lower frequencies, leading to a decrease in output volt-
age. A similar observation was made by Foong et al. [30], suggesting the existence of an optimum natural frequency for dif-
ferent harvesters. The magnitude of Pmax

L and PD for the 2SDOF design is shown to be slightly lower than the SDOF design. In
addition, a sudden drop in Pmax

L and PD is observed when the natural frequency of the coil cantilever beam approaches the
natural frequency of the magnets (10.89 Hz). The reason for this is due to the decrease in phase difference ðhc � hmÞ between
the two vibrating components, reaching a zero phase difference when their natural frequencies are equal. Based on Eq. (25),
this would lead to a decrease in Xr and hence the maximum power output of the design. This suggests that while bringing the
natural frequencies of the coil and the magnet closer can improve the design’s bandwidth, it can also deteriorate its power
Power output, power density and volume comparison between all designs under optimum load resistance for a natural frequency range between
and 13.5 Hz.
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output. It is worth to mention that if the difference in natural frequencies between the coil and the magnets are relatively
large, the 2SDOF design would produce the same Pmax

L as the SDOF design as seen in Table 4 for Case 3. Nevertheless, under
the same condition, the 2SDOF design would also have two operational natural frequencies. Contrary to the SDOF and 2SDOF
designs, the Pmax

L and PD of the 2DOF design was seen to increase when xmax decreases. It is shown that under the current
setup, the 2DOF design would perform better than the SDOF and 2SDOF design when xmax is approximately lower than
11 Hz, despite the increase in amplitude and Vp. At 9.5 Hz, the PD of the 2DOF design was recorded to be 78.1% higher than
the SDOF design. This difference is expected to increase at natural frequencies below 9.5 Hz.
7. Conclusion

In this study, the use of a spring to amplify the performance of a conventional SDOF cantilever beam-based electromag-
netic vibration energy harvester was analysed. The effect of a dynamic friction surface on the voltage output of the harvester
was also studied. A spring was introduced to modify the conventional SDOF design into a 2SDOF system and a 2DOF system.
The governing equations for these two systems and a base-excited cantilever beam were derived. In addition, a friction
model for the case of a dynamic friction surface was developed, with two different theories assumed on how the friction
force changes at the isolation frequencies. An experiment was conducted to analyse the output response of the modified
designs for three different cases, with each case representing a different natural frequency for the designs. In addition, a
FEA analysis was also performed for the same scenarios. The theoretical results displayed a good agreement with the FEA
simulation and the experimental results for all three cases. However, it was found that the finite element analysis agreed
more with the Theory 1 which corresponded to the modified Coulomb friction model. On the other hand, experimental
results agreed with the assumption made in Theory 2, which is the classical Coulomb friction model. The analysis also sug-
gests that the SDOF system would not experience the stick condition when subjected to a dynamic friction surface. Further
analysis showed that it was possible to tune the friction force to achieve a more significant voltage peak at the isolation fre-
quencies. This would not be possible if a static friction surface was considered instead. Finally, the power output and the
power density of all three designs were compared. It was found that below a certain natural frequency, the 2DOF design
proved to be better than the conventional SDOF and 2SDOF design in terms of maximum peak power output and power den-
sity. The 2SDOF and SDOF design displayed a very similar power density for all tested cases. Nevertheless, the 2SDOF design
displayed two different frequency ranges where significant power can be produced and an improved power output in the
region between these two frequency peaks, resulting in an enhanced frequency bandwidth when the two natural frequencies
are relatively closer to each other. However, if the two natural frequencies are too close to each other, the power output of
the 2SDOF design would significantly drop. Overall, the 2DOF design has the potential to maximise the power output of the
harvester. On the other hand, while the power output of the 2SDOF design cannot be larger than the conventional SDOF
design, it can be tuned to have a larger frequency bandwidth. Further work includes optimising the 2DOF design to further
improve its performance.
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