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Abstract
The cubic–orthorhombic shape memory alloy system is studied using a sharp interface model
based on the linear theory of compatible laminates. A computational method is developed to
generate all possible compatible laminates for a given state of strain, and check whether these
laminates satisfy exact compatibility conditions. The type of austenite–martensite interface
that can form is dependent upon the detail of the martensite structure; the formation of flat and
wedge-like austenite–martensite interfaces is explored. A full search is used to reveal the
routes in strain space along which the two-phase structure can continuously evolve. A variety
of laminate structures, some well known and some new, are reported. The methods developed
are readily applied to other crystal systems, such as the tetragonal crystal system, in shape
memory alloys or related materials.

(Some figures may appear in colour only in the online journal)

1. Introduction

Shape memory alloys are widely used as actuators and thin
film devices. They are known to exhibit two significant
properties, the shape memory effect and superelastic
behaviour. The origin of these properties is the phase
transformation from austenite to martensite. This results
in different martensite variants being present, each variant
having a distinct transformation strain. To accommodate
these martensite variants and the austenite phase, shape
memory alloy crystals usually adopt certain types of
microstructure, such as fine twinned laminates, wedges,
tunnel and tent structure [1, 2]. For the design of
engineering components using shape memory alloys, an
understanding of the role of microstructure is essential. In
recent decades, the formation of microstructure in shape
memory materials has been extensively studied. Ball and
James [3] proposed a theory to explain fine phase mixtures
based on energy minimization, and reveal the importance
of compatibility between phases. Hane and Shield [4, 5]
used related methods to study austenite–martensite twinned
microstructures in the orthorhombic and monoclinic crystal
systems. Bhattacharya and James [6] provide a geometrically

nonlinear theory of martensite thin films and study
untwinned austenite–martensite (A–M) interfaces. DeSimone
and James [7] use linearized compatibility equations to
develop a constrained theory for twinned laminate structures.

The formation of a compatible interface between the
austenite and martensite phases is also rigorously discussed
by Bhattacharya [1]. This is dependent upon the middle
eigenvalue of the martensite transformation strain. If the
middle eigenvalue is non-zero, then no exactly compatible
A–M interface exists, and the resulting microstructures can
be at best averagely compatible. However, common shape
memory alloys typically have non-zero middle eigenvalue [1].
Thus, the compatible twin patterns that can form are limited.
A typical austenite–martensite microstructure consists of
a lamination of twinned martensite and a region of pure
austenite phase, separated by a flat A–M interface [8, 9].
This arrangement is energetically favourable if the martensite
part has an average strain state with zero middle eigenvalue.
In general, this gives two unique orientations for the
A–M interface. Another well known austenite–martensite
microstructure is a wedge-like pattern. Structures of this
type consist of two austenite–martensite laminates whose
A–M interfaces intersect at a line in a midrib plane. The
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wedge-like arrangement can nucleate and grow from that line
and this provides a mechanism through which the crystal can
undergo the martensitic transformation [4, 5]. To understand
microstructures in shape memory materials and their ability
to evolve between austenite and martensite phases, it is
of interest to study these austenite–martensite patterns and
their microstructural rearrangement corresponding to different
imposed strain states.

One of the main methods used to predict microstructures
in shape memory materials is phase field modelling. The
models typically use the time-dependent Ginzburg–Landau
(TDGL) equations, with unit cell deformation as the order
parameter [10, 11]. Alternatively, Shu and Yen [12, 13],
Li et al [14, 15] and Lei et al [16] introduce the concept
of hierarchical laminate structures and adopt the volume
fractions of laminates as order parameters in their phase field
model. However, since the phase field approach treats phase
boundaries as diffuse interfaces, a fine mesh size is required
in such models to discretize phase boundaries. Consequently,
the method is computationally intensive, and two-dimensional
problems or small regions of interest are usually considered.
By contrast, sharp interface approaches treat a phase boundary
as a discontinuity, across which the strain may jump. This
gives a significant saving of computation and the study of
large two-dimensional regions or complex microstructures
becomes feasible. Roytburd et al [17] studied the martensitic
transformation in several topologies of microstructure in
constrained films. Goldsztein [18] introduced a tree diagram
to represent laminated austenite and martensite phases and
obtain the minimum energy microstructure. Although the
sharp interface approach offers the potential to explore a wide
range of microstructures, particular twin arrangements are
commonly assumed. A motivation of the current work is to
explore more broadly the set of possible twin structures that
can form, and to use this approach to find routes in strain space
along which the two-phase microstructure can continuously
evolve.

A sharp interface compatibility model is developed
and computational methods are used to search efficiently
among the compatible laminates that can form in a
cubic–orthorhombic shape memory alloy system. Similar to
Goldsztein’s work [18], a hierarchical binary tree diagram is
used here to represent the microstructural arrangement. The
present method does not find a single minimum energy state,
but instead rapidly generates all possible compatible laminates
corresponding to the given average strain state of a shape
memory alloy crystal. The method relies on first generating
compatible arrangements of pure martensite twins with the
given average strain. The resulting martensite structures are
then checked for exact or average compatibility. The ability
of these martensite structures to form a compatible A–M
interface is determined by examining their tree diagrams and
strain states. In the present work, two forms of A–M interfaces
are considered. The first is that of a single flat A–M phase
boundary, with a compatible martensite laminate on one side.
Secondly, we consider the formation of pairs of non-parallel
A–M interfaces that meet along a line, giving a wedge-like
microstructure. Microstructure maps are generated to show

the routes in strain space along which the two-phase structure
can continuously evolve. We show that the pure austenite state
is linked to several well known configurations by continuous
compatible paths.

2. Theory and methodology

2.1. Compatibility conditions

Consider a pair of phases (i, j) with stress-free transformation
strain states εi, εj. For convenience of terminology, ‘phase’
will be used to refer to austenite, or any individual martensite
variant. In the current work we adopt the framework of
linear compatibility theory. A compatible interface with unit
normal vector n then satisfies the well known compatibility
equation [1, 7]:

εi − εj =
1
2 (a⊗ n+ n⊗ a) (1)

for some vector a. A compatible interface can be formed
whenever a unit vector n can be found that satisfies
equation (1). In the present work, we limit our consideration
to the case where the unit cell of each martensite phase has
identical volume to that of the austenite phase, so that tr(εi) =
0. This is convenient for comparison with the work of Lei et al
[16]; however, the methods are readily extended to the more
general case. Equation (1) can be solved by making use of
the eigenvalues λk (k = 1, . . . , 3) and eigenvectors ek of the
3×3 matrix M = εi−εj. If solutions exist, and tr(εi) = 0, then
λ1 = −λ3 with λ2 = 0. Two solutions of the interface normal
n can then be obtained from [19]:

n =
e3 ± e1
√

2
. (2)

When more than two phases are present in the crystal,
the microstructure may take the form of a periodic multi-rank
laminate. In laminate structures, pairs of pure phases are
layered together to form a rank-1 laminate, and similarly a
pair of rank-1 laminates can be layered together to form a
rank-2 structure. Here, a hierarchical binary tree diagram is
used to represent the periodic structure of the laminate [18].
Figure 1 shows an example of a rank-2 tree diagram, which
contains seven numbered nodes i = 1, . . . , 7, each with a
corresponding volume fraction fi, and a corresponding state
of average strain. Apart from nodes in the lowest level of the
tree, each node is also associated with a vector ni that gives the
orientation of the compatible interface between the materials
represented by its child nodes. The first node (root node)
represents the entire microstructure while the nodes in the
lowest level represent the pure phases. The volume fraction
of each parent node is the sum of those in its child nodes, and
the average strain at each node can be derived from

fi = f2i + f2i+1, εi = f2iε2i + f2i+1ε2i+1. (3)

Suppose the volume fractions at the nodes, fi, are
unknown, but the crystal experiences a known macroscopic
average strain ε. The volume fraction of the kth phase, f(k),
can be estimated by making the approximation that the crystal
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Figure 1. A rank-2 tree diagram showing volume fraction fi of node i and interface normals of laminates.

is in a perfectly compatible state, free of stress. Then, the f(k)
can be obtained by solving

ε =
N∑

k=1

f(k)ε(k) (4)

1 =
N∑

k=1

f(k), 0 ≤ f(k) (5)

where N is the number of phases.
In the present work, we illustrate the method by focusing

on the cubic–orthorhombic crystal system which has seven
phases with strains ε(i) (i = 1, . . . , 7), given by

ε(1,2) =

β 0 0

0 α ±γ

0 ±γ α

 , ε(3,4) =

 α 0 ±γ

0 β 0

±γ 0 α

 ,
ε(5,6) =

 α ±γ 0

±γ α 0

0 0 β

 , ε(7) =

0 0 0

0 0 0

0 0 0

 .
(6)

Parameters α, β, and γ are material properties characterize the
martensitic transformation strain. However, the restriction to
tr(ε(i)) = 0 forces β = −2α. Phases 1–6 are the orthorhombic
martensite variants and phase 7 is the unstrained austenite.
The symmetry of the system gives rise to six independent
equations from equations (4) and (5) for seven unknown
volume fractions, giving a general solution

[f(1) f(2) f(3) f(4) f(5) f(6) f(7)]T

= f0 + t[−1 −1 −1 −1 −1 −1 6]T. (7)

Here f0 is a particular solution and parameter t is in the
range of 0 ≤ t ≤ tmax to ensure that f(i) ≥ 0. Thus, there is
a continuous set of solutions for the phase volume fractions.
It is always possible to set f(7) = 0 in equation (7), so that a
strategy for finding compatible microstructure arrangements

is first to find a purely martensite structure with average strain
ε, and then consider introducing a volume fraction of austenite
as a separate step. In the first step, a unique solution for the
martensite volume fractions exists.

The existence and uniqueness of solutions to equa-
tions (4) and (5) for the martensite volume fractions depend
strongly on the number N of martensite phases, and their
symmetry. For example, the tetragonal crystal system has
N = 3 martensite crystal variants. Under the restriction of
volume conservation, i.e. tr(ε(i)) = 0, equations (4) and
(5) result in three linearly independent equations for the
three unknown volume fractions, giving a unique solution.
Similarly, the trigonal (N = 4) and orthorhombic (N =
6) crystal systems give either no solution or a unique
solution for a given macroscopic strain state. However, in
the monoclinic crystal system (N = 12), which is commonly
adopted by nickel–titanium alloys [1], there are six linearly
independent equations for 12 unknown volume fractions,
resulting in non-unique solutions. Thus, the approach taken
here, of solving equations (4) and (5) first, and then
seeking compatible arrangements, works particularly well
for tetragonal, trigonal and orthorhombic crystal systems.
In crystal systems where a unique solution for the volume
fractions cannot be obtained from equations (4) and (5),
configurations can nevertheless be identified that simplify the
laminate structure, for example by minimizing the number
of variants present; see reference [19] for details. In the
cubic–orthorhombic system, the martensite volume fractions
corresponding to a given average strain in the martensite can
be found uniquely.

With the martensite volume fractions known, we next
distribute the total volume fraction for each phase, f(k), into the
nodal volume fractions, fi. DeSimone and James [7] provide a
method for finding nodal volume fractions, which ensures that
the microstructure satisfies compatibility equations averagely.
However, for some special strain states, it is possible to
find an exactly compatible structure. Structures of this type
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Figure 2. A tree diagram corresponding to a rank-3 wedge structure.

have one to one perfect alignment of phases, that satisfies
the compatibility conditions exactly at every interface in the
crystal.

Here we provide three conditions to check if a laminate
pattern is an exactly compatible structure [19]. (i) Interfaces
between distinct phases must have the same spacing wherever
they meet at any higher level interface. In terms of the
tree diagram, this means that the volume fraction ratios
of corresponding sub-node pairs in each level should be
identical, for example f4/f5 = f6/f7 in figure 1. (ii) The
interface normals of any two nodes and the parent node
that links them must be coplanar. For example, the interface
normals of nodes 1, 2, 3 should satisfy n1 · (n2 × n3) = 0. A
perfectly matched laminate pattern can be achieved if these
two conditions are satisfied. However, a third condition is
required to avoid local incompatibility. (iii) Wherever two
phases meet, their interface must satisfy the compatibility
requirement, equation (1). For example, in a rank-2 tree
diagram, nodes 4 and 5 must be compatible across an
interface with normal n2; similarly, nodes 4 and 6 must be
compatible across an interface with normal n1. Note that the
example structure shown in figure 1 satisfies conditions (i)
and (ii), so the corresponding pattern is a perfect aligned
laminate. However, the interface normal n1 cannot, in this
example, satisfy compatibility for both node pairs 4, 6 and
5, 7 simultaneously. Thus, condition (iii) is violated, and the
structure is not an exactly compatible laminate.

2.2. Conditions for flat and wedge-like A–M interfaces

In the present work, we focus on the most common case, that
the middle eigenvalue of the martensitic transformation strain
is non-zero. Thus, the formation of exactly compatible A–M
interfaces is not possible, and only averagely compatible A–M
interfaces can be found. A flat A–M interface is then possible

provided that the imposed average strain state ε has a zero
middle eigenvalue [20]. The A–M interface normal vector
nA can be obtained by solving equation (1) with the average
strain of the martensite substituted for the left hand side of the
equation. Figure 1 shows a typical rank-2 structure with a flat
A–M interface. In general, the lowest level of the tree diagram
for structures of this type has the austenite phases at exactly
half of the nodes.

Next consider the formation of wedge-like A–M
interfaces. A wedge structure can be built by joining two
austenite-twinned martensite substructures, each with a flat
A–M interface (see figure 2). The key requirement is that the
flat A–M interfaces of both substructures must be non-parallel
and meet at a line on the boundary between the substructures.
If the two substructures have flat A–M interface normals n2
and n3, the projections of n2 and n3 into the boundary plane
with normal n1 must match. This requirement is satisfied if
n1, n2 and n3 are coplanar:

n1 · (n2 × n3) = 0 (8)

where n1 ∦ n2 ∦ n3. The example shown in figure 2 is a rank-3
wedge structure consisting of one substructure identical to
that of figure 1, and a second substructure with a similar
arrangement of phases.

2.3. Search method for compatible laminate structures

The method described in sections 2.1 and 2.2 can be
used to search for multi-rank compatible microstructures.
To simplify the search, laminates of the minimum possible
rank satisfying the imposed strain conditions will be found.
Experimental observations indicate that structures of ranks 2
and 3 commonly occur in shape memory alloys, while
higher rank structures are rarer [1]. The starting point is an
average strain state ε imposed on a laminate of martensite
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variants only. Suppose that this imposed strain state requires
m martensite variants to be present by equations (4) and
(5). The minimum possible rank of laminate with m variants
present is dlog2me, where dxe indicates the least integer
greater than or equal to x. Meanwhile, the maximum rank
that could be necessary for average compatibility is (m −
1), as guaranteed by the construction of DeSimone and
James [7]. The minimum rank laminate may have rank <
(m − 1) provided that m ≥ 4. The distribution of the m
martensite volume fractions among the 2dlog2me nodes in
the lowest level of the tree diagram allows permutations.
For example, with a rank-2 laminate, the tree diagram has
four nodes in the lowest level. If only the three variants
numbered 1–3 are present, it is necessary to divide the volume
fraction of one variant between two nodes. This generates
permutations such as ‘1123’, ‘1223’ and so forth, reading
across the lowest level of the tree diagram. The existence of
pairs of compatible solutions to equation (1) produces further
structural permutations. An iteration procedure [21] is used to
examine the set of permutations. We can also check the M–M
interfaces for exact compatibility.

Next, the resulting martensite structures are tested for
their ability to form flat or wedge-like A–M interfaces. If the
imposed average strain ε has a zero middle eigenvalue, a flat
A–M interface can form and equation (1) gives the interface
normal nA. To search for wedge-like A–M interfaces, we
create a new tree diagram by inserting extra austenite nodes
into the lowest level of the martensite tree diagram. This is
conceptually the same as splitting the martensite laminate in
half at the highest level interface and combining each half with
austenite using new flat interfaces. If the new arrangement
forms a compatible laminate, the requirement provided in
equation (8) is checked. An example of this process can be
seen in figure 2.

3. Application to austenite–martensite structures

In this section, the procedure of section 2 is applied to
the study of austenite–martensite microstructures in the
cubic–orthorhombic crystal system. We limit consideration
to planar interfaces and illustrate the method using particular
material parameters. Motivated by prior works [16, 20], we
set the material parameters α = −0.5, β = 1, and γ = 5α =
−2.5. A search for compatible martensite laminates that can
form flat and wedge-like A–M interfaces was performed by
scanning over the space of average strain states (ε11, ε22, ε13),
with ε12 = ε23 = 0 in increments of γ /100; finer steps were
used where needed. This allows a direct comparison with
the solutions of Lei et al [16] in certain special cases. Note
that, with the assumption tr(εi) = 0, the third direct strain
ε33 = −ε11 − ε22.

3.1. Averagely and exactly compatible martensite laminates

Figure 3 shows the points in the strain space (ε11, ε22, ε13)
at which exactly compatible martensite laminates can form.
The tetrahedral region ABCM in figure 3 contains all
feasible combinations of ε11, ε22, ε13 under the constraint of

Figure 3. Space of (ε11, ε22, ε13) showing states reached by exactly
compatible martensite laminates.

equation (5). General points in this region require a rank-5
averagely compatible structure with all six martensite variants
present. A schematic structure for a general point in region
ABCM is shown in figure 4(a); this adopts the arrangement
proposed by DeSimone and James [7], forming a complex
pattern of fine twins. However, some special points in this
region can form exactly compatible laminates of rank less
than 5.

In figure 3, point M represents a single martensite variant,
number 4 of equation (6). Points A, B and C require only two
variants and allow rank-1 laminates; see figures 4(b) and (c).
Points on the lines AB, AC and BC need four martensite
variants and form rank-2 exactly compatible structures; see
figure 4(d). Strain states on line BM require only variants
3 and 4 to be present, forming a rank-1 exactly compatible
martensite lamination. The lines AM (figure 4(e)) and CM
represent rank-2 exactly compatible laminates with three
martensite variants. Finally, typical points in the triangular
surfaces ABM, BCM and ABC can be reached with a rank-3
exactly compatible structure. Figure 4(f) and (g) show the
structure for a general point in BCM and ABC, respectively.

3.2. Martensite structures that can form a flat A–M interface

The formation of a flat, averagely compatible, A–M interface
relies upon the martensite structure having an average strain
state ε with a zero middle eigenvalue. In the strain space
(ε11, ε22, ε13), this condition is satisfied when

ε22 = 0 or (9)

ε2
11 + ε11ε22 + ε

2
13 = 0. (10)

The strain states within region ABCM of figure 3 that satisfy
equations (9) or (10) form the set of points, lines and surfaces
shown in figure 5. Rectangle KEHL arises from equation (9),
while curved surfaces JDOF and OGI come from solutions
to equation (10). All the points on line KL, inside rectangle
KEHL and inside the curved surfaces JDOF, OGI allow only
averagely compatible martensite laminates. For example, the
martensite laminate shown in figure 4(a) is in the rectangle
KEHL; figure 6(a) shows a rank-6 structure containing both
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Figure 4. Example microstructures corresponding to (a) points in the region ABCM, (b) point A, (c) point C, (d) line AC, (e) line AM,
(f) surface ABM and (g) surface ABC in figure 3. Different colours/shades indicate phase numbers.

Figure 5. Microstructure map for martensite strain states in the
space (ε11, ε22, ε13) that can form flat A–M interfaces.

the rank-5 martensite laminate of figure 4(a) and the austenite
phase with strain state at point O (ε = 0), separated by a
flat A–M interface. In figure 6 the austenite phase is shown
translucently to reveal the martensite pattern on the A–M
interface. Moving the flat A–M phase boundary scales the
average strain state between zero and the strain state of the
pure martensite laminate.

Exactly compatible martensite laminates that can form
flat A–M interfaces also exist. All the points D . . .L and solid
lines shown joining them in figure 5 represent the strain states
at which this can happen. Examples taken from lines LO, FG
and JO and from surface FJO are shown in figures 6(b)–(e).
Note that the martensite structures in figures 6(b)–(d) match
those of figures 4(e)–(g). It is also interesting to note that some
martensite strain states (those on lines DI, EH and FG) can be
achieved in various ways: the strain state does not uniquely
determine the pattern of the martensite variants.

The focus is now on point J in figure 5. This is unique
in representing the only rank-1 martensite laminate in this
strain space that can form a compatible A–M interface. At
point J, variants 3 and 4 have the volume fraction ratio 2:3. All
strain states on line JO can thus be achieved by the laminate
structure shown in figure 6(e), through varying the volume
fraction of austenite phase. The corresponding tree diagram
is that of figure 1. It is worthwhile to compare the laminate on
JO with the structure generated by a two-dimensional phase
field calculation, done by Lei et al [16]. A zig-zag A–M
interface is generated by their model resulting from the energy
minimization due to the incompatibility between austenite
and martensite phases [16, 22]. However, it is of interest
that a similar laminate structure with a flat A–M interface
is obtained under the assumption of planar interfaces in the
current work.

3.3. Martensite structures that can form wedge-like A–M
interfaces

By using the procedure described in sections 2.2 and 2.3, the
strain space (ε11, ε22, ε13) was searched for structures which
satisfy the conditions for wedge-like A–M interfaces. The
results, shown in figure 7, consist of several points and straight
lines in the strain space. In most cases, the corresponding
martensite structures are averagely compatible with a rank-5
DeSimone–James type arrangement [7]. However, certain
special strain states allow for exactly compatible martensite
laminates of rank 3 which can form wedge shaped A–M
boundaries. Points D . . . I and lines KE and LH require
four martensite variants to be present. The conditions for
wedge-like A–M interfaces are then satisfied provided that
the martensite adopts a DeSimone–James type arrangement.
Figure 8(a) shows an example structure corresponding to
martensite at point D in the strain space. By moving
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Figure 6. Example microstructures with flat A–M interfaces, corresponding to (a) points in rectangle KEHL, (b) line LO, (c) surface FJO,
(d) line FG and (e) line JO in figure 5.

the wedge-like A–M interface, the average strain state of
the austenite–martensite mixture varies along the line DO.
Similar structures can also be found for lines EO,FO, . . . , IO.
Figure 8(b) shows another example of wedge microstructure,
corresponding to surface KOE in figure 7. The martensite
again adopts a DeSimone–James arrangement. Interestingly,
in these two cases (figures 8(a), (b)) the martensite laminates
are exactly compatible. In addition, it is worth noting that
the strain states for points D · · · I could form rank-2 exactly
compatible martensite laminates, as discussed in section 3.2.
However, those laminates consist of substructures that cannot
form any flat A–M interface. This violates a requirement for
wedge-like A–M interfaces. Points on lines DF, EG and HI
require six martensite variants. They can adopt rank-3 exactly
compatible structures that form wedge-like A–M interfaces.
Figure 8(c) shows an example structure with average strain
corresponding to a typical point on surface DOF.

All the remaining martensite strain states in (ε11, ε22, ε13)
space that can form wedge-like A–M interfaces are
identified in figure 7 using dashed lines. In each case the
martensite structure adopts a high rank, averagely compatible
arrangement, resulting in very complicated microstructure
patterns. Two examples are shown in figures 8(d) and (e).
Finally, returning to the structure that was shown in figure 2,
note that this also contains an exactly compatible martensite
structure and wedge-like A–M interfaces. However, the strain
state corresponding to this martensite structure lies outside the
(ε11, ε22, ε13) strain space we are currently considering; we
have searched only a section of the space of all possible strain
states to illustrate the method.

4. Conclusion

In this work, compatibility theory has been used to identify
a wide range of martensite laminates that can form in shape
memory materials in the cubic–orthorhombic crystal system.
The methods employed are powerful in allowing a search

Figure 7. Microstructure map for martensite strain states in the
space (ε11, ε22, ε13) that can form wedge-like A–M interfaces.

of strain space that rapidly finds both exactly and averagely
compatible multi-rank laminate arrangements of martensite
and austenite. To illustrate the approach, a search for flat,
averagely compatible A–M phase boundaries and wedge-like
structures that can form wavy A–M interfaces was carried
out. A number of such structures were found, which could
be of significance in engineering the microstructure of alloys
that can transform smoothly between austenite and martensite.
The search method is readily applicable to a range of shape
memory alloy crystal systems.
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