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Abstract

We have developed a framework based on micromagnetics to explore the effect of stress on the magnetostrictive

behavior in ferromagnetics. Our approach is different from the conventional one which simply replaces the total strain

by magnetostrain. Question arises for such an approach because of the loss of strain compatibility. Here, we have

included the kinematic constraints in our micromagnetic model and developed a modified boundary integral formalism

to calculate the intrinsic stress induced by incompatible magnetostrain. We have shown that for small magnetostriction

of the order of 10�5, the results predicted by the present approach are slightly different from those predicted by the

conventional method. But we have found that for large magnetostriction around 10�3 order of magnitude, the con-

ventional approach is insufficient to predict magnetic domain patterns and hysteresis precisely, and the effective

magnetic field induced by intrinsic stress cannot be neglected.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A magnetostrictive material is one which is able

to change its physical dimensions in response to a

change of state of magnetization. In other words,

it exhibits a change in length accompanied by an

inverse change in girth when it is subjected to a

magnetic field. Conversely, the state of magneti-

zation changes if an external force is applied
causing strain. The coupling between magnetic

and mechanical energies gives rise to the capability
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in transduction that allows a magnetostrictive
material to be used in actuator and sensor appli-

cations. All ferromagnetic materials exhibit vary-

ing degrees of magnetostrictive strain, however

only some of them exhibit sufficient strain for

practical use. The highest room temperature

magnetostrictive strain of a pure element is that of

Co which is extremely small and is around 60

microstrain at saturation. Fe and Ni are common
ferromagnetic materials and also have magneto-

striction with magnitudes around this range. On

the other hand, by alloying elements ‘‘giant’’

magnetostriction under relatively small magnetic

fields can be achieved (Clark, 1980). Among these,

Terfenol-D (TbxDy1� xFe2, x � 0:3) is at present

the most widely used magnetostrictive material. It
ed.
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is capable of strains as high as 1600 microstrain

and, since the 1980s, has enjoyed the greatest

commercial success for application in a great many

fields (Jiles, 1994).

Magnetostrictive materials at no applied fields

often display extremely complex domains on which
magnetization and strain are approximately con-

stant. These domains, occurring at a microscopic

scale, evolve under the action of applied fields and

loads which in turn give rise to the overall response

of the materials. Therefore, studying the mecha-

nism that governs domain evolution is a key step

toward understanding the macroscopic behavior of

magnetostrictive materials. In the past several
decades domain analysis and evolution under

external fields have been studied extensively for

rigid ferromagnetic materials within the framework

of micromagnetic theory developed by Brown

(1963) and his followers (see Aharoni, 1996 for an

extensive review and James and Kinderlehrer, 1990

for a modern treatment). In spite of many useful

results predicted by this theory, very few analytic
solutions of Brown�s micromagnetic equations

have been found in literature as these equations are

inherently nonlinear and nonlocal in nature.

Numerical micromagnetics, on the other hand,

provides an alternative to apply micromagnetic

methods to large-scale domain structures. Nowa-

days computational micromagnetics has led to a

deeper understanding of hysteresis behavior by
visualization of magnetization reversal (Fidler and

Schrefl, 2000).

Complicated magnetomechanical coupling and

time consuming computation, however, have pre-

vented many useful methods proposed originally

for rigid ferromagnetics from being applied di-

rectly to deformable ferromagnetics. Much has

been done for theoretical development of magne-
tostrictive materials. It includes early pioneering

works such as Brown (1966), Tiersten (1965), Pao

and Yeh (1973), Hutter and van de Ven (1978) and

Jiles and Atherton (1984) (see also Eringen and

Maugin, 1990; Maugin, 1988 and references

therein). James and Kinderlehrer (1993) and

DeSimone and James (2002) have proposed an

energetic approach and used very sophisticated
modern mathematical techniques to analyze do-

mains in giant magnetostrictive materials. How-
ever, little or none has provided a convenient way

for direct simulation of domain patterns and

evolution under external fields and loads for a

wide class of magnetostrictive materials. Fabian

and Heider (1996) have used the continuum theory

of defects to include magnetostriction in micro-
magnetic calculation with some success in study-

ing titanomagnetites. Recently Voltairas et al.

(2000a,b) have studied nonuniform magnetization

reversal in stressed ferromagnetic films. Their

simulation of magnetization reversal, however, is

confined to be one-dimensional with severe

restrictions on elastic states.

To overcome difficulties in the calculation of
magnetostrictive energy, the conventional ap-

proach to include magnetostriction is to replace

the total compatible strain by magnetostrictive

strain in micromagnetic models (Cullity, 1972;

Zhu, 1993; Callegaro and Puppin, 1997). As a

consequence, the energy of applied loads becomes

another source of magnetic anisotropy energy

while the magnetostrictive self-energy vanishes.
The intrinsic stress resulting from incompatible

magnetostrictive strain as magnetization rotates is

not taken into account while the external stress

causes the induction of a magnetostrictive uniaxial

anisotropy, usually called stress-induced anisotropy

(Izawa, 1984; Jeong and Bogy, 1995). The material

is then treated as a rigid ferromagnetics with

varying magnetic easy axes depending on external
stress. Recently Zhu et al. (2001) have used this

approach to study the influence of external stress

on coercivity in magnetic thin films and obtained

qualitatively general agreement with experiment

(Callegaro and Puppin, 1996). Although the re-

sults obtained by this approximation have been

found to be useful in various applications, ques-

tion arises because of loss of strain compatibility
and negligence of intrinsic stress. This paper is

primarily concerned with this issue and studies the

effect of intrinsic stress on the magnetostrictive

behavior in various ferromagnetic materials. In

addition, a new method for the direct simulation

of magnetic domains and their evolution under

external fields and loads is proposed here.

Our framework is based on micromagnetics
accounting for magnetostrictive effect. Micro-

magnetics is a nonlocal, nonconvex variational
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problem. We write in Section 2 the total energy of

the crystal as a sum of the exchange energy be-

tween the spins, the total anisotropy energies

including magnetostrictive energy, the energy of

the applied fields and loads, and the energy of the

induced magnetic field. The state of the ferro-
magnetic crystal is obtained as minimizers of this

total energy subject to two constrained equations:

Maxwell�s and elastic equilibrium equations. The

anisotropy energy density encodes phenomeno-

logically the information that the crystal prefers

certain magnetized and distorted states, and can be

nonconvex with multiple wells due to the presence

of multiple such states. It can be shown that energy
minimization based on this theory automatically

leads to domain patterns in equilibrium based on

very few parameters (James and Kinderlehrer,

1993; James and Wuttig, 1998). Instead of pro-

viding further mathematical analysis on magnetic

domains, we study the solutions of micromagnetic

equations deduced from the present theory. We

use the Landau–Lifshitz–Gilbert (LLG) equation
to obtain both equilibrium and transient magne-

tization configurations. The LLG equation is de-

rived based on the microscopic physics and is able

to describe the relaxation process of the magneti-

zation. We emphasize this point by showing in

Section 2.4 that the total free energy is decreasing

as magnetization evolves under the LLG equation.

The key issue in performing simulation of do-
main evolution is to solve the elastic equilibrium

equation for each magnetization configuration.

This method, which we call the constrained ap-

proach here, is in contrast to the relaxed approach

that neglects the effect of intrinsic stress. In Section

3, we calculate the magnetostrictive energy which

requires the solution of a boundary value problem

in elasticity theory. Since such a calculation has to
be performed at every step of the iterative proce-

dure, a time consuming computation seems to be

inevitable. Fortunately, the improved availability

of large-scale computer power has enabled us to

include magnetostrictive effect in the LLG solver

and provides us an opportunity for deeper

understanding of detailed and subtle physical

behavior of magnetization reversal. As the stress-
induced magnetic field (see (2.14)) involves vari-

able strain rather than displacement, we develop a
strain-based boundary integral formulation in

Section 3.3. This formalism, originally proposed

by Wu et al. (1992), has been shown to be more

accurate in the calculation of stress as well as have

faster rate of convergence than conventional dis-

placement-based numerical schemes. We extend
their formulation to account for the effect of

magnetostrictive stress and implement the associ-

ated numerical algorithm in Section 4.

The simulation results for various magneto-

strictive films are presented in Section 5. We study

magnetization in equilibrium and reversal using

constrained and relaxed methods and make com-

parison between these two approaches. We use Ni
and Terfenol-D as the model materials to repre-

sent for ferromagnetics with small and large

magnetostrictive strains, respectively. Our simula-

tion demonstrates that the relaxed approach turns

out to be a reasonable approximation in predicting

equilibrium domains and their evolution in Ni

films while it becomes a crude estimation for

Terfenol-D films. It shows that the effective mag-
netic field induced by intrinsic stress cannot be

ignored for materials with large magnetostrictive

strain. We conclude in Section 6 with a discussion.
2. Framework and formulation

2.1. Kinematics and magnetostriction

Magnetostriction is the spontaneous deforma-

tion of a magnetic crystal caused by a change of its

state of magnetization. Certain materials such as

Ni2MnGa, one of ferromagnetic shape-memory

materials, have extremely large magnetostriction of

the order of 10�1 (Ullakko et al., 1996; Tickle and

James, 1999; Wu et al., 2002). They are not taken
into account here because of difficulty in handling

physical quantities defined in deformed configura-

tion. We refer to James and Kinderlehrer (1993)

and James (2002) for detailed discussion. Instead,

materials under consideration here such as Fe, Ni

or Terfenol-D have magnetostriction with orders

ranging from 10�3 to 10�5. Such a small change in

shape suggests us to choose the geometrically linear
framework of micromagnetics, which Brown has

called the conventional theory of magnetostriction
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(Brown, 1966). However, we are aware that, as

pointed out by Brown (1966), this conventional

linear strain formulation misses certain terms that

should be present according to a direct lineariza-

tion starting from the geometrically nonlinear

theory. As a result, the magnetic body force and
body couple are neglected, and the anti-symmetric

part of stress vanishes. With these reservations, we

consider a ferromagnetic single crystal shown in

Fig. 1. The crystal occupies the region X � R3 in its

reference configuration. The displacement of the

crystal is described by the function u : X ! R3 and

the linear strain is denoted by e : X ! M3�3
s where

Mm�m
s is the set of all symmetric second-order ten-

sors defined in Rm. The displacement–strain rela-

tion is given by

e½u� ¼ 1

2
ru
n

þ ðruÞT
o
: ð2:1Þ

The conventional theory of ferromagnetics as-

sumes that below the Curie temperature the mag-
netization M varies with point x in X while

maintaining a fixed magnitude:

jMðxÞj ¼ Ms 8x 2 X; ð2:2Þ

where Ms is called the saturation magnetization

which is a material constant depending on tem-

perature only. Let

mðxÞ ¼ 1

Ms

MðxÞ : X ! S2; ð2:3Þ

where S2 denotes the three-dimensional sphere of
unit radius. The free or spontaneous magnetostrain

tensor corresponding to the magnetization m is

denoted as e0ðmÞ : X ! M3�3
s . In the case of cubic
m(x)

H
0

t0

x

Ω

Fig. 1. A ferromagnetic crystal subjected to external magnetic

field H0 and mechanical loading t0.
materials the most general quadratic form of e0ðmÞ
is

e0ðmÞ ¼ 3

2
k1 0 0 m

�(
�m� 1

3
I

�

þ ðk1 1 1 � k1 0 0Þ
X
i6¼j

mc
i m

c
jðeci � ecjÞ

)
;

ð2:4Þ

where I 2 M3�3
s is the identity tensor, fec1; ec2; ec3g is

an orthonormal set of crystal basis, mc
i are com-

ponents of m in the crystal basis, k1 0 0 and k1 1 1 are
independent, dimensionless material parameters

indicating the strength of the magnetoelastic

interaction. Above a� b is the tensor product of

two vectors a and b with components ða� bÞij ¼
aibj in some orthonormal basis. Note that mag-

netostrain e0ðmÞ is an even function in m; i.e.,

e0ðmÞ ¼ e0ð�mÞ.
2.2. Magnetoelastic energy

Let oX denote the boundary of the domain X
and vXðxÞ the characteristic function of X such

that vX ¼ 1 in X and vX ¼ 0 outside X. Assume
oX ¼ oX1 [ oX2 [ oX3 where oXi \ oXj ¼ ; a.e.

for i 6¼ j. Let u0 : oX1 [ oX3 ! R3 and t0 : oX2 [
oX3 ! R3 be the applied displacement and trac-
tion on the boundary oX. The mechanical boun-

dary conditions are for i; j ¼ 1; 2; 3,

u ¼ u0; x 2 oX1;

rn ¼ t0; x 2 oX2;

u � li ¼ u0i ; ðrnÞ � lj ¼ t0j ; i 6¼ j; x 2 oX3;

ð2:5Þ

where r : X ! M3�3
s is the stress tensor and

fl1; l2; l3g is an orthonormal set of vectors such

that l1 and l2 are tangent to the boundary oX3 and

l3 ¼ n is the unit outward normal to the boundary

oX3. Note that the boundary condition (2.5)3 is the

mixed type and u0 � t0 ¼ 0 there. Let H0 : R3 ! R3

be the applied magnetic field that would be present

were the ferromagnetic crystal absent.
We postulate that below the Curie point we

can obtain the magnetization as the one that

minimizes
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EðmÞ ¼
Z

X
rm � Arm
	

þ WaðmÞ

þ 1

2
e



� e0ðmÞ
�
� C e



� e0ðmÞ
��

dx

�
Z

X
l0H

0 �Mdx�
Z
oX2[oX3

t0 � udS

þ l0

2

Z
R3

jr/j2 dx ð2:6Þ

subject to two constraints

r � Hd þMvX


 �
¼ 0 Hd ¼ �r/ in R3;

r � r ¼ 0 r ¼ C e � e0ðmÞ½ � in X;

ð2:7Þ
where / is the magnetic potential resulting from

r�Hd ¼ 0, Hd : R3 ! R3 the demagnetization or

stray vector field, and the right-hand side of (2.7)2
is the linear constitutive assumption with C as the
elastic modulus. We assume that C is the positive-

definite symmetric fourth-order tensor such that

for i; j; k; l ¼ 1; 2; 3,

Cijkl ¼ Cijlk ¼ Cklij; ð2:8Þ
where Cijkl are components of C in an orthonormal

basis. Above in (2.6) A 2 M3�3
s is a positive-defi-

nite tensor, l0 ¼ 4p � 10�7 N/A2 the coefficient of
permeability of free space, and Wa : S2 ! R the

anisotropy energy density whose expression in

terms of lowest-order terms for cubic and uniaxial

crystals is

WaðmÞ ¼

Kc
0 þ Kc

1ðmc2

1 m
c2

2 þ mc2

2 m
c2

3 þ mc2

3 m
c2

1 Þ
cubic crystals;

Ku
0 þ Ku

1 1� ðm � eÞ2
n o

uniaxial crystals;

8>>><>>>:
ð2:9Þ

where Kc
0, K

u
0 are irrelevant constants such that

WaðmÞP 0 for all m 2 S2, Kc
1, K

u
1 are anisotropy

constants depending on materials and e is certain

unit vectors.

Let us clarify the notation. Given

M : X ! MsS2, we solve (2.7) to obtain / and e

and plug them back to (2.6) to obtain EðmÞ.
Maxwell�s equation (2.7)1 is of course solved over

all space R3 with M ¼ 0 outside X; we emphasize
this by writing MvX where vX is the characteristic
function of X explained above. Thus, by (2.7)1, we

mean:

r � ð�r/ þMÞ ¼ 0 in X;

r2/ ¼ 0 in R3 n X;

s�r/ þMt � n ¼ 0 on oX;

/ ! 0 as jxj ! 1;

where s t denotes the jump across the interface.

Next, elastic equilibrium equation together with

constitutive assumption in (2.7)2 can be solved

were the virtual distribution of body forces gen-

erated by f ¼ �r � Ce0ðmÞ applied to the body as

well as the constitutive relation changed as �r ¼ Ce.

In other words, we mean

r � �r þ f ¼ 0; �r ¼ Ce; f ¼ �r � Ce0ðmÞ:
ð2:10Þ

Note that (2.10) is similar to the formulation of

thermoelastostatics.
Each of the terms in the functional (2.6) has a

physical interpretation. The first term, called the

exchange energy, penalizes changes in the magne-

tization, and thus is interpreted as the energy of

forming a magnetic domain wall. The second and

third terms, the (total) anisotropy energy, is the

energetic cost that the crystal must pay if the

magnetization and strain deviate from the pre-
ferred states at that temperature; thus this builds in

the information that the crystal prefers certain

spontaneous magnetization and strain at a given

temperature. Note that the zeros of Wa define the

easy axes, i.e., the directions along which the

crystal is magnetized most easily. For example, for

cubic crystals, the case Kc
1 > 0 in (2.9)1 indicates

the easy axes are along h100ic while Kc
1 < 0 in

(2.9)1 indicates the easy axes are along the body

diagonals, h111ic. Similarly a positive Ku
1 in (2.9)2

describes an easy axis along the e direction while a

negative Ku
1 shows an easy plane perpendicular to

the hard axis e for uniaxial crystals. The fourth,

called the Zeeman energy, is the potential energy of

the applied magnetic field, and this enforces the

desire of the magnetization to align with the ap-
plied magnetic field. The fifth is of course the po-

tential energy of the mechanical loading device.
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The final term, called the demagnetization energy

or stray field energy, is the magnetostatic self-en-

ergy associated with the magnetic field generated

by the ferromagnetic crystal itself.

Finally, we consider a common case where the

exchange tensor is isotropic; i.e., A ¼ AI where A is
called the exchange constant. In addition, we as-

sume the constrained displacement boundary

condition if it exists; i.e., u0 ¼ 0 8x 2 oX1 [ oX3. In

this case, let r� be the auxiliary stress state satis-

fying

r � r� ¼ 0; x 2 X;

r�n ¼ t0; x 2 oX2;

ðr�nÞ � lj ¼ t0j ; x 2 oX3;

ð2:11Þ

where lj is the same as that defined in (2.5). Thus,

the total free energy of the ferromagnetic crystal

(2.6) can be replaced by

EðmÞ ¼
Z

X
Ajrmj2

	
þ WaðmÞ

þ 1

2
e



� e0ðmÞ
�
� C e



� e0ðmÞ
��

dx

�
Z

X
ðl0H

0 �Mþ r� � eÞdx

þ l0

2

Z
R3

jr/j2 dx ð2:12Þ

subject to the constraints (2.7). Suppose

r� ¼ r0n � n where r0 > 0 and n is the loading
direction. It follows that magnetization is pre-

ferred to be aligned to maximize n � en which is the

projection of strain on the loading direction n � n.

Eq. (2.12) with the help of the auxiliary stress r�

is the micromagnetic formulation accounting for

the effect of magnetoelastic interaction. It has been

used by James and Wuttig (1998) and DeSimone

and James (2002) to study various types of mag-
netic domains and will be adopted in the rest of

this paper. Note that we have used the total strain

e in the fifth term of (2.12) instead of choosing

magnetostrain e0ðmÞ proposed by Hubert and

Sch€afer (1998) (see Eq. (3.61) in p. 148 there). The

idea of using the total strain comes from the ori-

ginal formulation (2.6) which results from the

principle of minimum potential energy in funda-
mental mechanics (Dym and Shames, 1973). The
distinction between these two formulations is not

significant for magnetic materials with extremely

small magnetostriction (see Section 3.2 for expla-

nation). However, it may lead to inconsistent

results in certain materials with large magneto-

striction (see Section 5.2).
2.3. Effective magnetic fields

The task in micromagnetics is to determine the

magnetization mðxÞ which minimizes the free en-

ergy (2.12) subject to the constraints (2.7). A

number of techniques to solve this minimization

problem for rigid ferromagnetics have been pro-
posed in the past decades which all are based on

the variational method proposed by Brown (1962).

Due to the constraint equation given by (2.2),

Brown has considered a small variation of the

direction of the magnetization vector instead of a

small variation of the magnetization by an arbi-

trary function. The variational principle leads to

modified Brown�s equations accounting for the
magnetoelastic effect

mðxÞ �HeffðxÞ ¼ 0 8x 2 X;

om

on
ðxÞ ¼ 0 8x 2 oX;

Heff ¼ � 1

l0Ms

dE
dm

¼ He þHa þH0 þHs þHd;

ð2:13Þ

where Heff is the effective magnetic field defined by

the variational derivative of the free energy

� 1
l0Ms

dE
dm, H

e the exchange magnetic field, Ha the
anisotropic magnetic field, H0 the external mag-

netic field, Hs the stress-induced magnetic field and

Hd the demagnetization or stray field. The field H0

has been discussed in Section 2.2, Hd is obtained

by solving Maxwell�s equation (2.7)1, and the rest

of magnetic fields are defined by

He ¼ 2A
l0Ms

r2m;

Ha ¼ �1
l0Ms

oWaðmÞ
om

;

Hs ¼ 1

l0Ms

C e



� e0ðmÞ
�
� oe

0ðmÞ
om

;

ð2:14Þ
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where e is implicitly dependent on magnetization

and is obtained by solving (2.7)2. Note that (2.13)

can be derived using the variational method simi-

lar to that for rigid ferromagnetics (Aharoni, 1996)

while the stress-induced magnetic field Hs is ob-
tained by consideringZ

X
d

1

2
C½e½u�

	
�e0ðmÞ� � ½e½u� � e0ðmÞ��r� � e½u�

�
dx

¼
Z

X
C½e½u�
�

� e0ðmÞ� � ½de½u� � de0ðmÞ�

� r� � de½u�
�
dx

¼
Z

X
rð

�
� r�Þ � de½u� � r � de0ðmÞ

�
dx

¼ �
Z

X
r � oe

0ðmÞ
om

dmdxþ
Z
oX

ðr � r�Þn � duds

¼ �
Z

X
r � oe

0ðmÞ
om

dmdx

because of r � r ¼ 0, r � r� ¼ 0, boundary condi-

tions (2.5) and (2.11) and the fact that C is sym-

metric.

The effective magnetic field Heff provides an
interpretation of the micromagnetic equations.

From (2.13)1 either the magnetization vector m is

aligned along the effective magnetic field Heff at

each point in the body X or the effective magnetic

field Heff vanishes by itself since m 6¼ 0 from

(2.2). 1 In both cases the torque exerted on any

magnetization vector has to be zero in static

equilibrium. Finally, we are aware that (2.13) is the
necessary condition for the minimization of total

free energy. Magnetic domains satisfying the mic-

romagnetic equations given by (2.13) are the local

equilibrium magnetization.
1 For example, if the crystal is large enough to reach the

large-body limit (DeSimone, 1993), the exchange energy can be

neglected and in this case the closure four domains results in

Heff ¼ 0 in rigid magnetic cubic crystals (Hubert and Sch€afer,

1998).
2.4. Magnetization dynamics

If Brown�s equations (2.13) do not hold at some
points, the nonzero torque m�Heff provides a

precession of the magnetization around the effec-
tive field. Indeed, the dynamic description of

micromagnetic processes in a ferromagnetic

material can be described by the famous LLG

evolution equation (Landau and Lifshitz, 1935;

Gilbert, 1955)

dm

dt
¼ �cm�Heff � acm� ðm�HeffÞ; ð2:15Þ

where t is the time. Above the first term on the

right-hand side is the gyromagnetic term, with

c � 2:21� 105 m/A/s being the gyromagnetic ratio.

The second on the right-hand side is the damping

term, with a being the dimensionless damping
coefficient. The damping term allows the magneti-

zation to turn towards the effective field until both

vectors are parallel in the static solution. It is

obvious that Brown�s micromagnetic equations can
be viewed as a particular case of (2.15), giving the

static equilibrium when there is no change in time.

The boundary conditions here are the same as that

in the static equilibrium given by (2.13).
Clearly from (2.15) the torque m�Heff pro-

vides the driving force for the evolution of mag-

netization, and the small quantity of j dm
dt j implies

the (local) equilibrium magnetization configura-

tion. In fact, the evolution of magnetization de-

scribed by LLG equation (2.15) also implies the

decrease of the total free energy (2.12), and this

can be understood by considering

1

l0Ms

dE

dt
¼
Z

X
ð�Heff � _mÞdx

¼ �
Z

X
Heff �



� cm�Heff

� acm� ðm�HeffÞ
�
dx

¼ ac
Z

X
Heff � ðm �HeffÞm

�
�HeffÞ

�
dx

¼ ac
Z

X
f m �Heff
�� ��2 � Heff

�� ��2gdx6 0

ð2:16Þ

due to the famous Cauchy–Schwartz inequality

and jmj ¼ 1. The more general form of dissipation
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mechanism other than LLG equation in rigid

micromagnetics can be found in the recent work of

Podio-Guidugli (2001).

As the result of (2.16), LLG equation cannot

only provide the information of time evolution of
magnetization, but also offers a convenient tool to

study the static equilibrium magnetization. As a

matter of fact, the integration algorithm of LLG

and LLG-like equations of motions have been

used widely in literature to study domain walls

and equilibrium magnetization distributions by

assuming dm
dt

�� �� is less than the prescribed small

value (see Nakatani et al. (1989) and Berkov et al.
(1993) for a detailed description). Thus from now

on we will use (2.15) as our fundamental tool to

investigate magnetic domain patterns and their

evolution for various magnetostrictive crystals.

Other methods to solve (2.13) directly can be

found in Aharoni and Jakubovics (1986), LaBonte

(1969) and Miltat et al. (1989).
3. Solutions of constrained equations

In magnetostatics the solution of the magnetic

potential / in (2.7)1 can be derived using the Green

function method introduced by the potential the-

ory (Kellogg, 1969). There are no problems with

boundary conditions or material properties as the
Green function is independent of both of them.

Unfortunately the analogous procedure meets

certain difficulties for magnetoelastic interactions.

Essentially we try to solve

r � ðCe½u�Þ ¼ r � ðCe0ðmÞÞ 8x 2 X ð3:1Þ
which seems to be similar to

r � ðr/Þ ¼ r � ðMvXÞ 8x 2 R3 ð3:2Þ
once the magnetizationMðxÞ is given at each point
in X. However, (3.1) is in general much more dif-

ficult to be solved than (3.2) because of the com-

plications associated with the elastic tensor C and

boundary conditions. It is in principle not possible

to extract the fourth-order tensor C out of the

differential equation in (3.1). In addition, this
tensor is material dependent, so is the solution of

(3.1). Finally, the Green function for (3.1) is

dependent on the domain X itself and the associ-
ated boundary conditions given by (2.5) while the

Green function for the magnetic equation (3.2) is

independent of domains and materials. As a result,

there are no generally applicable procedures for

the solution of the elastic case (3.1), at least, ex-
plicit expressions similar to the magnetic solution.

We are then forced to resolve such a difficulty ei-

ther by a crude approximation (see Section 3.2) or

by certain sophisticated numerical schemes (see

Section 3.3).
3.1. Maxwell equation

The solution of the magnetic potential / in

(2.7)1 can be easily obtained by Green function

method. We refer to Jackson (1962) and Kellogg

(1969) for the detailed derivation and only list the

formulation. Suppose the ferromagnetic crystal is

a finite body occupying a domain X in the three-

dimensional space, the magnetic potential is given

by

/ðxÞ ¼ 1

4p

Z
X

�rx0 �Mðx0Þ
jx� x0j dx0

	
þ
Z
oX

Mðx0Þ � n
jx� x0j dSx0

�
; ð3:3Þ

while for an infinitely long ferromagnetic cylinder

along the e3 direction, the magnetic potential is

given by

/ðxpÞ ¼
1

2p

Z
X

rx0p �Mðx0pÞ
� �

ln jxp
	

� x0pjdx
0
p

�
Z
oX
Mðx0pÞ � n
� �

ln jxp � x0pjdSx0p
�
;

ð3:4Þ

where xp ¼ ðx1; x2Þ and X here is the finite in-plane

cross section of the long cylinder. Note that the

Green functions for (3.3) and (3.4) are the New-

tonial potential �1
4p

1
jxj and logarithmic potential

1
2p ln jxpj. Both functions are independent of solid

boundaries and material properties.
3.2. Equilibrium equation by approximation

There are in general no explicit expressions

similar to (3.3) or (3.4) for the solution of elastic
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equilibrium equation (2.7)2. To overcome such a

difficulty and complexity, a very common ap-

proach in literature is to replace the total strain e by

magnetostrain tensor e0ðmÞ (Cullity, 1972; Cullen
et al., 1997; Callegaro and Puppin, 1997); i.e.,

e � e0 ð3:5Þ
in (2.12). As a result, (2.12) becomes

EapproxðmÞ ¼
Z

X
Ajrmj2
n

þ eWaðmÞ � l0H
0 �M

o
dx

þ l0

2

Z
R3

jr/j2 dx; ð3:6Þ

where eWaðmÞ is the modified anisotropic energy

density defined byeWaðmÞ ¼ WaðmÞ � r� � e0ðmÞ: ð3:7Þ
Eq. (3.6) is the same as that for rigid ferromag-

netics except that the anisotropy energy density
WaðmÞ is replaced by eWaðmÞ. Note that (3.7) shows
that the energy of applied loads becomes another

source of magnetic anisotropy energy while the

magnetostrictive self-energy vanishes; i.e., the

external stress causes the induction of a magne-

tostrictive uniaxial anisotropy, usually called

stress-induced anisotropy (Ross et al., 1996; Deng

et al., 1997). The material is then treated as a rigid
ferromagnetics with varying magnetic easy axes

depending on external stress. This approximation,

which we call relaxed approach, neglects the

intrinsic stress due to the assumption of (3.5).

Question arises for such an approximation because

of loss of strain compatibility. Kinematic com-

patibility requires (Gurtin, 1972)

r�r� e ¼ 0 ð3:8Þ
while (3.8) may not be satisfied if eðxÞ is simply

replaced by e0ðmðxÞÞ for arbitrary magnetization

at each point x.

The stress-induced magnetic field defined by

(2.14) becomes

Hr
s ¼

1

l0Ms

r� � oe
0ðmÞ
om

; ð3:9Þ

where (3.9) is derived by the variational derivative
of the relaxed energy given by (3.6) and the

superscript r in Hr
s emphasizes that this field is

obtained by the relaxed approach. So clearly from
(3.9) Hr
s is zero if the external stress r� is absent;

and therefore, the ferromagnetic crystal is treated

as a rigid material regardless of the possible exis-

tence of intrinsic stress. Hence, this relaxed ap-

proach is expected to be a crude approximation for
magnetic materials with large magnetostriction at

zero applied loads.

Finally, we remark on the current development

of active materials such as shape-memory alloys,

ferroelectrics and ferromagnetics. In the modern

theory of these materials, the study of micro-

structure requires the total strain eðxÞ to be re-

placed by the stress-free strain e0ðxÞ at each point
if e0 belongs to a class of strainsS in which strains

are symmetry related and compatible with one

another. The magnitudes of these strains do not

need to be small, and in some materials such as

shape-memory materials, they are very large. The

intrinsic stress vanishes since strains in S are

compatible. As a result, the effect of external stress

on microstructure redistribution can indeed be
approximated by considering the following po-

tential energy:

�r� � he0i;
where h�i denotes the average over the body. The
favorable microstructure is expected to the one

which minimizes the above potential energy. While

the results predicted by this theory have been

found to be very useful in many applications, one

drawback of this approach is that the energy

barrier caused by intrinsic stress as microstructure
evolves may prevent favorable states from being

achieved, and the estimate of this barrier is in

general not revealed by this approach. The sys-

tematic description of this theory for various ac-

tive materials can be found in Bhattacharya

(1993), Shu and Bhattacharya (2001), Li and

Bhattacharya (in preparation) and DeSimone and

James (2002).

3.3. Equilibrium equation by modified boundary

element method

As described in the introduction of Section 3, it

is not an easy task to solve the elastic equilibrium

equation given by (2.7)2 for arbitrary magneto-

strain e0ðmÞ. We thus restrict ourselves to consider



Fig. 2. (a) An elastic body occupies a long cylindrical domain

with in-plane cross section denoted by X. (b) The strain e0 is

assumed to be piecewise uniform in subdomains Xi � X,
i ¼ 1; . . . ;B. Only three subdomains are shown here.
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two common cases: one is for a thin film and the

other for a long cylinder with arbitrary finite cross

section. For both cases, we may assume

m ¼ mðx1; x2Þ 2 S2; u ¼ uðx1; x2Þ 2 R3: ð3:10Þ
The problem is now simplified to be two-dimen-

sional in space, but the magnetization m is still free

to rotate in three dimensions. The simplification

from (3.10) does not lead to the direct solution of

(2.7)2 in closed forms. Instead, it provides an

opportunity to solve the elastic equilibrium equa-
tion by certain sophisticated numerical schemes.

There are two major numerical methods: finite

element method (FEM) and boundary element

method (BEM). Both methods have their own

merits and are applied to a variety of scientific

problems according to their specific needs. Tradi-

tionally both methods have better numerical pre-

cision in displacement u than strain e (Oden and
Reddy, 1976). However, in our present case, the

main variable we need is strain e rather than dis-

placement u (see (2.14)3). We thus need to look for

a new strain-based formalism. Indeed, Wu et al.

(1992) and Wu (2000) have proposed a new

boundary integral equation formalism for two-

dimensional anisotropic elasticity without consid-

ering the effect of body force (i.e., f ¼ 0 in (2.10)).
This formulation is presented in complex-variable

using Stroh formalism for anisotropic elasticity

(Stroh, 1958). The advantage of it is that in

numerical implementation the boundary integrals

can be integrated analytically along each element.

In addition, it can be shown that this formalism

has better numerical precision in variable strain as

well as faster rate of convergence than conven-
tional displacement-based schemes. We thus pro-

pose to solve (2.7)2 by extending their approach to

the case accounting for the effect of virtual body

force resulting from the divergence of magneto-

stress (i.e., f 6¼ 0 in (2.10)).

Let an elastic body occupy a long cylindrical

domain with finite in-plane cross section denoted

by X as shown in Fig. 2. Note that we have slightly
abused the notation X which was used to denote

the domain occupied by the whole ferromagnetic

body. Suppose there are no body force densities

and stress is related to strain by r ¼ Ce where C is

the elastic modulus satisfying (2.8). Let ak and pk
be the eigenvectors and eigenvalues of the follow-

ing equation:

Q



þ ðRþ RTÞpk þ Tp2k
�
ak ¼ 0

ðno sum over kÞ; ð3:11Þ

where

Qik ¼ Ci1k1; Rik ¼ Ci1k2; Tik ¼ Ci2k2;

i; k ¼ 1; . . . ; 3;

and Cijkl are the components of the elasticity ten-

sor C in some reference basis. As pk can be shown

to be nonreal (Stroh, 1958; Ting, 1996), we thus

take pk, k ¼ 1; 2; 3, with positive imaginary part for
definiteness. Let A ¼ ða1ja2ja3Þ be the 3 · 3 matrix

whose ith column is replaced by the column vector
ai defined by (3.11). Further, we define the matrix
B related with A by

B ¼ RTAþ TAP; ð3:12Þ
where P ¼ diag½p1; p2; p3�; i.e., a matrix with diag-

onal entries replace by p1; p2; p3 and zero in the rest
of entries.

Set

z ¼ x1 þ ix2; f ¼ n1 þ in2; ð3:13Þ

where z and f are field and source points in the

complex plane and i ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary

number. Now let ðx1; x2Þ 2 X, ðn1; n2Þ 2 oX and l; n
are unit tangent and outward normal vectors to

the boundary oX as shown in Fig. 2(a). Let ou
os ðzÞ

and tðzÞ be the displacement gradient and traction

at point z along an arbitrary contour s. Both can

be related by the tangential displacement gradient
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dl ¼ ou
ol
and traction tn on the boundary oX by the

following dual set of boundary integral equations

proposed by Wu et al. (1992):

b
ou

os
ðzÞ ¼

Z
oX

oU

os
ðz; fÞtnðfÞ

	
� oW

os
ðz; fÞdlðfÞ

�
dl; ð3:14Þ

btðzÞ ¼
Z
oX

	
� oWT

os
ðz; fÞtnðfÞ

þ oV

os
ðz; fÞdlðfÞ

�
dl; ð3:15Þ

where dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn21 þ dn22

q
, b ¼ 1 in X and b ¼ 1

2
at

the smooth boundary oX, and

Uðz; fÞ ¼ R½AGðz; fÞAT�;
Wðz; fÞ ¼ R½AGðz; fÞBT�;
Vðz; fÞ ¼ R½BGðz; fÞBT�:

Above R stands for the real part, A and B are

defined by (3.11) and (3.12), and the matrix func-

tion Gðz; fÞ is defined by

Gðz;fÞ ¼ 1

ip

lnðz1 � f1Þ 0 0

0 lnðz2 � f2Þ 0

0 0 lnðz3 � f3Þ

0@ 1A;

ð3:16Þ

where

zk ¼ x1 þ pkx2; fk ¼ n1 þ pkn2: ð3:17Þ
Eqs. (3.14) and (3.15) with b ¼ 1

2
provide a pair

of boundary integral equations for the tangential

displacement gradient and traction if the contour s
is chosen to coincide with the boundary. Either

(3.14) or (3.15) can be solved to obtain the un-

known tangential displacement gradient or trac-
tion. Once the unknown boundary data is

determined, the displacement gradient and traction

in any directions inside the domain X can therefore

be computed from (3.14) and (3.15) with b ¼ 1.

Now suppose that the constitutive relation be-

comes rðxÞ ¼ C½eðxÞ � e0ðxÞ� where e0 is the ei-

genstrain. Assume there is a set of disjoint

domains Xi � X, i ¼ 1; . . . ;B, such that e0ðxÞ ¼ 0
if x 2 X n ðX1 [ � � � [ XBÞ and is uniform in Xi as

shown in Fig. 2(b). The eigenstrain e0 may take
different values for different subdomains Xi. As the

traction is balanced (continuous) across the

boundary oXi, we have

lim
x2Xi
x!oXi

�rni � lim
x2XnXi
x!oXi

�rni ¼ r0ni; ð3:18Þ

where ni is the unit outward normal to the

boundary oXi, and

�r ¼ Ce; r0 ¼ Ce0: ð3:19Þ
Physically, it means there is a prescribed body

force density r0ðxÞniðxÞvoXi
supported on the

boundary of each Xi if the constitutive law were

replaced by �r ¼ Ce throughout the whole domain

X. To account for such an effect, note that Wu

et al. (1992) have pointed out that the displacement
gradient (3.14) and traction (3.15) along an arbi-

trary contour s in a finite body X can be viewed as

those due to the dislocation dipole �udl and body
force density tn supported on the boundary oX in

an infinite space. As a consequence, the displace-

ment gradient and traction along any arbitrary

contour s due to piecewise uniform eigenstrain

e0ðxÞ can be obtained from (3.14), (3.15), (3.18),
and (3.19) and are given by

b
ou

os
ðzÞ ¼

Z
oX

oU

os
ðz; fÞtnðfÞ

	
� oW

os
ðz; fÞdlðfÞ

�
dl

þ
X
i

Z
oXi

oU

os
ðz; fÞt0niðfÞdl; ð3:20Þ

b tðzÞ
 

þ
X
i

t0ðzÞvXi

!

¼
Z
oX

	
� oWT

os
ðz; fÞtnðfÞ þ

oV

os
ðz; fÞdlðfÞ

�
dl

�
X
i

Z
oXi

oWT

os
ðz; fÞt0niðfÞdl; ð3:21Þ

where

t0ðzÞ ¼ ðCe0ðzÞÞn0; t0niðfÞ ¼ ðCe0ðfÞÞni;

where n0 and ni are the unit normals to the contour

s and the boundary oXi, respectively. The un-

known tangential displacement gradient or trac-

tion can be obtained by solving (3.20) and (3.21) if
the contour s is chosen to coincide with the

boundary. Once the unknown boundary data is
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determined, the displacement gradient and trac-

tion in any direction inside X can therefore be

computed from (3.20) and (3.21) with b ¼ 1.

In magnetostrictive material, the magnetostrain

e0ðmÞðxÞ is in general not piecewise constant inside
X. However, we may assume that it is uniform in

each small cell in which the magnetization m is

approximated to be constant. In this situation, we

can use (3.20) and (3.21) to solve (2.7)2 numerically

and the details are provided in the next section.

Finally, the previous analysis is applied to a

long cylinder with finite cross section. In the case

of thin films, (3.20) and (3.21) are still valid with
slight modification. Under the plane stress

assumption, the elastic modulus C is replaced by

the generalized plane stress modulus Cp, and only

the in-plane components of magnetostrain e0 are

taken into account in the formulation of both

(3.20) and (3.21). To make it clear, let the film

occupy the domain X ¼ S � ð0; hÞ where h is the

film thickness and S the in-plane cross section of
the film. For simplicity, assume that S is a square

domain; i.e., S ¼ ð0; LÞ2. Further, decompose

u ¼ up þ ~bx3 where up ¼ ðup1ðx1; x2Þ; u
p
2ðx1; x2Þ; 0Þ

and ~b ¼ ð2~b1ðx1; x2Þ; 2~b2ðx1; x2Þ; ~b3ðx1; x2ÞÞ. Set b�1 ¼
~b1 � e031, b�2 ¼ ~b2 � e032 and b�3 ¼ ~b3 � e033 and

ðb�1; b�2; b�3Þ is the minimizer of infb2R3
1
2
E � CE

where b ¼ ðb1; b2; b3Þ and

E ¼
ep11 � e011 ep12 � e012 b1
ep21 � e021 ep22 � e022 b2

b1 b2 b3

0@ 1A: ð3:22Þ

Let �u ¼ u
L and �x ¼ x

L. It follows from Shu (2002)

that the total magnetostrictive energy per unit

volume can be shown to be

1

hL2

Z
X

1

2
ðe � e0Þ � Cðe � e0Þdx

¼ U0 þ
h
L

� �
U1 þ o

h
L

� �
; ð3:23Þ

where oðaÞ
a ! 0 as a ! 0 and

U0 ¼
Z 1

0

Z 1

0

1

2
ep



� e0p
�
� Cp ep



� e0p

�
d�x1 d�x2;

U1 ¼
Z 1

0

Z 1

0

2 eb � Cp ep



� e0p
�
d�x1 d�x2:

ð3:24Þ
Above, Cp is the generalized plane stress modulus,

e0p 2 M2�2
s the in-plane magnetostrain tensor with

components e0pab ¼ e0ab, ep 2 M2�2
s the in-plane

strain tensor with components defined by

epab ¼ 1

2

oupa
oxb

�
þ
oupb
oxa

�
;

and eb 2 M2�2
s with components defined by

ebab ¼ 1

2

ob�a
oxb

�
þ
ob�b
oxa

�
for a; b ¼ 1; 2. As a consequence from (3.23), we

only need to consider the energy U0 if the ratio
h
L is

small, and minimizing it yields the reduced elastic

equilibrium equation rp � rp ¼ 0 where rp ¼
Cp ep � e0p½ � and rp is the in-plane gradient. Notice

that U1 can be completely determined once U0 is

known.
4. Numerical algorithm

4.1. Integration of LLG equation

The integration of LLG equation (2.15) is based

on the algorithm provided by the National Insti-

tute of Standards and Technology (NIST) of the
US (Donahue, 2000) which has been used exten-

sively in a variety of applications and fundamental

research (Donahue, 1998; Crew and Lewis, 2001;

Thiaville et al., 2002). It is based on the finite

difference method by replacing the continuous

solution of magnetic domains by a discrete set of

lattice. At each lattice point the differential oper-

ators are replaced by finite difference operators
using a second-order predictor–corrector tech-

nique of the Adams type, and the conditions on

the boundary of magnetic domains are replaced

with their discrete counterparts.

The exchange energy is evaluated using the

eight-neighbor bilinear interpolation (Donahue

and McMichael, 1997), the anisotropy and Zee-

man energy terms are computed assuming con-
stant magnetization in each mesh. The stray field is

calculated as the convolution of the magnetization

against a kernel describing the mesh to mesh

magnetostatic interaction. The convolution is

computed using Fast Fourier Transform. The
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stress-induced magnetic field is based on the

modified BEM described in Section 3.3 and

the algorithm is provided in Section 4.2.

The modeling system is a two-dimensional thin

film with film thickness much smaller than its lat-

eral dimensions. Thus the plane stress condition is
used throughout the calculation. We also assume

that the film thickness is on or smaller than the

order of magnetic exchange length defined by

p
ffiffiffiffi
A
K1

q
where A;K1 are exchange and anisotropy

parameters (see (2.12) and (2.9). So we may pos-

tulate that the magnetization is the function of in-

plane variables x1, x2 only. The film is divided into

a large number of small square cells. Inside each
cell the magnetic moment m is free to rotate in

three dimensions but its magnitude is kept to be

unity. The Neumann type of magnetic boundary

condition given by (2.13) is assumed throughout

the calculation.
4.2. Stress-induced magnetic field

We recall that the stress-induced magnetic field

defined by (2.14) is

Hc
s ¼

1

l0Ms

r � oe
0ðmÞ
om

; ð4:1Þ

where the superscript �c� denotes that this field is

obtained by the constrained approach in which the

constrained (equilibrium) equation (2.7)2 has to be

solved for each magnetization configuration. Note

that Hc
s is different from H

r
s defined by the relaxed

approach (3.9). We have implemented two algo-
rithms to compute Hc

s and H
r
s in order to compare

the differences between these two methods. As Hr
s

is quite easy to be implemented, we now focus on

the numerical implementation of Hc
s next.

We first concentrate on the term oe0ðmÞ
om

. Recall

that fec1; ec2; ec3g is an orthonormal crystal basis and

fe1; e2; e3g the orthonormal basis in the reference

configuration. They are related by

eci ¼ Rei; Rij ¼ ei � Rej ¼ ei � ecj ;
i; j ¼ 1; 2; 3;

ð4:2Þ

where R is the proper orthogonal tensor and Rij

are the components of the tensor R in the basis ei.

Let mc
i and mi be the components of the magneti-
zation vector in the bases eci and ei, respectively.

They are related by mc
j ¼ Rijmi. Further, let e0

c

ij and

e0ij be the components of strain tensor e0 in the

bases eci and ei, respectively. The transformation

rule for tensors in different bases yields
e0ij ¼ Ripe0

c

pqRjq. It follows that

oe0ij
omk

¼ RipRjq

oe0
c

pq

omk
¼ RipRjq

oe0
c

pq

omc
s

omc
s

omk

¼ RipRjqRks

oe0
c

pq

omc
s

; ð4:3Þ

where the general expression of e0 in terms of

components of m in the crystal basis is given by

(2.4) for cubic materials. Notice that summation

over repeated indices is implied in (4.3) unless

noted otherwise.

We next focus on calculating the stress r ¼
C½e � e0ðmÞ� obtained by solving the equilibrium

equation (2.7)2. In Section 3.3 we propose a dual
set of equations (3.20) and (3.21) to calculate the

displacement gradient and traction along an arbi-

trary contour s inside a body X in which the

magnetostrain is assumed to be piecewise uniform.

The first step is to calculate the boundary dis-

placement gradient and traction by letting the

contour s coincide with the boundary oX. Let the
boundary oX and subboundaries oXi, i ¼ 1; . . . ;B,
be approximated by N1 and N ðiÞ

2 line segments over

which the normal tractions and tangential dis-

placement gradients are assumed to be constant.

The resulting discretized equations of (3.20) and

(3.21) with the midpoints of the line segments

chosen as the collocation points areXN1

k¼1
ðW�ÞjkðdlÞk

¼
XN1

k¼1
ðU�ÞjkðtnÞk þ

XB
p¼1

XN ðpÞ
2

q¼1
ðU�Þjqðt0nÞ

p
q;

j ¼ 1; 2; . . . ;N1; ð4:4Þ

XN1

k¼1
ðW�TÞjkðtnÞk

¼
XN1

k¼1
ðV�ÞjkðdlÞk �

XB
p¼1

XN ðpÞ
2

q¼1
ðW�TÞjqðt0nÞ

p
q;

j ¼ 1; 2; . . . ;N1; ð4:5Þ
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where ðdlÞk and ðtnÞk are the tangential displace-

ment gradients and normal tractions at the kth
element and the elements are numbered consecu-

tively along the tangential direction l of the

boundary oX, and ðt0nÞ
p
q ¼ ½ðCe0Þn�pq are the normal

tractions at the qth element of the subboundary

oXp. If j 6¼ k, the matrices U�, W� and V� for

anisotropic materials are given by the following

analytic expressions:

ðU�Þjk ¼ R½AðG�ÞjkA
T�;

ðW�Þjk ¼ R½AðG�ÞjkB
T�;

ðV�Þjk ¼ R½BðG�ÞjkB
T�;

ð4:6Þ

where ðG�Þjk ¼ Diag ½d1jk; d
2
jk; d

3
jk� are diagonal

matrices with d1jk, d2jk and d3jk given by

d1jk ¼
�1
ip

f̂ðjÞ1
f̂ðkÞ1

ln
f
ðjþ1

2
Þ

1 � fðkþ1Þ1

f
ðjþ1

2
Þ

1 � fðkÞ1

 !
;

d2jk ¼
�1
ip

f̂ðjÞ2
f̂ðkÞ2

ln
f
ðjþ1

2
Þ

2 � fðkþ1Þ2

f
ðjþ1

2
Þ

2 � fðkÞ2

 !
;

d3jk ¼
�1
ip

f̂ðjÞ3
f̂ðkÞ3

ln
f
ðjþ1

2
Þ

3 � fðkþ1Þ3

f
ðjþ1

2
Þ

3 � fðkÞ3

 !
:

ð4:7Þ

Above in (4.7) f̂ðjÞa ¼ cos hj þ pa sin hj with hj being

the angle between the jth element and the x1-axis,
fðkÞa ¼ nðkÞ

1 þ pan
ðkÞ
2 with ðnðkÞ

1 ; nðkÞ
2 Þ and ðnðkþ1Þ

1 ; nðkþ1Þ
2 Þ

as the end points of the kth element,

fðjþ
1
2
Þ

a ¼ n
ðjþ1

2
Þ

1 þ pan
ðjþ1

2
Þ

2 and ðnðjþ1
2
Þ

1 ; n
ðjþ1

2
Þ

2 Þ is the

midpoint of the jth element (see Fig. 3 for the

detailed notation). If the closure of subdomain Xp

is completely contained in X, the matrices ðU�Þjq
and ðW�Þjq for anisotropic materials are the same
as those in (4.6) except f̂ðqÞa and fðqÞa denote points in
(ξ1
(k+1/2),ξ2

(k+1/2))

(ξ1
(k+1),ξ2

(k+1))

x1
θk

Fig. 3. Notation for the kth boundary element.
the qth element of subboundary oXp. On the other

hand, for j ¼ k or if some parts of the subboun-

daries oXp coincides with the boundary oX (and

j ¼ q in this case),

ðU�Þjj ¼ ðV�Þjj ¼ 0;

ðW�Þjj ¼
1

2
I ðno sum over jÞ: ð4:8Þ

Finally, if the elastic material is isotropic, the ex-

plicit expression of these three matrices U�, W�

and V� can be found in Wu et al. (1992).

Either (4.4) and (4.5), which are referred to as

type 1 and type 2 equations, can be used to solve

unknown boundary variables numerically. Once
all the boundary data including dl and tn are ob-

tained, we can use (3.20) and (3.21) together with

(4.6) and (4.7) to calculate the stress at any points

inside X. Examples to show the applicability of the

formalism given by (4.4) and (4.5) are given in

Appendix A.
5. Results

In this section we explore the effect of intrinsic

stress on the equilibrium magnetic domains and

hysteresis calculated using the constrained ap-

proach. We also compare our results with those

obtained based on the relaxed approach (i.e., the

negligence of the influence of internal stress).
We use Ni and Terfenol-D as the representative

materials.

5.1. Extremely small magnetostriction

Ni is one of the common ferromagnetic mate-

rials with 10�5 order of magnitude of spontaneous

magnetostriction. The associated magnetic mate-
rial parameters are Ms ¼ 4:8� 105 A/m, A ¼
9� 10�12 J/m, Kc

1 ¼ �5:7� 103 J/m3, and k1 0 0 ¼
�4:6� 10�5, k1 1 1 ¼ �2:4� 10�5. The cubic aniso-

tropic elastic constants in the crystal basis are

C11 ¼ 2:5� 1011 N/m2, C12 ¼ 1:6� 1011 N/m2,

C66 ¼ 1:18� 1011 N/m2 in terms of Voigt notation.

We consider a single crystal Ni film with 100

nm · 100 nm · 10 nm dimensions. Assume the
crystal basis coincides with the reference basis.

There are no external stress and applied field, and



(a) (b)

(c) (d)

Fig. 4. Magnetic domain patterns for Ni films simulated based

on the relaxed (a) and constrained (b) approaches. Magnetic

domain patterns for Terfenol-D films simulated based on the

relaxed (c) and constrained (d) approaches.

Y.C. Shu et al. / Mechanics of Materials 36 (2004) 975–997 989
therefore, r� ¼ 0 and H0 ¼ 0 in this case. The

initial magnetization is mðxÞ ¼ e2 and the final

results of magnetization evolution described by

LLG equation are shown in Fig. 4(a) and (b) un-

der the condition jm� heff j < � where � ¼ 10�4 and

heff ¼ 1
Ms
Heff . We have also used the smaller

parameter � ¼ 10�5 as the criterion and found that

the results are almost the same as those obtained

using the original criterion. Note that Fig. 4(a) and

(b) are magnetization patterns obtained using the

relaxed and constrained approach. Obviously the

results show that there are no significant differ-

ences between these two methods; in other words,

the effect of intrinsic stress on magnetic domain
patterns is not significant for magnetostrictive

materials with extremely small magnetostriction.

We next investigate the hysteresis property such

as coercivity of Ni thin films under intrinsic stress.

The external field H0 is applied along the e2
direction with cycling magnitudes. Fig. 5(a) shows

the simulated hysteresis loops calculated based on

the relaxed (dashed line) and constrained (contin-
uous line) approaches. The overall loops appear to

be similar while there is a difference in coercive

fields. Let H r
c and H c

c be the coercive magnetic

fields obtained by relaxed and constrained meth-

ods. According to Fig. 5(a) H r
c ¼ 7160 A/m and

H c
c ¼ 8750 A/m. The error estimate is

jH r
c � H c

c j
H c

c

� 100 � 18%:
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Fig. 5. Hysteresis loops calculated based on the constrained (C) and

films.
It is expected that H c
c is larger than H r

c since more

energy input is needed to overcome the increase of
elastic energy due to incompatible magnetostrain

during magnetization rotation against reversal

magnetic field.
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relaxed (R) approaches: (a) Ni thin films; (b) Terfenol-D thin
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5.2. Large magnetostriction

Terfenol-D (TbxDy1�xFe2, x � 0:3) is one of

giant magnetostrictive materials with 10�3 order of

magnitude of magnetostriction. The relevant
magnetic properties of Terfenol-D are Ms ¼ 8�105
A/m, A ¼ 9� 10�12 J/m, Kc

1 ¼ �6� 104 J/m3, and

k1 0 0 � 0, k1 1 1 ¼ 1:64� 10�3 (Clark, 1986; Lord

and Harvey, 1994). The bulk cubic elastic con-

stants in the crystal basis are C11 ¼ 1:41� 1011 N/

m2, C12 ¼ 6:48� 1010 N/m2 and C66 ¼ 4:87� 1010

N/m2 in terms of Voigt notation (Dewar, 1997).

5.2.1. Uniform magnetization

Consider a single crystal Terfenol-D thin film

with 100 nm · 100 nm · 10 nm dimensions. The

crystal orientation is assumed to be ½�1�11�cjje1 and
½112�cjje2 as shown in Fig. 6(a). There are no ap-

plied traction and field in this case; therefore, we

take r� ¼ 0 and H0 ¼ 0 in (2.13). The initial

magnetization pattern is m ¼ e1 and the final re-
sults of magnetization evolution described by LLG

equation are shown in Fig. 4(c) and (d) under the

same criterion described in the case of Ni. Note

that Fig. 4(c) and (d) are magnetization patterns

simulated using the relaxed and constrained ap-

proaches.

In contrast to the case of Ni films, results sim-

ulated based on these two methods are completely
different as can be seen in Fig. 4(c) and (d). In the

former case, the elastic energy is not taken into
19.5˚

[111]

[112]

c

c

e1

e2

e3

__

[111]c

[110
_

[110]c

_

(a)

Fig. 6. Crystal orientations for single crystal
account due to the negligence of intrinsic stress. So

magnetization vectors are free to rotate and prefer

to be oriented in one of the easy axes. As Kc
1 < 0,

h111ic is the easy direction for Terfenol-D. How-

ever, only in-plane easy axes including ½�1�11�c and
½111�c are taken into account since Gioia and
James (1997) have shown that the in-plane mag-

netization is the preferred state for very thin fer-

romagnetic films to reduce demagnetization

energy. Combining all these facts leads to domain

patterns shown in Fig. 4(c): magnetization vectors

are aligned to ½�1�1�1�c direction on both right and

left sides of the film because of reduction of the

stay field energy, and to ½�1�11�c in the middle to
reduce the anisotropy energy.

On the other hand, the elastic energy plays an

important role in equilibrium domain patterns for

magnetic materials with large magnetostriction.

The consideration of intrinsic stress due to mag-

netization rotation and boundary conditions pre-

vents magnetization vectors from deviating too

much from their initial easy direction ½�1�11�c dur-
ing evolution. As a result, most of magnetization

vectors in Fig. 4(d) are oriented to ½�1�11�c while the
rest of them on both right and left sides of the film

deviate a little from the easy direction to reduce

the stay field energy.

Finally we study hysteresis of Terfenol-D thin

films. The external field H0 is applied along the e1
direction with cycling magnitudes. Fig. 5(b) shows
the simulated hysteresis loops calculated based on
35.3˚
35.3˚ c

c

e2

e3

[001]

[110]

[111]
c

[111]c

_
e1

]c

(b)

Terfenol-D films with h111ic easy axes.
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the relaxed (dashed line) and constrained (contin-

uous line) approaches. In contrast to the results

shown in Fig. 5(a) and (b) shows a wide difference

in hysteresis loops simulated using these two dis-

tinct methods. Let H r
c and H c

c be the coercive

magnetic fields obtained by relaxed and con-
strained approaches. According to Fig. 5(b)

H r
c ¼ 23,900 A/m and H c

c ¼ 49,300 A/m, and the

error estimate is

jH r
c � H c

c j
H c

c

� 100 � 52%:

In this case we have found that the coercive

magnetic field H c
c is twice larger than H r

c obtained
without consideration of intrinsic stress.
5.2.2. Twin

The magnetic domain patterns simulated in

Section 5.2.1 are not commonly observed in Ter-

fenol-D crystals at zero applied field. Instead, the

observed microstructure is very complicated in the

MFM image (Lord et al., 1997; Schmidt et al.,
1998). Most of domain patterns appear in the way

which we call ‘‘twins’’ (James and Kinderlehrer,

1993). We thus investigate the effect of intrinsic

stress on this special microstructure.

Consider a single crystal Terfenol-D thin film

with 200 nm · 200 nm · 10 nm dimensions. The

crystal orientation is assumed to be ½110�cjje1 and
½001�cjje2 as shown in Fig. 6(b). Assume r� ¼ 0
and H0 ¼ 0 in (2.13). There are two easy axes in

the plane of the film: one is along ½111�c and the

other is along ½11�1�c. The angle between the easy

axis and e1 direction is about 35.3� as also shown

in Fig. 6(b). The twinning plane is ð001Þc plane
associated with the ½111�c and ½�1�11�magnetization
pair. Let

m1 ¼
2ffiffiffi
6

p e1 þ
1ffiffiffi
3

p e2;

m2 ¼ � 2ffiffiffi
6

p e1 þ
1ffiffiffi
3

p e2

ð5:1Þ

be aligned to the easy directions ½111�c and ½�1�11�c,
respectively. So the anisotropy energy is zero.

From (2.4) and the crystal orientation shown in

Fig. 6(b), the associated components of magneto-

strain in the reference basis are
e0ðm1Þ ¼
k1 1 1
2

1
ffiffiffi
2

p
0ffiffiffi

2
p

0 0

0 0 �1

0B@
1CA;

e0ðm2Þ ¼
k1 1 1
2

1 �
ffiffiffi
2

p
0

�
ffiffiffi
2

p
0 0

0 0 �1

0B@
1CA:

ð5:2Þ

Set n̂ ¼ e2. The condition ðm1 �m2Þ � n̂ ¼ 0 implies

that there are no internal ‘‘magnetic charges’’ on the

twin plane and the demagnetization energy is re-
duced to zero if the boundary effect is neglected. In

addition, choosing a ¼
ffiffiffi
2

p
k1 1 1e1, we find e0ðm1Þ�

e0ðm2Þ ¼ a� nþ n� a satisfying the compatibility
condition (�Silhav	y, 1997). So e0ðm1Þ and e0ðm2Þ are
compatible strain pair and, therefore, the intrinsic

stress vanishes, so is elastic energy.

The initial magnetization pattern is m ¼ m1

for 0 < x2 < 100 nm and m ¼ m2 for 100 nm <
x2 < 200 nm. The inclusion of exchange energy

and boundary effect gives the final magnetic do-

main patterns shown in Fig. 7(a) and (b) based on

the relaxed and constrained methods. Note that we

have found the identical simulation results for

different initial configurations as long as the devi-

ations of initial magnetization vectors from the

easy directions are kept within 15�. In order to see
the differences between these two methods, let hr

and hc be the angles of the magnetization vectors

from the x1-axis in Fig. 7(a) and (b). Fig. 8(a) is the
contour plot showing the error estimate based on

the formula jhr�hcj
hc � 100. The maximum error

estimate is up to 30% concentrated in the middle

lower and upper parts of the film. However, this

error estimate would be meaningless if hc is close
to 90� since we can take 90�� hc as another ref-
erence angle. To see this, Fig. 7(a) and (b) shows

the significant differences in angles in the domain

wall region on the left-hand side of the film. But

such a change in magnetization angles cannot be

reflected by the original error estimate shown in

Fig. 8(a). Therefore, we define another error esti-

mate based on the formula jhr�hcj
max jhr�hcj � 100, and the

result is shown in Fig. 8(b). The new comparison

diagram not only shows the trend of the error

estimate but also reflects the change inside the wall

region simulated by different approaches.



(a) (b)

Fig. 7. Equilibrium twins for Terfenol-D films: (a) simulation based on the relaxed approach; (b) simulation based on the constrained

approach.

(a) (b)

Fig. 8. (a) Error estimate for the twin structure based on the formula defined by jhr�hc j
hc � 100. (b) Error estimate for the twin structure

based on the formula defined by jhr�hc j
max jhr�hc j � 100.
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The average angle from the x1-axis away from
the domain wall region is around 30.9� in Fig. 7(a)
while it is around 34.8� in Fig. 7(b). Clearly the

magnetization vectors in Fig. 7(b) stay at much

closer to the easy axes than those in Fig. 7(a) and it

is also true inside the wall region. The negligence

of elastic energy in Fig. 7(a) results in significant

deviation from the easy directions for magnetiza-

tion vectors near the boundary to reduce demag-
netization energy. On the other hand, elastic
energy becomes dominant in the case of large

magnetostriction. The inclusion of elastic energy in

Fig. 7(b) keeps magnetization vectors be aligned to

the easy directions as close as possible at the cost

of increase of stay field energy. This agrees with

the ‘‘constrained theory’’ proposed by DeSimone

and James (2002). In that theory the total energy is

minimized over the special class of functions in
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Fig. 9. (a) Hysteresis loops of average magnetization versus applied magnetic field calculated using the constrained (C) and relaxed (R)

approaches. (b) Hysteresis loops of the average shear strain versus applied field simulated using the constrained (C) and relaxed (R)

approaches.
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which magnetization vectors are assumed to be

oriented only along the easy directions. Our sim-

ulation confirms that this assumption turns out to

be a reasonable approximation for materials with

high anisotropy and large magnetostriction.

Finally, we investigate the hysteresis property.

Let an external magnetic field be applied cyclically

along the diagonal (45�) direction of this square
film. The average magnetization projected on the

diagonal direction versus applied field is shown in

Fig. 9(a) calculated based on the relaxed (dashed

line) and constrained (continuous line) approaches.

Again we see the wide difference in the overall loops

calculated based on these two methods. Fig. 9(b)

shows the hysteresis of the average shear strain

versus the applied magnetic field. The simulation
based on the relaxed approach shows an interme-

diate step during the exchange of stability while this

intermediate step disappears in the constrained

approach. When the applied field decreases to zero

from positive value, most of magnetization vectors

are aligned to ½111�c easy direction, resulting in

positive shear strain as shown in Fig. 10(a). From
−γγ γ

(a) (b) (c)

Fig. 10. The average shear deformation caused by magnetiza-

tion rotation from (a) to (b) to (c). Note that magnetostrain

e0ðmÞ is an even function of magnetization m.
(5.2) the angle due to shearing is about c
2
¼

e2 � e0ðm1Þe1 ¼ 1ffiffi
2

p k1 1 1 ¼ 0:11% for this Terfenol-D

film. During the exchange of stability, the relaxed

approach which neglects the intrinsic stress shows a

stable intermediate step: most of magnetization

vectors stay close to ½�1�11�c easy direction, causing
the large negative shear strain as shown in Fig.

10(b). However, there is no such an intermediate
step in the constrained approach. Instead, the

magnetization is immediately rotated to ½�1�1�1�c
direction when the reversal applied field exceeds to

coercive magnetic field as shown in Fig. 10(c). This

gives rise to positive magnitude of shear again as

magnetostrain e0ðmÞ is an even function of mag-

netization (see (2.2)).
6. Conclusion

We have explored the effect of intrinsic stress on

the magnetostrictive behavior of ferromagnetic

thin films. We start with a theoretical framework

based on micromagnetics accounting in detail for

the effect of stress. The micromagnetic formulation
is a nonlocal, nonconvex variational problem

subject to two constrained equations: Maxwell�s
and elastic equilibrium equations. The conven-

tional approach which relaxes the elastic equilib-

rium equation takes into account only the external

stress. The intrinsic stress caused by incompati-

ble magnetostrain as magnetization rotates, how-

ever, is neglected by this method. In contrast, we
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propose a modified boundary integral formalism

to solve the elastic constrained equation. This

formulation has the advantage of higher accuracy

in the calculation of stress as well as faster rate of

convergence than conventional displacement-

based numerical schemes. We further implement it
into the LLG solver to study both equilibrium and

transient magnetization configurations.

We use Ni and Terfenol-D as the model mate-

rials. The former has small magnetostriction of

the order of 10�5 while the latter has large mag-

netostriction of the order of 10�3. Figs. 4 and 5

highlight the striking contrast in equilibrium mag-

netization and hysteresis calculated based on the
constrained and relaxed methods. Our simulation

shows that the relaxed approach turns out to be a

reasonable approximation in predicting domain

patterns and their evolution in the case of Ni films

while it becomes a crude estimation for Terfenol-D

films. In addition, we consider an example of twin

which is the most observable microstructure in

magnetostrictive materials. Fig. 8 shows the sig-
nificant error estimate for the simulation of twins

using the relaxed method. The result shows that

away from the domain wall region the inclusion of

magnetostrictive energy keeps magnetization vec-

tors to be aligned to the easy axes as close as

possible. This agrees with the ‘‘constrained the-

ory’’ of DeSimone and James (2002) applied for

materials with high anisotropy and large magne-
tostriction.
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Appendix A

We consider two examples to demonstrate the

accuracy of the formalism given by (3.20) and

(3.21). First we recall that the constitutive relation

is r ¼ Cðe � e0Þ where e0 is the piecewise uniform
eigenstain. A new kind of patch test of compati-

bility with geometry and boundary conditions is

introduced in Fig. 11(a). The plane stress elastic

constants used here are C11 ¼ 1:4767� 1011 N/m2,

C12 ¼ 0:5766� 1011 N/m2, C66 ¼ 1:1848� 1011 N/

m2 in terms of Voigt notation. The eigenstrain is

given by

e0ðxÞ ¼ e01 ¼
1 0

0 0

� �
; x 2 X1;

e0ðxÞ ¼ e02 ¼
0 2

2 0

� �
; x 2 X2:

ðA:1Þ

Note that one can check that e01 and e02 are com-

patible each other. So there is no internal stress

across the boundary shared by oX1 and oX2. In

fact, the exact solution is

uðxÞ ¼ ðx1; 0Þ; x 2 X1;
ð0:05; 4x1 � 0:2Þ; x 2 X2;

	
ðA:2Þ
cut

0.1 m

0.02 m 

0.
02

 m

Ω1

Ω

(b)

ined boundary condition u2 ¼ 0 is enforced on the left-hand side

test the accuracy of the modified BEM formalism.
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which results in r � 0. The computational result
also shows that the computed stress r is extremely

close to zero which agrees with the exact solution.

Finally, note that the total boundary elements

used in the simulation are N1 ¼ 6, N ð1Þ
2 ¼ 4 and

N ð2Þ
2 ¼ 4 where N1 is the number of boundary ele-

ments on the whole boundary, N ð1Þ
2 and N ð2Þ

2 are the

number of boundary elements used to describe the

boundaries oX1 and oX2 (see (3.20) and (3.21)).
The next example with geometry and boundary

conditions is shown in Fig. 11(b). The plane stress

elastic constants used here are the same as those

given in the previous example. The eigenstrain is

given by

e0ðxÞ ¼
3:9� 10�4 0

0 3:9� 10�4

� �
; x2X1;

0; x2X nX1:

8<:
ðA:3Þ

The total line elements used in the simulation are

N1 ¼ 80 and N ð1Þ
2 ¼ 16 on the boundary oX and

oX1, respectively. The stresses computed along the

line cut at 1/4 of the sideline of the body are shown
in Fig. 12. We also use the commercial NA-

STRAN FEM code to check the accuracy of the

BEM formalism given by (3.20) and (3.21). Note

that we have used the eight-node square mesh in

the FEM simulation and the total number of

meshes is 400. From Fig. 12 we find that the

numerical results obtained by BEM simula-

tion with few line elements on the boundaries
agree well with those obtained by FEM simula-

tion.
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