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a b s t r a c t

Multiferroic materials possess electric and magnetic orderings simultaneously, making

it possible to manipulate the electric state of a multiferroic by magnetic field, or vice

versa. Among all single-phase multiferroics, BiFeO3 is particularly exciting, for its room

temperature multiferroicity, excellent ferroelectric properties, and recently demon-

strated electric control of antiferromagnetic domains, which opens door for its

applications in spintronics. In this paper, we report a systematic theoretical and

computational study on the structure and evolution of magnetoelectric domains in

multiferroic BiFeO3. A continuum description is developed for antiferromagnetic

ordering first, which is then incorporated into an unconventional phase field method

that couples ferroelastic, ferroelectric, and antiferromagnetic orderings through the

characteristic function of variants. The internal elastic, electric, and magnetic fields are

carefully analyzed, taking into account both bulk and thin film geometries and

boundary conditions. The theory is implemented into numerical simulations, where we

not only observe the coupled ferroelectric and antiferromagnetic domains, and

demonstrate the electric control of antiferromagnetic ordering, but also reveal the

switching of antiferromagnetic domains by mechanical stress that is yet to be reported

in experiment. Our study offers deep insight into the microstructural evolution and

macroscopic properties of BiFeO3, and provides a powerful tool to study a wide range of

multiferroic materials with magnetoelectric coupling.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Multiferroic materials possess two or more types of orders simultaneously that couple the electric and magnetic fields
(Fiebig et al., 2002; Wang et al., 2003; Lottermoser, 2004; Fiebig, 2005; Spaldin and Fiebig, 2005; Nan et al., 2005;
Eerenstein et al., 2006; Zhao et al., 2006; Ramesh and Spaldin, 2007; Chu et al., 2008; Balke et al., 2009), rendering them a
rich variety of microstructural phenomena and macroscopic properties. For example, it is possible to manipulate the
electrical state of a multiferroic material through a magnetic field or vice versa, which is not only appealing scientifically,
but also makes the multiferroic materials promising for a wide range of applications (Lottermoser, 2004; Eerenstein et al.,
2006; Ramesh and Spaldin, 2007; Chu et al., 2008), including electrically controlled microwave phase shifters or
ferromagnetic resonance devices, magnetically controlled electro-optic or piezoelectric devices, broadband magnetic field

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmps

Journal of the Mechanics and Physics of Solids

0022-5096/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jmps.2010.07.006

� Corresponding author. Tel.: +1 2065436226; fax: +12066858047.

E-mail address: jjli@u.washington.edu (J.Y. Li).

Journal of the Mechanics and Physics of Solids 58 (2010) 1613–1627



sensors, and magnetoelectric memory cells. As a result, there have been renewed interests in magnetoelectric coupling in
multiferroic materials, and significant progress has been made in the last few years. For example, the coupled
magnetic and electric domains have been observed (Fiebig et al., 2002), and magnetic control of polarization and
electric control of magnetization have been demonstrated (Hur et al., 2004; Zhao et al., 2006; Chu et al., 2008; Chung et al.,
2009a, b).

Among all multiferroic materials, BiFeO3 is particularly exciting for its rare room temperature multiferroicity, with
ferroelectric Curie temperature around 1100K and antiferromagnetic Neel temperature around 640K (Kiselev et al., 1963;
Teague et al., 1970). It has a rhombohedral crystalline structure, with spontaneous polarization along one of the eight
pseudo-cubic [11 1] axis, rendering it eight ferroelectric variants (Michel et al., 1969; Kubel and Schimid, 1990; Zavaliche,
2005a, b, 2006; Zhao et al., 2006). Furthermore, it has G-type antiferromagnetic ordering, with magnetic spins
perpendicular to [11 1] axis, lying in (1 11) plane. Within (111) plane, magnetic spins are ferromagnetically coupled,
while between adjacent (1 11) planes, they are antiferromagnetically coupled (Zhao et al., 2006; Fischer et al., 1980; Ederer
and Spaldin, 2005c). The coupling between the directions of electric polarizations ([1 1 1] axis) and magnetic spins ((1 11)
plane) makes it possible to control the antiferromagnetic domains of BiFeO3 by electric fields. Indeed, this has been
demonstrated in BiFeO3 thin films, where it has been reported that an electric field applied along [0 01] axis switches not
only the ferroelectric domains, but also antiferromagnetic domains, as observed by a rather sophisticated photoemission
electron microscopy (PEEM) based on X-ray linear dichroism (XLD) (Thole et al., 1985; Czekaj et al., 2006; Zhao et al.,
2006). By combining this magnetoelectric coupling in antiferromagnetic BiFeO3 with exchange bias in ferromagnetic
material, electric control of ferromagnetic ordering has also been demonstrated (Chu et al., 2008), and thus opens door for
practical applications of multiferroics in spintronics. This is a very important advance in multiferroics, since
antiferromagnetic ordering alone, the most common magnetic ordering in multiferroics, is rather difficult to detect and
virtually impossible to use otherwise in applications.

The rapid experimental advances in BiFeO3 are very exciting, but many questions remain to be explored. For
example, what is the structure of magnetoelectric domains in BiFeO3, and how does its domain structure evolve under
an external stimulus? Answers to these questions are essential to the understanding of the microstructure
and macroscopic properties of BiFeO3, and thus are critical to the design, analysis, and application of multiferroic
devices based on BiFeO3. While the investigation can be pursued along experimental line, it is rather tedious and
expensive, and the sophisticated PEEM and XLD are not easily accessible either. The experimental data from PEEM is
sometimes difficult to interpret, and insight from computational modelings will be really helpful. Nevertheless, no
computational study on the structure and evolution of magnetoelectric domains in BiFeO3 or any other multiferroics
has been reported yet, and only the ferroelectric domain structure of BiFeO3 has been simulated (Cruz et al., 2007; Zhang
et al., 2008). The main difficulty lies in the antiferromagnetic domain structure that is challenging to simulate and rarely
studied at continuum scale, and the coupling between ferroelectric and antiferromagnetic orderings makes the problem
even worse.

Recently, we have developed an unconventional phase field approach that simplifies the computational study of
domain structures and their evolution in phase transforming materials substantially (Shu and Yen, 2007). It has been
applied successfully to study the twin structure of martensite (Shu and Yen, 2008; Yang and Dayal, 2010) and austenite–
martensite interface (Lei et al., 2010), domain structure of ferroelectrics (Shu et al., 2008; Zhang et al., 2010), and coupled
magnetoelastic domains in ferromagnetic shape memory alloys (Li et al., 2008a). One of the key advantages of this
unconventional phase field method is that it makes the coupling among multiple order parameters much easier to
implement, and thus is particularly suitable for studying multiferroics. In this work, we develop a method to simulate the
antiferromagnetic domain structure using continuum theory, and combine it with the unconventional phase field approach
to study the coupled magnetoelectric domains and cross-field switching in BiFeO3. Compared to first principles
calculations that provided deep insight on the quantummechanical mechanism of multiferrocity (Zhao et al., 2006; Neaton
et al., 2005; Ederer and Spaldin, 2005a–c), our continuum study offers fundamental understanding on the microstructures
and macroscopic properties of multiferroics that are relevant to materials and devices, and yet are beyond the capability of
first principles studies. Some of our preliminary results have been reported in a short letter (Li et al., 2008b), here we
systematically present our theory and results in detail.

The paper is organized as follows. A continuum theory is developed for antiferromagnetic coupling of spins in Section 2,
and then is incorporated in the energetics of multiferroics with coexistence of ferroelastic, ferroelectric, and
antiferromagnetic orderings in Section 3. The kinetics and evolution equations for multiferroic orderings are then developed
in Section 4, and the distributions of elastic, electric, and magnetic fields in the multiferroics are solved in Section 5, with
two different configurations considered. Finally, detailed numerical simulations and discussions on BiFeO3 are presented in
Section 6.

2. Continuum theory of antiferromagnetic coupling

In BiFeO3 lattice, magnetic spins lie in (1 1 1) plane, being ferromagnetically coupled within (1 11) plane while
antiferromagnetically coupled between adjacent (1 11) planes. To develop a continuum description of antiferromagnetic
coupling for bismuth ferrite, we consider a lattice of spins Si, with the short-range exchange interaction between spins
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given by (Aharoni, 2000; Suess, 2002)

Waf ¼�
XN
i ¼ 1

XN
j ¼ 1

JijSi � Sj, ð1Þ

where Jij is the exchange integral whose value depends upon the distance between two spins considered, and N is the total
number of spins in the lattice. Notice that for the simplification of notation, we do not explicitly include a factor of 1

2 in the
equation to remove double counting of the pair-wise interactions, but factor it into the exchange integral instead. It is also
understood that the spins do not interact with themselves. Due to the short-range nature of exchange coupling, we only
consider the exchange interactions between a given spin and its nearest neighbors and the second nearest neighbors.
Without loss of generality, we consider a simple cubic lattice, and the relative coordinates of six nearest neighbors with
respect to the considered spin are given by (Suess, 2002)
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and those of 12 second-nearest neighbors are given by
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where a is the lattice constant. Considering only these 18 neighbors, and dividing the lattice of spins into two
antiferromagnetically coupled sub-lattices, one with spins SA, the other with spins SB, the exchange interaction can be
expanded as

Waf ¼�
XN=2
i ¼ 1

JijSAðxiÞ �
XNb

j ¼ 1

Sj�
XN=2
m ¼ 1

JmjSBðxmÞ �
XNb

j ¼ 1

Sj

¼�
XN=2
i ¼ 1

JikSAðxiÞ �
X6
k ¼ 1

SBðxiþdkÞ�
XN=2
m ¼ 1

JmkSBðxmÞ �
X6
k ¼ 1

SAðxmþdkÞ

�
XN=2
i ¼ 1

JinSAðxiÞ �
X12
n ¼ 1

SAðxiþfnÞ�
XN=2
m ¼ 1

JmnSBðxmÞ �
X12
n ¼ 1

SBðxmþfnÞ, ð2Þ

where xi and xm are the coordinates of the considered lattice points, and Nb is the number of neighboring points
considered. In order to evaluate the summation of the exchange energy, we adopt the following Taylor expansion,

SA,BðxiþdkÞ ¼ SA,BðxiÞþ @SA,BðxiÞ
@xl

dkl þ
1

2

@2SA,BðxiÞ
@xl@xm

dkl d
k
m,

SA,BðxiþfnÞ ¼ SA,BðxiÞþ @SA,BðxiÞ
@xl

znl þ
1

2

@2SA,BðxiÞ
@xl@xm

znl z
n
m,

where the subscripts l and m are used to denote the components of vectors, and repeated subscripts are summed from 1 to
3. Substituting such expansions in Eq. (2), and noticing that due to the symmetry, the summation of the first order terms
vanishes over all the considered neighbors, so is the summation of the second order cross product terms, namely
ð@2SA,B=@xl@xmÞznl znm where lam. Furthermore, we denote the exchange integral between the nearest neighbors by J, and
that between the second nearest neighbors by �Ju, indicating their respective antiferromagnetic and ferromagnetic
coupling. With these considerations, the short range exchange energy is derived as

Waf ¼�12J
XN=2
i ¼ 1

SAðxiÞ � SBðxiÞ�Ja2
XN=2
i ¼ 1

½SAðxiÞ �DSBðxiÞþSBðxiÞ � DSAðxiÞ�

þ4Jua2
XN=2
i ¼ 1

½SAðxiÞ �DSAðxiÞþSBðxiÞ � DSBðxiÞ�, ð3Þ

where D is the Laplace operator, and a constant SðxiÞ � SðxiÞ term is dropped because it is inconsequential to the energetic
state of the spin lattice.

Under a continuum approximation, wherein the feature size of the material is much larger than the lattice constant,
the distribution of spins SA and SB can be considered as continuous, and the summation in the exchange energy can be
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converted to integration. To this end, we introduce magnetic polarization Ma,b, the magnetic dipole moment per unit
volume, and unit magnetic polarization ma,b as

Ma,b ¼
SA,B

a3
, ma,b ¼

Ma,b

jMa,bj
¼ SA,B

s
,

where s is the magnitude of spin SA,B. As such, the exchange energy can be evaluated as

Waf ¼�12Js2
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where & is the super-cell of unit volume for continuum evaluation, which is much larger than the unit cell of the lattice.
Taking advantages of the divergence theorem and periodic boundary condition, the exchange energy can be simplified as
follows:

Waf ¼�6Js2

a3

Z
&
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Defining C ¼ 6Js2=a3 and Am ¼�Js2=2a, the exchange energy is derived as

Waf ¼�
Z
&

CmaðxÞ �mbðxÞdV�2Am

Z
&

rmaðxÞ � rmbðxÞdVþAm
4Ju
J

Z
&

½rmaðxÞ � rmaðxÞþrmbðxÞ � rmbðxÞ�dV : ð5Þ

Notice that while the derivation is given for cubic lattice, the continuum expression (5) does not change for different types
of lattices, and only the detailed dependence of the continuum constitutive parameters C and Am on the microscopic
parameters such as a and J will be different. If we further assume that the exchange integral Ju¼ J=4 for its short-range
nature, the exchange energy is finally simplified as

Waf ¼
Z
&

½AmjrmaðxÞ�rmbðxÞj2�CmaðxÞ �mbðxÞ�dV , ð6Þ

the expression we will adopt in our following analysis for its simplicity. Notice that the exchange constant Am is positive
while C is negative, so that the first term penalizes the gradient in magnetic polarization, resulting in magnetic domain
wall energy, while the second term forces the antiferromagnetic coupling between spins in the two sub-lattices.

3. Energetics of multiferroic state

With a continuum theory of antiferromagnetic coupling established, we now analyze the energetics of multiferroic
BiFeO3. In addition to the antiferromagnetic coupling that is represented by the magnetization ma and mb of two sub-
lattices, bismuth ferrite is also ferroelectric with transformation strain e� and spontaneous polarization p*. As a result, four
order parameters are necessary to describe the multiferroic state of bismuth ferrite, which will be discussed in detail next.

3.1. Ferroelectric ordering

We consider the ferroelectric ordering of bismuth ferrite first, which has rhombohedral crystalline structure that is
spontaneously polarized along [111] direction. Due to the reduction in symmetry, a total of eight ferroelectric variants
exist, with the transformation strain and spontaneous polarization of each variant given by
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These eight ferroelectric variants can be grouped into four ferroelastic variants with distinct transformation strain, as
schematically shown in Fig. 1.

In the conventional phenomenological theory of ferroelectrics, polarization is used as the order parameter, and the
internal energy density of the ferroelectrics is expanded in terms of the polynomial of polarization (Chen, 2002). This has
been very successful in analyzing ferroelectric phase transformation (Hu and Chen, 1998; Li et al., 2002), but involves many
material parameters that need to be carefully tuned to yield correct symmetry and energy well structure (Landis, 2008). It
is also not easy to couple multiple orderings in the formulation, which becomes increasingly more complicated with the
increase of coupled order parameters. As such, this approach is not convenient for simulation of domain structures in
multiferroic materials.

To overcome these difficulties, we notice that the transformation strain and spontaneous polarization of the
ferroelectric at any particular spatial point can be expressed in terms of the characteristic function of variants and their
corresponding transformation strain and spontaneous polarization,

e�ðxÞ ¼
X8
i ¼ 1

liðxÞeðiÞ, p�ðxÞ ¼
X8
i ¼ 1

liðxÞpðiÞ, ð8Þ

where liðxÞ is the characteristic function of variant i that is specified as

liðxÞ ¼
1, x occupied by variant i,

0 otherwise:

(
ð9Þ

For rhombohedral bismuth ferrite, there are a total of eight liðxÞ for eight ferroelectric variants, but only seven of them are
independent, since they need to satisfy the following constraint:

X8
i ¼ 1

li ¼ 1, ð10Þ

so that any spatial point x is occupied and only occupied by one variant. To incorporate this constraint, we introduce seven
independent mi that are either 0 or 1, such that

lr ¼
mr

Qr�1
i ¼ 1ð1�miÞ, r¼ 1, . . . ,7,Qr�1

i ¼ 1ð1�miÞ, r¼ 8,

(
ð11Þ

which satisfy Eq. (10) automatically. This establishes the equivalence of characteristic functions l¼ fmig7i ¼ 1 with the
transformation strain e� and spontaneous polarization p* through Eqs. (8) and (11), allowing us to use them as the internal
variables to describe the ferroelectric state instead. The construction (11) is motivated by the multi-rank laminations that

Fig. 1. Schematic of four ferroelastic variants with distinct transformation strain (represented by stretching along one of the body diagonal of the cubic

lattice), spontaneous polarization (denoted by solid arrow along the body diagonal), and magnetic easy axis (denoted by dash arrow along the face

diagonal that is perpendicular to the body diagonal).
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are proven energy minimizing for martensitic phase transformation (Bhattacharya, 1993), magnetic materials (DeSimone
and James, 2002), and ferroelectrics (Li and Liu, 2004; Tsou and Huber, 2010), and the characteristic function l has recently
been successfully adopted as the phase field variable to simulate the domain patterns in shape memory alloys (Shu and
Yen, 2007, 2008; Yang and Dayal, 2010; Lei et al., 2010), ferroelectric crystals (Shu et al., 2008; Yen et al., 2008; Zhang et al.,
2010), and ferromagnetic shape memory alloys (Li et al., 2008a). We adopt the similar strategy here, and propose the
following anisotropy ferroelectric energy density,

Wani
m ðlÞ ¼ Km

X7
i ¼ 1

m2
i ð1�miÞ2, ð12Þ

which is minimized by mi at either 0 or 1, and thus ensures the multi-well energy structure of bismuth ferrite in the ground
state.

When subjected to an external electromechanical loading, both strain e and polarization p might deviate from the
ground state, resulting in a piezoelectric energy density as follows:

Wpieðl,pÞ ¼ 1
2 ½e�e�ðlÞ� � C½e�e�ðlÞ��½p�p�ðlÞ� � j½e�e�ðlÞ�þ1

2½p�p�ðlÞ� � v�1½p�p�ðlÞ�, ð13Þ

where the standard quadratic growth away from the energy well is assumed. In the equation, C is the elastic stiffness, j is
the piezoelectric coefficient, and v is the dielectric susceptibility. Notice that strain e is not an independent variable in the
formulation, and can be determined from the transformation strain e� using mechanical equilibrium equation subjected to
differential constraint of compatibility. On the other hand, the polarization is not subjected to such differential constraint.
In most ferroelectrics, the induced polarization is much smaller than the spontaneous one, and we can adopt the
constrained theory of ferroelectrics (Li and Liu, 2004; Shu et al., 2008), which assumes that the energy-well structure is
steep away from the ground state. As such, the polarization p is restricted within the energy well,

p¼ p�, ð14Þ

and the piezoelectric energy density is reduced to the familiar elastic energy density,

WelaðlÞ ¼ 1
2½e�e�ðlÞ� � C½e�e�ðlÞ�: ð15Þ

Through this simplification, the polarization p is no longer treated as the internal variable, and the ferroelectric state is
now completely described by characteristic function l. It is also noted that within a domain wall, mi may deviate from 0 or
1, and thus p is not necessarily constrained within the energy well across domain walls, as we show later.

3.2. Antiferromagnetic ordering and magnetoelectric coupling

As demonstrated in the last section, the energetics of BiFeO3 is also dependent on magnetization ma and mb of
two sublattices, and excluding the magnetic domain wall energy, the antiferromagnetic energy density is derived from
Eq. (6) as

Waf
m ðma,mbÞ ¼ �Cma �mb, ð16Þ

which ensures that ma and mb are antiferromagnetically coupled. Furthermore, the magnetization prefers to lie in (1 11)
plane that is perpendicular to [1 11], the polar axis of the ferroelectric variant. A uniaxial magnetic anisotropy energy is
introduced to reflect this magnetoelectric coupling,

Wani
m ðl,ma,bÞ ¼ �Km

2
½ðma � lðlÞÞ2þðmb � lðlÞÞ2�, ð17Þ

which corresponds to an energy penalty when either ma or mb rotates away from the magnetic easy axis lðlÞ given by

lðlÞ ¼
X8
i ¼ 1

lil
ðiÞ: ð18Þ

Thus the distribution of magnetic easy axis is given in terms of the characteristic function of variant, with the easy axis of
each individual variants given by

lð1,2,7,8Þ ¼
1

1

0

0
B@

1
CA, lð3,4,5,6Þ ¼
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1

0

0
B@

1
CA, ð19Þ

as established for bismuth ferrite by experimental observations (Zhao et al., 2006) and first principle calculations (Ederer
and Spaldin, 2005c). As such, the ferroelectric and antiferromagnetic states are coupled in a straightforward yet physically
meaningful manner through the characteristic function l, without resorting to much more complicated polynomials
involving expansions of p, e, ma, and mb.
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3.3. Potential energy of multiferroics

We now consider a multiferroic bismuth ferrite occupying a region O, and is subjected to an external stress r0, electric
field E0, and magnetic field H0. The potential energy of the multiferroic is thus given by

I ðl,ma,bÞ ¼
Z
O
fWgraðl,ma,bÞþWani

m ðlÞþWelaðlÞþWaf
m ðma,bÞþWani

m ðl,ma,bÞ

�r0 � e�E0 � p��MsH
0 � ðmaþmbÞgdVþ e0

2

Z
R3

jrcj2 dVþ m0

2

Z
R3

jrfj2 dV , ð20Þ

where

Wgraðl,ma,bÞ ¼ AmjrmaðxÞ�rmbðxÞj2þAmjrlj2 ð21Þ
accounts for interfacial energy at domain wall, with the first term describing the magnetic domain wall energy as derived
in the last section, and the second term describing the ferroelectric domain wall energy penalizing gradient in l, and Am is
the exchange constant for ferroelectric coupling. Notice that works done by the external loadings are subtracted from the
total energy. In addition, the last two terms in the potential energy accounts for the depolarization energy and
demagnetization energy arising from the interactions among polarizations and magnetizations, with the electric potential
c and magnetic potential f solved from Maxwell’s equations, and e0 and m0 being the permittivity and permeability of free
space.

4. Kinetics

Under an external electric, magnetic or mechanical loading, both l and ma,b will evolve to minimize the potential
energy I . The variation of the potential energy I with respect to l and ma,b is given by

dI ðl,ma,bÞ ¼�
Z
O
ðFgraþFanim þFelaþFanim þFeleÞ � dldV�Ms

Z
O
ðHgra

a,b þHaf
a,bþHani

a,bþH0�rfÞ � dma,b dV,

where periodic boundary conditions have been used in the derivation. The driving forces for the evolution of characteristic
function l are derived from the energy variation as

Fgra ¼ 2Amr2l, ð22Þ

Fanim ¼� @

@l
Wani

m ðlÞ, ð23Þ

Fela ¼ C½e�eðlÞ� � @eðlÞ
@l

, ð24Þ

Fanim ¼� @

@l
Wani

m ðl,ma,b,Þ, ð25Þ

Fele ¼ ðE0�rcÞ � @p
�

@l
, ð26Þ

where we have used the following result in deriving the driving force contributed by the depolarization energy:

d
e0
2

Z
R3

jrcj2 dV
� �

¼ e0
Z
R3

rc � rðdcÞdV ¼ e0
Z
R3

r � ðcrðdcÞÞdV�e0
Z
R3

cr2ðdcÞdV

¼�
Z
R3

cdðe0r2ðcÞÞdV ¼�
Z
O
cdðr � p�ÞdV

¼�
Z
O
r � ðcdp�ÞdVþ

Z
O
rc � dp� dV ¼

Z
O
rc � dp� dV : ð27Þ

On the other hand, the effective fields that drive the evolution of magnetization ma,b are given by

Hgra
a,b ¼

2Am

Ms
ðr2ma,b�r2mb,aÞ, ð28Þ

Haf
a,b ¼

C

Ms
mb,a, ð29Þ

Hani
a,b ¼� 1

Ms

@

@ma,b
Wani

m ðl,ma,mbÞ, ð30Þ
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where derivation similar to Eq. (27) has been used to derive the contribution from demagnetization energy. Through the
driving forces and effective fields, the evolution equations for l and ma,b are established as

@l
@t

¼ L½FgraþFanim þFelaþFanim þFele�,

@ma,b

@t
¼�ggma,b �Heff

a,b�dggma,b � ðma,b �Heff
a,bÞ:

The first equation describes a linear kinetic evolution law for l, with L being the evolution coefficient, while the second
equation is in the form of classical Landau–Lifshitz–Gilbert equation (Landau and Lifshitz, 1935; Gilbert, 1955; Brown,
1963; Chen, 2002) that describes the rotation of magnetization ma,b, with the effective magnetic field given by

Heff
a,b ¼Hgra

a,b þHaf
a,bþHani

a,bþH0�rf: ð31Þ

5. Elastic, electric, and magnetic fields in the multiferroics

In order to completely determine the energetic state of multiferroics and establish the corresponding driving forces and
effective fields for evolution, we need to solve for the strain e, electric field rc, and magnetic field rf from appropriate
governing equations and boundary conditions. To this end, the total strain e can be determined by solving mechanical
equilibrium equation (Shu et al., 2004; Shu and Yen, 2007, 2008)

r � r¼ 0 in O, r¼ C½e�e�ðlÞ�, ð32Þ
while the electrostatic and magnetostatic fields can be determined by solving Maxwell’s equations (Brown, 1963),

r � D¼ 0 on R3, D¼�krcþp� ð33Þ
and

r � B¼ 0 on R3, B¼�m0rfþm, m¼maþmb: ð34Þ
Notice that the dielectric constant k¼ kre0 of the multiferroic, instead of the permittivity of the free space e0, is used in the
dielectric constitutive equation, consistent with the constrained theory of ferroelectric adopted in the last section.
Furthermore, the depolarization and demagnetization fields are nonlocal, and could exist in full space, which complicates
the analysis. In particular, the electric and magnetic boundary conditions have to be carefully accounted. To this end, we
adopt the homogenization theory of ferroelectrics and ferromagnetic materials. Simply put, Maxwell’s equations can be
decomposed into two parts. One is associated with averaged polarization p� and magnetization m that are uniformly
distributed in the domain considered,

r � ð�krcþp�Þ ¼ 0, r � ð�m0rfþmÞ ¼ 0: ð35Þ
For ellipsoidal domain, the solution are a well known,

rc ¼ 1

kNOp
�, rf ¼ 1

m0

NOm, ð36Þ

where NO is the depolarization or demagnetization factor that depends only on the shape aspect ratios of the ellipsoidal
domain. The other one is associated with polarization and magnetization fluctuation distributed in a periodic unit cell,

r � ð�krcuþp�uÞ ¼ 0, r � ð�m0rfuþmuÞ ¼ 0, ð37Þ
which can be solved in Fourier space along with the mechanical equilibrium equation. In the following, two different
configurations will be considered, one is two-dimensional bulk material, and the other is thin film. To simplify the
notation, the superscript prime will be dropped from all the equations, with the understanding that solutions solved in
Fourier space represent field fluctuations.

5.1. Two-dimensional bulk material

The first case we consider is a two-dimensional bulk material, in the sense that all the field variables, such as
characteristic functions l and magnetization ma,b, are assumed to depend only on x1 and x2, so that all terms involving
@=@x3 vanish, even though all the tensorial variables are still three-dimensional in nature. This corresponds to an infinite
long cylinder with uniform distribution of field variable along the cylindrical axis, and thus we only need to examine the
field distribution in one cross section that is perpendicular to the axis. Implicitly implied in the assumption is that all the
interfaces in the material need to be parallel to x3, and thus only a subset of all possible magnetoelectric domain structures
can be captured. Under such configurations, the governing equations can be solved using two-dimensional Fourier
transform. In particular, the mechanical displacement field can be solved in Fourier space as (Mura, 1982)

~uiðkÞ ¼ XjNijðkÞ=DðkÞ, ð38Þ
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where

Xi ¼�iCijkl ~e
�
klkj, ð39Þ

and Nij(k) and D are cofactors and determinant of the 3�3 matrix K, with

Kki ¼ Ckjilkjkl: ð40Þ
Notice that ki is the coordinates in the two-dimensional Fourier space, and only k1 and k2 need to be considered, while
all other tensorial variables are three-dimensional. In a similar manner, Maxwell’s equation can be solved in
two-dimensional Fourier space as

kk2 ~cþðk1 ~p�
1þk2 ~p

�
2Þ ¼ 0 ð41Þ

and

m0k
2 ~fþðk1 ~m1þk2 ~m2Þ ¼ 0, ð42Þ

with k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21þk22

q
.

5.2. Two-dimensional thin film

In another extreme, we consider a thin film with thickness much smaller than the in-plane dimension, so that the out-
of-plane components of strain can be ignored according to Bhattacharya and James’ (1999) theory. As such, all the
mechanical tensorial variables are reduced to two-dimensional in nature, and the form of mechanical displacement
remains to be the same as Eq. (38), except that all the subscripts can only take 1 and 2 now, and the matrix K is 2�2
instead of 3�3. The depolarization and demagnetization fields, however, are much more complicated, which we analyze
in detail next.

Considering a thin film of thickness h bounded by 0rx3rh, with top and bottom surfaces electroded and periodic
boundary condition assumed in x1–x2 plane. Then the electric Maxwell’s equation and corresponding boundary conditions
are given by

r � D¼ 0, D¼�krcþp�, c¼ 0 at x3 ¼ 0,h, ð43Þ
which can be transformed into two-dimensional Fourier space as

d2 ~c
dx23

�k2 ~c ¼ ik1 ~p�1 þ ik2 ~p�2
k

with ~cðk1,k2,0Þ ¼ 0, ~cðk1,k2,hÞ ¼ 0: ð44Þ

This can be solved in Fourier space as

~c ¼ c1
ekhþ1

ekx3 þ c1e
kh

ekhþ1
e�kx3�c1, c1 ¼

ik1 ~p�1 þ ik2 ~p�2
kk2

: ð45Þ

Therefore, the depolarization field Ed in Fourier space can be derived as

~Ed1 ¼ �ik1
h

Z h

0

~c dx3 ¼�ik1c1
2

kh
tanh

kh

2

� �
�1

� �
,

~Ed2 ¼ �ik2
h

Z h

0

~c dx3 ¼�ik2c1
2

kh
tanh

kh

2

� �
�1

� �
,

~Ed3 ¼ 1

h

Z h

0
� d ~c
dx3

dx3 ¼ 0, ð46Þ

which are averaged over the film thickness.
The demagnetization can be solved in a similar manner. However, due to the lack of magnetic monopoles screening at

the top and bottom surfaces, the boundary condition is much more complicated, and Maxwell’s equation has to be solved
in full space. In particular, three regimes have to be considered in the two-dimensional Fourier space,

d2 ~f
dx23

�ðk21þk22Þ ~f ¼ 0, x34h,

d2 ~f
dx23

�ðk21þk22Þ ~f ¼ ik1 ~m1 þ ik2 ~m2

m0

, 0rx3rh,

d2 ~f
dx23

�ðk21þk22Þ ~f ¼ 0, x3o0: ð47Þ
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Taking boundary conditions at infinity into account, the solutions can be derived as follows:

~f ¼ ekh�1

2k

~m3

m0

�kc2

� �
e�kx3 , hox3,

~f ¼ e�kh

2k

~m3

m0

þkc2

� �
ekx3� 1

2k

~m3

m0

�kc2

� �
e�kx3�c2, 0rx3rh,

~f ¼ e�kh�1

2k

~m3

m0

þkc2

� �
ekx3 , x3o0, ð48Þ

with

c2 ¼
ik1 ~m1 þ ik2 ~m2

m0k
2

:

The demagnetization field in Fourier space can then be derived as

~Hd
1 ¼ �ik1

h

Z h

0

~f dx3 ¼ ik1c2
e�khþkh�1

kh

� �
,

~Hd
2 ¼ �ik2

h

Z h

0

~f dx3 ¼ ik2c2
e�khþkh�1

kh

� �
,

~Hd
3 ¼ 1

h

Z h

0
� d ~f
dx3

dx3 ¼
e�kh�1

kh

� �
~m3

m0

, ð49Þ

which are also averaged over the film thickness. These solutions also apply to the depolarization field if the top and bottom
surfaces of the film is not electroded, and thus unscreened by charges, if we replace m0 by k, and m by p*.

6. Results and discussions

The theory has been implemented into numerical simulation to investigate the magnetoelectric domains and cross-field
switching in bulk bismuth ferrite crystal and thin film, with the evolution equations solved by semi-implicit finite
difference method on time scale and fast Fourier transform on spatial scale (Chen, 2002; Zhang and Chen, 2005). In this
section, we present these results in detail.

6.1. Two-dimensional bulk crystal

We first examine the magnetoelectric domains in bulk bismuth ferrite crystal, with the material parameters (Wang
et al., 2003; Ruette et al., 2004; Eerenstein et al., 2005; Zhang et al., 2007) used in the simulation listed in Table 1. The
ferroelastic, ferroelectric, and antiferromagnetic domain structures of a clamped bismuth ferrite crystal in the absence of
external fields are shown in the top row of Fig. 2, and it is observed that four ferroelastic variants are arranged in a
characteristic rank-2 laminate structure, which is further divided into eight ferroelectric domains in a self-accommodating
and compatible manner. The arrows in Fig. 2b indicate the directions of in-plane polarization components, while the
directions of out-of-plane polarization component are indicated by + and � signs. Only two antiferromagnetic variants are
observed, with their spins oriented along [11 0] and ½11 0�, as indicated by the yellow arrow in Fig. 2c. The direction of
sublattice spin ma is shown, while the sublattice spin mb is antiparallel to ma. In the bottom row of Fig. 2, the variations of
l, p, and m on the upper boundary of domains are shown, and clearly the characteristic functions l across domain walls
deviate from 0 or 1, resulting in reduction in the magnitude of spontaneous polarizations within the domain walls, as we
mentioned earlier and consistent with conventional phenomenological theory. On the other hand, while components of
magnetization do vary across domain walls, the magnitude of magnetization remains to be constant, as expected from
magnetization rotation. These suggest that the structure of domain walls emerging from our simulations is not much
different from the conventional theory.

It is noted that ferroelectric variants separated by 1801 [variants (1)/(2), (3)/(4), (5)/(6), (7)/(8)] or 1091 [variants (1)/(8),
(2)/(7), (3)/(6), and (4)/(5)] domain walls share the same antiferromagnetic ordering, while variants (1)/(4) and (6)/(7) are
separated by 711 domain wall that also changes the antiferromagnetic ordering, suggesting the possibility of electric

Table 1
Material parameters of bulk bismuth ferrite crystal.

C11 (GPa) C12 (GPa) C44 (GPa) Ps (C/m
2) Ms (T) Km (J/m3) Km (J/m3) kr

302 162 68 0.061 0.19 6.6�104 6.6�105 70
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control of antiferromagnetic ordering through the corresponding 1091 ferroelectric domain switching, as observed in
experiments (Zhao et al., 2006; Chu et al., 2008). To verify this, an in-plane electric field is applied along x2-axis to the
crystal with the initial domain configuration shown in Fig. 2, and the resulting ferroelastic, ferroelectric, and
antiferromagnetic domains are shown in Fig. 3. As expected, the applied electric field eliminates four of the
ferroelectric variants, (2), (4), (5), and (7), and the remaining variants (1), (3), (6), and (8) all have polarization p2
aligned along the applied electric field, as shown in Fig. 3b. What is interesting is that while the electric field effectively
eliminates 1801 domain wall, the evolution path from Figs. 2b to 3b appears rather complex and non-intuitive. Instead of
simply moving the 1801 domain walls, all three types of ferroelectric domain walls are moved. As a result of such complex
evolution, the final ferroelastic domain pattern in Fig. 3a appears to be 901 rotation from the original one shown in Fig. 2a,
so does the antiferromagnetic domain shown in Fig. 3c. Nevertheless, the antiferromagnetic domains are indeed switched
by the applied electric field, confirming the magnetoelectric coupling in bismuth ferrite crystal. Similar evolution process is
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Fig. 2. (a) Ferroelastic, (b) ferroelectric, and (c) antiferromagnetic domains in bulk bismuth ferrite in the absence of applied fields; the top row shows the

domain patterns, while the bottom row shows the corresponding variations of l, p and m on the upper boundary of domains; the depolarization factors

induced by shape effect is diag½13 ,13 ,13�.

(8)(1) (6) (8)(1) (6)(3) (3)

Fig. 3. (a) Ferroelastic, (b) ferroelectric, and (c) antiferromagnetic domains in bulk bismuth ferrite under an in-plane electric field E2, evolved from the

configuration shown in Fig. 2; only four ferroelectric variants (1), (3), (6) and (8) with polarization p2 along x2 coexist, and the depolarization factor is

diag½13 ,13 ,13�.
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also observed when an in-plane electric field is applied along x1-axis after the crystal field is subjected to a field along x2,
and we are currently investigating the detailed evolution paths and their implications on magnetoelectric response of
bismuth ferrite.

Since the ferroelectric and antiferromagnetic domains in bismuth ferrite are effectively coupled through the lattice
structure, it is also expected that the antiferromagnetic domains can be switched by an applied mechanical stress. To verify
this, a shear stress s12 is applied to the crystal in the absence of an electric field, with the initial domain configuration given
by Fig. 2. The resulting ferroelastic, ferroelectric, and antiferromagnetic domains are shown in Fig. 4, and indeed a uniform
spin distribution emerges, suggesting that the antiferromagnetic domains are switched by the applied stress. Two of the
ferroelastic variants disfavored by the shear stress are eliminated, resulting in a simple rank-one twin structure in
ferroelastic domains. Each of the ferroelastic variant is further divided into two ferroelectric variants separated by 1801
domain walls, and the resulting ferroelectric domain pattern appears to be check-board type. Such mechanical
manipulation of antiferromagnetic domains has yet to be reported in experiments, and we believe it offers additional
control over the magnetoelectric coupling that could be useful in a range of applications.

6.2. Two-dimensional thin films

We then examine the magnetoelectric domains in bismuth ferrite thin film in the absence of electric field, as shown in
Fig. 5 for its ferroelastic, ferroelectric, and antiferromagnetic domains. The material parameters (Wang et al., 2003; Ruette
et al., 2004; Eerenstein et al., 2005; Zhang et al., 2007) used in the simulation are listed in Table 2. While both ferroelastic
and antiferromagnetic domains appear to be similar to those observed in bulk bismuth ferrite in the absence of electric

(1) & (2) (7) & (8) (8)(1) (7)(2)

Fig. 4. (a) Ferroelastic, (b) ferroelectric, and (c) antiferromagnetic domains in bulk bismuth ferrite under a shear stress s12, evolved from the configuration

shown in Fig. 2. In this case, four ferroelectric variants (1), (2), (7) and (8) preferred by the shear stress coexist, and the depolarization factor is diag½13 ,13 ,13�.

(1) (4) (6) (7) (1) (4) (6) (7)

Fig. 5. (a) Ferroelastic, (b) ferroelectric, and (c) antiferromagnetic domains in bismuth ferrite thin film in the absence of applied fields, with four

ferroelectric variants (1), (4), (6) and (7) coexisting. The depolarization factor used is diag[0.07,0.07,0].

Table 2
Material parameters of bismuth ferrite thin film.

C11
f (Gpa) C12

f (Gpa) C44
f (Gpa) Ps (C/m

2) Ms (T) Km (J/m3) Km (J/m3) kr

215.1 75.1 68 0.91 0.19 6.6�104 3.3�106 70
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field, the ferroelectric domains appear to be distinctly different. Only four ferroelectric variants (1), (4), (6) and (7) are
observed coexisting, instead of all eight ferroelectric variants observed in bulk bismuth ferrite, because of charge screening
at the top and bottom surfaces. Nevertheless, the coupling between ferroelastic, ferroelectric, and antiferromagnetic
domains are evident, suggesting the possibility of either electric or mechanical switching of antiferromagnetic domains in

(1) (6) (1) (6)

Fig. 6. (a) Ferroelastic, (b) ferroelectric, and (c) antiferromagnetic domains in bismuth ferrite thin film under an in-plane electric field E2, evolved from

the configuration shown in Fig. 5. In this case, only two ferroelectric variants (1) and (6) preferred by the electric field coexist, and the depolarization

factor used is diag[0.07,0.07,0].

(1)

(2)

(3) (5) (7) (1) (3) (5) (7)

(4) (6) (8) (2) (4) (6) (8)

Fig. 7. (a,d) Ferroelastic, (b,e) ferroelectric, and (c,f) antiferromagnetic domains in bismuth thin film under a positive (upper row) and negative (lower

row) out-of-plane electric field. The depolarization factor used is diag[0.07,0.07,0].
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bismuth ferrite thin film. For example, under an in-plane electric field E2, two of the ferroelectric variants (4) and (7)
disfavored by the applied electric field disappear, leaving variants (1) and (6) forming a rank-1 laminated domain structure
in the thin film, as shown in Fig. 6. Associated with this ferroelectric switching, both ferroelastic and antiferromagnetic
domains are also switched by the applied electric field, demonstrating the magnetoelectric coupling. If an out-of-plane
electric field is applied, first along the positive x3 direction, and then switched to negative x3 direction, then the resulting
ferroelastic, ferroelectric, and antiferromagnetic domains before and after the switching are shown in Fig. 7. Again, while
the applied electric field is reversed, and 1801 domain switching is expected, the evolution path is rather complicated and
non-intuitive, and the morphology of final domain configuration after reversal appears to result from a 901 rotation from
the original domain configurations before the reversal of electric field. This is consistent with what are observed in
experiments using PEEM and piezoresponse force microscopy (Zhao et al., 2006).

7. Concluding remarks

In summary, we have developed an unconventional phase field simulation for multiferroic bismuth ferrite with coupled
ferroelastic, ferroelectric, and antiferromagnetic domains, and demonstrated the switching of antiferromagnetic domains
of bismuth ferrite by either electric or mechanical loading. Good qualitative agreements with experiments are observed,
and the theory offers a powerful tool to study a wide range of magnetoelectric multiferroic materials.
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