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Abstract

Mixed phases of rhombohedral and tetragonal ferroelectric variants have been recently observed to coexist through epitaxial constraints in bismuth
ferrite films. They form stripe-like domain patterns with orientations closely parallel to the substrate edges and exhibit unusually large piezoelectric
response in the stripe areas. Here a model is developed for explaining the peculiar domain orientations as well as the enhancement of piezoelectricity
in the mixed phase. The former is determined by the relative magnitudes of elastic and depolarization energy, whereas the latter is ascribed to the
strain-driven softening in dielectric stiffness. The predictions show the similar trend as those observed in recent experiments.
© 2011 Elsevier Ltd. All rights reserved.
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1.  Introduction

Multiferroic materials, which show simultaneous two or more
types of ferroelectric, magnetic or elastic orderings, have been
the focus of research due to their varieties of microstructural
phenomena and macroscopic properties. 1,2,3,4 These make mul-
tiferroics particularly appealing not only because they have the
properties of all parent compounds, but also because interactions
between different orderings lead to additional functionalities.
5,6,7 For example, certain multiferroic materials exhibit strong
magnetoelectric effect which is an ability to manipulate the mag-
netic state through an electric field or vice versa.8 This makes
them promising for a wide range of applications, such as electri-
cally controlled microwave phase shifters, broadband magnetic
field sensors, and magnetoelectric memory cells.9,10

Among all multiferroic materials, bismuth ferrite (BiFeO3,
BFO) is the only known single phase material which possesses
the coexistence of ferroelectric and antiferromagnetic orders
at room temperature. They are characterized by the ferroelec-
tric Curie temperature around 830 ◦ C and antiferromagnetic
Néel temperature around 370 ◦C.11,12,13,14 The bulk BFO single
crystal has been shown to possess a rhombohedral pervoskite
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structure at room temperature, with the spontaneous polariza-
tion along one of the eight psuedo-cubic 〈1 1 1〉  axes, rendering
it eight ferroelectric variants.10,11 Besides, it possesses a G-type
antiferromagnetic ordering so that magnetic spins stay on (1 1 1)
planes. Within a (1 1 1) plane, magnetic spins are ferromagnet-
ically coupled, whereas they are antiferromagnetically coupled
between adjacent (1 1 1) planes.10,12 As a result, by combining
its magnetoelectric coupling with the exchange bias in ferromag-
netic materials, electric control of ferromagnetic ordering has
been recently demonstrated,15 and thus opens door for practical
applications of multiferroics in spintronics.

BFO has recently received renewed interest for its large
room temperature spontaneous polarization and strong piezo-
electric response in epitaxial thin films.1,3,4,16,17,18 The
abnormally large piezoelectricity is in sharp contrast to the
weak coupling observed earlier in its bulk counterpart.19

Different from conventional lead-based perovskites such as
PbZr1−xTixO3 (PZT) and relaxors Pb(Mg1/3Nb2/3)O3–PbTiO3
(PMN-PT) and Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZN-PT), BFO is
lead-free and therefore is an environmentally friendly piezo-
electric material for device engineering. Besides, in contrast
to forming morphotropic phase boundary (MPB) produced
by selective compositional mixing for maximizing electrical
responses,20,21,22,23 the enhancement of piezoelectricity in BFO
is attributed to the aggressive strategy of developing strain-
driven MPB imposed by the substrate.24,25,26,27 This method
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takes advantage of the fact that domains in BFO can be changed
through the control of epitaxial constraints, giving rise to the
coexistence of two phases across MPB.

Specifically, the parent ground state of a stress-free BFO is
of a rhombohedral crystalline structure. A stress-induced phase
transition can be initiated by a sufficiently large compressive
strain, as observed in epitaxial BFO films grown on LaAlO3
substrates.28,24 Indeed, a tetragonal-like phase is grown at an
early stage of film deposition, and with increasing film thick-
ness, the phase is gradually changed to completely rhombohedral
due to the relaxation of misfit strain. At the intermediate stage
of film growth, the rhombohedral phase emerges and coexists
with the tetragonal phase, forming a stable strain-driven MPB.
Stripe-like contrast images are observed and identified as lamel-
lar patterns where the rhombohedral and tetragonal domains
alternate in layers separated by parallel planes, as shown in
Fig. 1.24 Unlike the chemical composition driven MPB where
phase-separating interfaces are typically mosaic and irregularly
oriented,29 it is found that the normals to the strips are oriented
within 15 degrees from the [1 0 0] and [0 1 0] axes, as illus-
trated by arrows in Fig. 1. Besides, the piezoelectric responses
in the stripe areas are larger than those measured in the single
phase areas. 27 Several attempts based on the first-principles
calculations,28,30,31,32 Landau–Devonshire phenomenological
theory,33,34,35,36,37 modified Heisenberg and transverse Ising
model 38 and phase-field simulations39,40,41 have been carried
out to investigate the effect of epitaxial strain on the structure
and property of BFO. However, all of these theoretical develop-
ments are not able to explain the specific domain orientations and
unusual piezoelectric behavior of the MPB, and neither can we
draw directly from those proposed for the compositional tailored
systems such as the PZT family and relaxaors. This article pro-
poses a model based on the constrained theory of ferroelectrics
42,43,44 for investigating these two issues. Some of the prelimi-
nary results have been briefly reported in a short letter.45 Here
the framework is systematically introduced with the emphasis on
the role of electromechanical compatibility on domain orienta-
tions. Besides, the explanations of the appearance of metastable
tetragonal phase and the enhanced piezoelectric effect of the
mixed phases are presented in detail.

The plan of this article is organized as follows. First the free
energy of a ferroelectric crystal is introduced in Section 2.1. It is
employed to explain the formation of tetragonal phase through
epitaxial constraints in Section 2.2 and estimate the domain ori-
entations of stripe-like patterns in Section 2.3. The piezoelectric
responses of the pure and mixed phases are studied in Section
2.4. The results are provided and discussed in Section 3, and the
conclusions are drawn in Section 4.

2.  Framework  and  formulation

2.1. Free  energy  of  a  ferroelectric

Let us consider a ferroelectric described by two state vari-
ables: strain ε  and polarization p. When it is subjected to an
applied electric field E0, the potential energy I of a ferroelectric

in the linearized version of the framework proposed by Shu and
Bhattacharya 46 is

I (p) =
∫

�

{
A|∇p|2 +  W (ε, p) +  Wd (p) −  E0 ·  p

}
dx, (1)

where

W(ε, p) =  Wa(p) +  Welas(ε,  p),

Welas(ε,  p) = 1

2

[
ε −  ε∗(p)

] · C
[
ε −  ε∗(p)

]
,

Wd(p) =  −1

2
p  ·  Ed.

(2)

Above in Eq. (1), the first term with A  > 0, called the interfacial
energy density, penalizes the changes in the field variable p, and
thus, is interpreted as the energetic cost of forming domain walls
separating different polarized states. The second term W(ε, p)
is the total anisotropy energy density describing the energetic
penalty that the crystal has to pay if the field variables deviate
from the ground states of energy. Typically, W(ε, p) is decom-
posed as the sum of Wa and Welas as in Eq. (2), 39,40,47 where Wa

is the anisotropy energy density whose minimizers offer various
polarized ground states, and Welas is the elastic energy density
with C  as elastic moduli and ε∗(p) as the transformation strain.
The dependence of ε∗(p) on p  is

ε∗
11 =  Q11p

2
1 +  Q12p

2
2 +  Q12p

2
3,

ε∗
22 =  Q12p

2
1 +  Q11p

2
2 +  Q12p

2
3,

ε∗
33 =  Q12p

2
1 +  Q12p

2
2 +  Q11p

2
3,

ε∗
23 =  Q44p2p3,

ε∗
31 =  Q44p3p1,

ε∗
12 =  Q44p1p2,

(3)

where Qij = Qji are the electrostrictive coefficients.41,48 The third
term in Eq. (1) is the depolarization energy density in association
with the electric field Ed generated by the polarization of the
material itself. The final term is the potential energy density due
to the external electric field E0.

The state variable p  is then obtained by minimizing Eq. (1).
To this end, the strain and depolarization fields have to be solved
first. The strain ε  is acquired by solving the mechanical equilib-
rium equation under appropriate boundary conditions

∇ · σ = 0, σ  =  C
[
ε −  ε∗(p)

]
,  (4)

where σ  is the symmetric elastic stress. In the present case where
the ferroelectric film is deposited on a cubic substrate, an in-
plane constraint is imposed on the film such that

〈ε11〉 = ε0
11, 〈ε22〉 = ε0

22, 〈ε12〉 = ε0
12,  (5)

where 〈 ·  ·  · 〉  represents the volume average, and ε0
11,  ε0

22,  and
ε0

12 are the misfit strains determined by the relative difference of
lattice constants between the substrate and the film. Meanwhile,
the surface of the film is assumed to be traction free, such that

〈σ13〉 = 0, 〈σ23〉 = 0, 〈σ33〉 = 0.  (6)
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Fig. 1. Two AFM images showing a variety of lamellar patterns of the mixed rhombohedral (brown color) and tetragonal (yellow color) phases.24 The arrows are
marked to denote the in-plane directions of normals to the stripe-like domain patterns. They are oriented within around 15 degrees from the [1 0 0]/[0 1 0] axes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

The depolarization field Ed, on the other hand, can be decided
by solving the Maxwell’s equation

∇ · (−ε0∇φ  +  p) =  0,  Ed =  −∇φ,  (7)

where ε0 is the permittivity of free space.
For BFO at around room temperature, it has a stable rhombo-

hedral phase with 〈1 1 1〉  eight polarized states, and a metastable
tetragonal phase with 〈0 0 1〉  six polarized states. Its well struc-
ture of energy is schematically illustrated in Fig. 2. The well
points of energy correspond to the ground states of ferroelectric
variants expressed as (ε∗(ps), ps). Let the superscripts T  and R
represent the tetragonal and rhombohedral phases, respectively.
The transformation strain and polarization of rhombohedral vari-
ants from Eq. (3) are given by

Fig. 2. A schematic representation of the multi-well structure of total anisotropy
energy density W(ε, p) in the strain-polarization space.

ε∗ (
pR

s

)
=

⎛⎝ Q11 + 2Q12 Q44 Q44

Q44 Q11 + 2Q12 Q44

Q44 Q44 Q11 + 2Q12

⎞⎠(
PR

s

)2
,

pR
s = PR

s√
3

⎛⎝ 1

1

1

⎞⎠ , (8)

and permutations for other variants. The tetragonal variants are
given by

ε∗ (
pT

s

) =

⎛⎜⎝Q12 0 0

0 Q12 0

0 0 Q11

⎞⎟⎠ (
PT

s

)2
,  pT

s =  PT
s

⎛⎜⎝ 0

0

1

⎞⎟⎠ ,

(9)

and permutations for other variants. Here PR
s and PT

s are the
magnitudes of the ground states of polarization for rhombohe-
dral and tetragonal phases, respectively.

2.2. Tetragonal  phase

The tetragonal phase, in fact, does not appear naturally in
a reference crystal. However, it has been observed to emerge
through epitaxial constraints in BFO films. Indeed, it can be
explained by comparing the magnitudes of energy for two dif-
ferent polarized ground states pR

s and pT
s subject to compressive

constraint. From Eq. (1) under E0 = 0, the tetragonal phase might
appear if

Wa(pT
s )+Welas

(
ε0,  pT

s

)
< Wa(pR

s ) +  Welas
(
ε0, pR

s

)
, (10)

where ε0 is the overall misfit strain such that its in-plane compo-
nents are equal to those in Eq. (5) and out-of-plane components
are those satisfying the plane-stress condition in Eq. (6). From
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Eq. (2)2, the elastic energy density can be decomposed into three
terms:

1

2
Cε0 ·  ε0,

1

2
Cε∗(p) · ε∗(p),  −Cε0 · ε∗(p).

The first term is the same for both phases and therefore, is
irrelevant. As the polarization is restricted to the well points
of energy, the difference of the second term for different phases
((1/2)Cε∗(pR

s ) · ε∗(pR
s ) −  (1/2) Cε∗(pT

s ) ·  ε∗(pT
s )) is fixed and

independent of misfit strain. Finally, let σ0 = Cε0 denote the mis-
fit stress. Thus, the third term can be written as ( − σ0 · ε∗(p)),
representing the equivalent mechanical potential energy density.
For BFO films grown on LaAlO3 substrates, the misfit strains
ε0

11 =  ε0
22 <  0 and ε0

12 =  0. This provides σ0
11 =  σ0

22 <  0 and
σ0

12 =  0. Further, for BFO crystals, Q11 = −  2Q12 and Q12 < 0.41

Thus, from Eq. (8), ε∗(pR
s ) is completely pure shear, giving rise

to σ0 ·  ε∗(pR
s ) =  0. On the other hand, for the tetragonal variants

as in Eq. (9) and its permutations,

−σ0 · ε∗(pT
s ) =

⎧⎨⎩
−2σ0

11Q12 < 0 if pT
s is parallel to[0 0 1],

σ0
11Q12 > 0 if pT

s is parallel to[1 0 0],

σ0
11Q12 > 0 if pT

s is parallel to[0 1 0].

(11)

Therefore, from Eqs. (10) and (11), the energy barrier
(Wa(pT

s ) −  Wa(pR
s )) can be overcome by (Welas(ε0,  pR

s ) −
Welas(ε0, pT

s )) if the tetragonal variant is chosen to be polar-
ized normal to the film under a sufficiently large compressive
misfit stress. This gives tetragonal phase oriented normal to the
film as a low energy minimizer, as observed by the experiment.
24

2.3.  Mixtures  of  the  rhombohedral  and  tetragonal  phases

As the BFO film grows, the strain relaxation of misfit fur-
nishes an opportunity for the emergence of the rhombohedral
phase. The stripe-like domains shown in Fig. 1 motivate us to
postulate the lamellar patterns for the mixed phase. It consists
of alternating tetragonal and rhombohedral ferroelectric variants
separated by interfaces with unit normal n, as illustrated in Fig. 3
where f  is the volume fraction of the rhombohedral phase.

In most ferroelectrics, the induced magnitude of polarization
is much smaller than that of spontaneous one, and therefore,
the constrained theory of ferroelectrics is adopted assuming
that the energy-well structure is steep away from the ground
states.42,43,44,49 As such, the polarization p  is restricted to one
of the well points of energy; i.e., p = pT

s (pR
s ) in the region occu-

pied by the tetragonal (rhombohedral) phase. As a result, the
energy barrier (Wa(pT

s ) −  Wa(pR
s )) from the anisotropy energy

density is independent of the laminate orientation n. In addi-
tion, the consideration of equilibrium domain configurations
rather than domain evolution suggests the neglect of interfa-
cial energy. Under these two assumptions and from Eq. (1)
at the absence of an external electric field, the orientation n
depends only on Welas and Wd whose calculations are described
next.

Consider the elastic energy first which can be achieved once
the strain fields in the laminate are determined. Let ε∗(pR

s )
and ε∗(pT

s ) be the transformation strains and εR and εT be the

Fig. 3. A schematic representation of the lamellar pattern consisting of alter-
nating tetragonal (yellow color) and rhombohedral (brown color) phases. The
interfacial normal n is presented by angles � and ϕ, as in Eq. (18). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of the article.)

strains in the laminate regions occupied by the rhombohedral and
tetragonal phases, respectively. As the displacement is contin-
uous across the phase-separating interface, strain compatibility
requires

εR −  εT =  a  ⊗  n  +  n  ⊗  a,  (12)

for some vector a.46 Here (a  ⊗  n)ij = ainj. Further, the absence
of surface forces gives the continuity of the normal stress across
the interface. This delivers

[[σ]] · n  =  (σR −  σT ) ·  n =  0, (13)

where the notation [[ ·  ·  · ]] denotes the jump across the interface
n. Assume both phases own the identical elastic modulus C
with isotropy property. The strain fields εR and εT therefore
are obtained through the strain compatibility in Eq. (12), stress
interface condition in Eq. (13), and boundary conditions in both
Eqs. (5) and (6). These give

εR =  〈ε〉  +  (1 −  f  )(a  ⊗  n  +  n  ⊗  a),

εT =  〈ε〉  −  f (a  ⊗  n  +  n  ⊗  a),

a  =
(

I  − C12 +  C44

C12 +  2C44
n  ⊗  n

) [
ε∗(pR

s ) −  ε∗(pT
s )

]
n,

(14)

where 〈ε〉  = fεR + (1 −  f)εT, I is the identity tensor, Cij are the
components of isotropic elastic tensor in terms of Voigt notation.
The derivation of Eq. (14) is provided in Appendix.

Next, the depolarization fields Ed,R and Ed,T of rhombohedral
and tetragonal phases in the laminate are determined as fol-
lows. Note that the ground states of polarization are previously
assumed in deriving the strain fields. To account for the induced
polarization, the constrained model is modified by including the
dielectric effect. Indeed, electric displacement D  is rewritten as
D = εEd + ps where ε is the permittivity of material.50 The nor-
mal components of electric displacement has to be continuous
across the interface due to the absence of free charges. Therefore,
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we have

[[εEd +  ps]] · n  =
{(

εREd,R +  pR
s

)
−

(
εT Ed,R +  pT

s

)}
· n  =  0,  (15)

where εR and εT are permittivity coefficients of rhombohedral
and tetragonal phases. In addition, the continuity of electric
potential across the interface n  requires

[[Ed]] =  Ed,R −  Ed,T =  kn, (16)

where k  is an unknown constant needed to be decided. Finally,
note that the depolarization field from the contribution of average
of polarization is irrelevant. This gives 〈Ed〉 = 〈  − ∇�〉 = 0  due to
the periodicity of laminate. Combining this fact with Eqs. (15)
and (16) provides

Ed,R = f −  1

ε̄

[
n · (

pR
s −  pT

s

)]
n,

Ed,T = f

ε̄

[
n · (

pR
s −  pT

s

)]
n,

(17)

where ε̄ = (1 −  f  )εR +  fεT .
From Eqs. (14) and (17), it is clear that the magnitudes of

elastic and polarization energy depend only on the phase differ-
ences of state variables (ε∗(pR

s ) −  ε∗(pT
s )) and (pR

s −  pT
s ). The

former is related to strain compatibility for reducing intrinsic
stress across certain interface with normal n′, while the latter is
related to electric compatibility for avoiding charge accumula-
tion on the phase boundary with normal n

′ ′
. In general, n′ and n

′ ′

are distinct unless certain conditions are imposed. According to
Shu and Bhattacharya’s ferroelectric theory,46 n′ and n

′ ′
coincide

if the ferroelectric state variables are symmetry related variants.
Unfortunately, the ground states of rhombohedral (ε∗( pR

s ),  pR
s )

and tetragonal (ε∗(pT
s ),  pT

s ) phases are not symmetry related,
giving rise to no correlation between elastic and depolarization
energy.

The optimal orientation n  is then readily determined by
energy minimization. Specifically, we seek to find the interface
normal

n =  (sin θ  cos ϕ,  sin θ  sin ϕ,  cos θ) (18)

that minimizes (Welas + Wd). Here �  is measured from the normal
to the film, and the in-plane angle ϕ is measured from the [1 0 0]
axis, as illustrated in Fig. 3. Although there are a variety of meth-
ods for solving this highly nonlinear problem numerically,51

all of these approaches find the local optimum rather than the
global minimum that we seek. Therefore we resort to the brute-
force optimization by creating fine grids of Euler angles (�, ϕ),
and examine the values of energy on these grids for searching
minimum energy.

2.4.  Piezoelectricity

We now turn to the piezoelectric responses of the pure and
mixed phases of strained BFO thin films. The out-of-plane dis-

placement is measured under the electric field normal to the film.
Thus, the piezoelectric coupling coefficient is defined as

d33 = d 〈ε33〉
dE0

3

=
3∑

i=1

∂ 〈ε33〉
∂pi

∂pi

∂E0
3

,  (19)

where 〈ε33〉  is the average strain normal to the film and is given
by Eq. (A.1). The piezoelectric coefficient d33 can be achieved
once the polarization induced by an electric field is determined;
i.e., (∂pi/∂E

0
3) has to be provided first. Indeed, consider the ther-

modynamic driving force derived from the total free energy I(p)
in Eq. (1). Minimizing I(p) under the application of an electric
field gives 44,52

∂Wa(p)

∂p
−  σ  · ∂ε∗( p)

∂p
−  E0 −  Ed =  0.  (20)

Above the first term is interpreted as the electric field induced by
the change of polarization deviating from the polarized ground
state. The second term is the effective electric field induced by
the stress which originates from the external constraint due to the
misfit strain and the internal constraint due to the incompatibility
in transformation strains across the interface. As revealed by
experiments, the polarization in the two-phase region deviates
little from its polarized ground state. Thus, the anisotropy energy
density is approximated to be

Wa(p) = 1

2

(
p  −  pR

s

) · (
εRI −  ε0I

)−1 (
p  −  pR

s

)
(21)

for p  near the rhombohedral phase and

Wa(p) = 1

2

(
p  −  pT

s

) · (
εT I  −  ε0I

)−1 (
p  −  pT

s

)
(22)

for p  close to the tetragonal phase.

3. Results  and  discussion

The framework developed in the previous section is
now applied to investigate the orientations of stripe-
like domain patterns and the piezoelectric response
of the mixed phase in a strained BFO film. The rel-
evant material properties of bismuth ferrite are listed
below: PR

s =  0.09 C m−2,  PT
s =  0.55 C m−2, electrostric-

tive coefficients Q11 = 0.032 m4 C−2,Q12=−0.016 m4 C−2,
Q44 = 0.01 m4 C−2, isotropic elastic moduli C12 = 162 GPa,
C44 = 143 GPa, and permittivity constants εR = 120ε0,
εT = 70ε0.34 The volume fraction of the rhombohedral
phase is observed to be f = 0.4.24

As explained in Section 2.2, the tetragonal variant polarized
normal to the film is an energy minimizer under compressive
misfit stress. Thus, pT

s =  PT
s [0 0 1] is chosen to represent the

polarized variant in the tetragonal phase. However, there are
four possible polarized states for rhombohedral variants due
to symmetry. Suppose they are taken as pR

s =  PR
s [1 1 1] or

pR
s =  PR

s [1̄ 1̄ 1]. The magnitudes of elastic and depolarization
energy are obtained by substituting Eqs. (14) and (17) into Eq.
(2). The minimization of the sum of these two over all possible
n, as presented by �  and ϕ  in Eq. (18), determines the optimal
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Fig. 4. Elastic, depolarization and total energy of the mixed phase for various orientations of the laminate. Note that a fixed reference value of energy is taken and
removed from the elastic and total energy densities for clearness. (a) R-phase is chosen along the polarized direction [111] or [1̄1̄1]. (b) R-phase is chosen along the
polarized direction [1̄11] or [11̄1].
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Fig. 5. The top view of optimal orientations of lamellar pattern of the mixed phase for the consideration of elastic (blue lines), depolarization (green lines) and total
energy (red lines). The shadow regions represent the spread of observed orientations of stripe-like pattern. (a) R-phase is chosen along the polarized direction [1 1 1]
or [1̄ 1̄ 1]. (b) R-phase is chosen along the polarized direction [1̄ 1 1] or [1 1̄ 1]. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)

orientations of laminates. The result shows that the minimum
of (Welas + Wd) occurs at (�, ϕ) = (18◦, 96◦), (18◦, 354◦) for
PR

s [1 1 1] and (18◦, 174◦), (18◦, 276◦) for PR
s [1̄ 1̄ 1], as listed

in Table 1. The dependence of the total, elastic, and depolar-
ization energy densities of the mixed phases at � = 18◦ on the
in-plane angle ϕ  is shown in Fig. 4(a). It shows that the elastic

Table 1
The optimal orientations of the laminate for different choices of rhombohedral
variants at � = 18◦.

pR
s [1 1 1] [1̄ 1 1] [1 1̄ 1] [1̄ 1̄ 1]

ϕ 96◦ 84◦ 6◦ 174◦
354◦ 186◦ 264◦ 276◦

energy due to incompatible strains of mixed phases is mini-
mized at the in-plane angle of 45◦ (see the blue line in Fig. 4(a)
and Fig. 5(a)), while the depolarization energy is minimized
at around 135◦ (see the green line in Fig. 4(a) and Fig. 5(a)).
Note that these two angles are nearly orthogonal to each other
and are not sensitive to the material properties including elastic,
electrostrictive and permittivity constants. However, the optimal
laminate orientations depend on the relative magnitudes of elas-
tic and depolarization energy. Thus, it is expected to fall between
these two in-plane angles. Indeed, the calculation shows that the
minimum energy occurs at an in-plane angle near the [1 0 0]
and [0 1 0] axes, as demonstrated by the red lines in Fig. 4(a)
and Fig. 5(a), where the in-plane angles are 6 degrees deviating
from [1 0 0] and [0 1 0]. Similarly, consider another choice of
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Table 2
Piezoelectric coupling coefficients d33 for pure and mixed phases obtained from
the experiment and the model.

d33 (pm/V) T R  Mixed T/R

Experiment 28 61 96
Model 45 63 116

the polarized states for the rhombohedral ferroelectric variants.
They are taken as PR

s [1̄ 1 1] or PR
s [1 1̄ 1]. In this case, the in-

plane angle minimizing the elastic energy is 135◦ from [1 0 0]
axis (see the blue line in Fig. 4(b) and Fig. 5(b)), whereas it is
around 45◦ from [1 0 0] axis for minimizing the depolarization
energy (see the green line in Fig. 4(b) and Fig. 5(b)). The opti-
mal orientations are provided in Table 1. As expected, they are
very close to [1 0 0] or [0 1 0] axes from the top view, as shown
by the red lines in Fig. 5(b). The prediction is in good agree-
ment with that observed in recent experiment, as demonstrated
by the marked arrows in Fig. 1. These arrows represent the in-
plane normals of stripe-like domain patterns. They are regularly
oriented within 15 degrees around [1 0 0]/[0 1 0] axes, as in the
shadow regions illustrated in Fig. 5.

Next let us investigate the piezoelectric responses of the pure
and mixed phases. Table 2 lists the measured data of d33 from
experiments for pure tetragonal, pure rhombohedral and mixture
of these two phases in an epitaxial constrained BFO thin film.27

The piezoelectric coupling coefficients d33 are around 30, 60 and
100 pm/V, respectively. The magnitude of d33 in the mixed phase
is larger than that in the pure tetragonal phase since the rhom-
bohedral phase has a higher permittivity coefficient than that of
the tetragonal phase (εR > εT). Surprisingly it is also higher than
that in the pure rhombohedral phase, violating the fact that the
effective constant of mixed phase is bounded by those of the
pure phases.

To explain it, consider the second term of Eq. (20) rep-
resenting the stress-induced electric field. The stress can be
decomposed into two terms

σ =  σ0 +  σ′, (23)

where σ0 is the constant stress resulting from the misfit strain
ε0 as in Eq. (5), and σ′ is the inhomogeneous stress resulting
from the incompatible transformation strain ε∗ as in Eq. (3) of
the mixed phase. Note that σ′ satisfies 〈ε11〉 = 〈ε22〉  = 〈ε12〉 = 0
due to superposition. As a result, σ0 is one order of magnitude
larger than that of σ′ since the measured misfit strains are around
the order of 10−2 whereas the transformation strains are order
of 10−3. Therefore, the leading coefficient in Eq. (20) for the
component p3 is approximated to be(
−σ0

11
∂ε∗

11(p)

∂p3
−  σ0

22
∂ε∗

22(p)

∂p3
−  2σ0

12
∂ε∗

12(p)

∂p3

)
/p3 =−4σ0

11Q12.

(24)

This term is negative since σ0
11 <  0 and Q12 < 0, giving rise to

the softening in relative permittivity stiffness (ε−1). It in turn
increases the effective dielectric constant, causing the enhance-
ment of d33 as can be seen from Eq. (19). However, such a
softening effect depends on the magnitude of misfit stress which

is continuously relaxed as the film grows. For instance, the
appearance of pure rhombohedral, mixed and tetragonal phases
takes place at compressive strains lower than 3%, between 3
and 4% and larger than 4%.24 Hence, the softening in permittiv-
ity stiffness is much more pronounced in the mixed phase than
that of the pure rhombohedral phase. Indeed, with parameters
listed above, the piezoelectric coefficients d33 obtained from Eq.
(19) are 45, 63 and 116 pm/V for the tetragonal, rhombohedral
and mixed phases. With comparison to Table 2, these predicted
results show the similar trend as those observed in experiments,
confirming the enhancement of piezoelectric response is mainly
attributed to the softening of the dielectric stiffness. This soften-
ing arises from the stress-induced electric field from the change
of out-of-plane polarization, as can be seen from Eq. (24).

4. Conclusions

A framework based on the constrained model of ferroelectrics
is systematically developed for predicting the domain orienta-
tions and explaining the piezoelectric response of the mixed
phase in an epitaxial strained bismuth ferrite film. First it is
shown that the tetragonal variant polarized normal to the film is
a low energy state under a sufficiently large compressive misfit
stress. Next, the rhombohedral phase emerges and coexists with
the tetragonal phase due to the relaxation of misfit strain. Both
phases alternate in layers forming stripe-like patterns with orien-
tations nearly parallel to the edges of the substrate. It is shown
that these peculiar orientations are the consequence of com-
petition between elastic and depolarization energy. Finally, the
effective piezoelectric coefficients of the pure and mixed phases
are estimated. It is shown that the abnormally strong piezoelec-
tric response of the mixed phase is ascribed to the strain-driven
softening of dielectric stiffness. This softening arises from the
effective electric field induced by in-plane stress from the change
of out-of-plane polarization. The results are compared to recent
experiments and show reasonable agreement.
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Appendix  A.  Derivation  of  εR and  εT in  Eq.  (14)

From the kinematic compatibility condition as in Eq. (12) and
the definition of average strain 〈ε〉  = fεR + (1 −  f)εT, the strains
εT and εR can be expressed as in Eq. (14) with two unknowns
〈ε〉 and a. The in-plane components of 〈ε〉  are given by Eq. (5),
while its out-of-plane components are obtained from the plane-
stress condition as in Eq. (6) and the isotropy of elastic modulus
C. These give

〈ε32〉 = 〈
ε∗

32

〉
, 〈ε31〉 = 〈

ε∗
31

〉
,

〈ε33〉 = 〈
ε∗

33

〉 − C12

C12 +  2C44

[
ε0

11 +  ε0
22 − 〈

ε∗
11

〉 − 〈
ε∗

22

〉]
,

(A.1)



Author's personal copy
Journal Identification = JECS Article Identification = 8262 Date: September 17, 2011 Time: 1:33 pm

3070 H.Y. Kuo et al. / Journal of the European Ceramic Society 31 (2011) 3063–3071

where 〈ε∗〉  =  f  ε∗(pR
s ) +  (1 −  f  )ε∗( pT

s ). Another unknown
vector a  is determined as follows.

Substituting Eqs. (4) and (12) into Eq. (13) provides{
C

[
(a ⊗  n  +  n  ⊗  a) − (

ε∗ (
pR

s

) − ε∗ (
pT

s

))]}
n  =  0.  (A.2)

Above can be simplified using the isotropy of C. This gives

[(C12 +  C44) n  ⊗  n  +  C44I] a

= C12

2
Tr

[
ε∗ (

pR
s

) − ε∗ (
pT

s

)]
n

+ C44
[
ε∗ (

pR
s

) − ε∗ (
pT

s

)]
n, (A.3)

where Tr[Aij] = ∑3
i=1Aii. Note that from Eq. (3)

Tr
[
ε∗(p)

] =  0

since Q11 = −  2Q12. Thus, Eq. (A.3) becomes

a = C44[(C12 +  C44) n  ⊗  n  +  C44I]−1 [
ε∗ (

pR
s

) − ε∗ (
pT

s

)]
n.

This completes deriving Eq. (14) since

C44[(C12 +  C44) n  ⊗  n  +  C44I]−1 =  I  − C12 +  C44

C12 +  2C44
n ⊗  n.
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