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A phase-field model accounting for elastic inhomogeneity is established for microstructure study in

martensitic materials. It is motivated by Hashin-Shtrikman variational formulation by introducing a

homogeneous comparison medium and a polarized stress field. As a result, the driving force due to

stress can be computed in the equivalent homogeneous medium since it is formally identical to that

in the actual inhomogeneous solid. The model is applied to the simulations of three-dimensional

self-accommodation patterns of microstructure for tetragonal and trigonal martensite. The results

show that the former is an atypical pattern while the latter exhibits a common herringbone

structure. Finally, the proposed framework also offers advantages of modeling other phase-

transforming materials with ability in domain simulations together with effective properties as

byproduct. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4796098]

I. INTRODUCTION

Martensitic microstructure is the result of a solid-to-solid

phase transformation during which there is a sudden change in

the crystal structure at a certain temperature.1–3 It exhibits rel-

ative shape change between crystal lattices of the high and

low temperature phases. Besides, such a switch is of an orien-

tation dependence due to symmetry breaking, giving rise to

numerous orientation-related variants below transition temper-

ature. A key feature of martensitic microstructure is the obser-

vations of various intriguing and fascinating fine-scale

patterns formed by variants. The manipulation of patterns of

microstructure provides a novel strategy in many applications.

For example, recent studies have shown that certain character-

istic distortion of martensitic patterns can be utilized as com-

ponents of tiny machines.4 Another important application of

martensitic transformation is the shape recovery on heating

observed in certain alloys.5–8

The arrangements of these variants are, however, not ar-

bitrary. They have to keep the interfaces coherent for avoid-

ing generations of dislocations and voids. Thus, strain

compatibility plays a central role in pattern formation of var-

iants. This issue has been studied theoretically based on the

crystallographic theory of martensite in an early stage9,10

and on the energy minimization of nonconvex functionals

subsequently.11–13 While these theoretical achievements pro-

vide understanding on why and how variants form non-

generic microstructure patterns, obtaining patterns within a

general framework is not an easy task. This motivates many

more research efforts being focus on developing models

based on atomic descriptions to continuum frameworks for

numerical simulations.14–18 Among them, phase-field models

are particularly popular due to no prior assumptions on the

profiles and tracking of interfaces.19–23 Advances in com-

puter simulations include results from single crystals,24,25

multilayers,26,27 and polycrystals.28,29 Alternative formula-

tion based on the equations of strain compatibility have also

been proposed for pattern simulation.30–32

In spite of many fruitful results from the phase-field simu-

lations of martensite, there is one drawback that the elastic

modulus differences of distinct phases are often neglected.33

Indeed, conventional phase-field approaches choose the trans-

formation strains of variants as order parameters and expand

them in terms of polynomials at high orders in the energy for-

mulation. As a result, the elastic moduli remain unchanged for

different martensitic phases, leading to an elastically homoge-

neous while structurally inhomogeneous formulation. To

allow varying elastic moduli for each martensitic variant, an

unconventional phase-field model is adopted here for pattern

simulation. This approach chooses the characteristic functions

of transforming variants as the field variables, showing advan-

tages of expressing energy-well structure explicitly and main-

taining material symmetry.34–37 To overcome the difficulty in

solving mechanical equilibrium with elastic inhomogeneity,

an idea based on Eshelby’s equivalent inclusion principle is

adopted.38 It involves the introduction of a fictitious eigen-

strain in a comparison homogeneous medium so that strain

and stress fields in this equivalent medium are identical to

those in the original inhomogeneous solid. This approach

combined with Khachaturyan’s microelasticity theory has

been first proposed by Wang et al.39 and subsequently by

other researchers in different problems.40–43 Recently,

improvements have been proposed by Shen et al.44 for imple-

menting damped iterative algorithm and by Wang et al.45 for

incorporating Fourier spectral iterative-perturbation algo-

rithm.46,47 Another method based on the fast iterative algo-

rithm for computing inhomogeneous elasticity has been

proposed by Moulinec and Suquet48–50 and by their coworkers

for improvement.51–53

Different from the framework proposed by Wang et al.39

for elastically and structurally inhomogeneous systems, this

article proposes an alternative energy formulation based on

the spirit of Hashin-Shtrikman variational principle.54,55 The
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formulation is subsequently implemented to the unconven-

tional phase-field model for microstructure simulation

accounting for elastic inhomogeneity of different phases.

Indeed, let CðiÞ and CðjÞ be the elastic tensor of the ith and jth
martensitic variants. They are related by the tensorial transfor-

mation with respect to certain rotation transforming the ith
variant to the jth variant. Thus, a strong elastic inhomogeneity

is expected in the solids of martensite, leading to an interest in

determining effective material properties. Such an issue is par-

ticularly important in certain class of phase-transforming

materials. For example, the dramatically enhanced piezoelec-

tricity in relaxor ferroelectric single crystals has been

explained by the effective electromechanical moduli of engi-

neered domain configurations.56,57 Thus, the proposed frame-

work serves as a useful tool for microstructure simulation

with effective properties as byproduct. Besides, the extension

to the polarizable model of ferroelectrics accounting for inho-

mogeneity of electromechanical moduli has been carried out

and will be presented elsewhere.58

II. MODELING

A. Transformation strain

A single crystal of austenite transforms to a martensite as

it is cooled. Typically, the austenite phase has cubic symmetry

while the martensite phase has smaller symmetry such as tet-

ragonal, trigonal, orthorhombic, or monoclinic symmetry.

This gives rise to N symmetry-related variants of martensite.59

If the reference configuration is chosen as that occupied by an

austenite at the critical temperature, the transformation from

the austenite to the ith variant of martensite is described by

the transformation strains �ðiÞ. They are determined from the

change of symmetry and lattice parameters. For example, con-

sider a tetragonal martensite. There are three martensitic var-

iants with transformation strains

�
ð1Þ
tet ¼

g2 0 0

0 g1 0

0 0 g1

0
B@

1
CA; �

ð2Þ
tet ¼

g1 0 0

0 g2 0

0 0 g1

0
B@

1
CA;

�
ð3Þ
tet ¼

g1 0 0

0 g1 0

0 0 g2

0
B@

1
CA:

(1)

Above g1 and g2 are material parameters which are deter-

mined by measuring changes in crystal bases of different

phases.60 The schematic view of these three variants is

depicted in the left part of Fig. 1 where a cubic lattice is

stretched along one of the crystal basis directions. Another

common case is the trigonal martensite which has four var-

iants described by

�
ð1Þ
trig ¼

a d d

d a d

d d a

0
B@

1
CA; �ð2Þtrig ¼

a �d �d

�d a d

�d d a

0
B@

1
CA;

�
ð3Þ
trig ¼

a d �d

d a �d

�d �d a

0
B@

1
CA; �ð4Þtrig ¼

a �d d

�d a �d

d �d a

0
B@

1
CA;

(2)

and a and d are material parameters.3 The schematic view of

these 4 variants is depicted in the right part of Fig. 1 where

distortion is obtained by stretching the cubic lattice along

one of body diagonal directions. The expression of transfor-

mation strains for other cases such as orthorhombic and

monoclinic martensitic crystals can be found in Ref. 59.

Let X be the region occupied by the crystal and Xi

be the subregion occupied by the ith martensitic variant for

i ¼ 1; 2;…;N at the low temperature. Thus, Xi \ Xj ¼1 if

i 6¼ j. Let ��ðxÞ represent the locally inhomogeneous trans-

formation strain field such that ��ðxÞ ¼ �ðiÞ if x 2 Xi; or

equivalently,

��ðxÞ ¼
XN

i¼1

kiðxÞ�ðiÞ; (3)

where kiðxÞ is the space characteristic function such that

kiðxÞ ¼ 1 if x 2 Xi and kiðxÞ ¼ 0 otherwise. Physically, the

volume average of ki stands for the volume fraction of the

ith martensitic variant.

B. Elastic strain energy

The elastic strain energy of a martensite is described by

I elas ¼
ð

Welasdx ¼
ð

1

2
ð�� ��Þ � CðxÞð�� ��Þdx; (4)

where � is the compatible strain related to displacement u by

� ¼ 1
2
½ruþ ðruÞT �. Above C is the elastic 4-tensor and is

positive-definite symmetric such that Cijkl, the components

of C in some orthonormal basis, follow

Cijkl ¼ Cijlk ¼ Cklij; i; j; k; l ¼ 1; 2; 3: (5)

The stress inside the material is

rðxÞ ¼ CðxÞð�� ��Þ: (6)

As the elastic modulus C varies from phases to phases, it is

no longer a constant and depends on positions, giving rise to

difficulty in computing stress fields. To resolve this problem,

consider an alternative form of elastic strain energy moti-

vated from the famous Hashin-Shtrikman formulation54,55

FIG. 1. Schematic of diffusionless solid to solid martensitic phase transfor-

mation. The left part shows cubic-to-tetragonal transformation, while the

right side shows cubic-to-trigonal transformation. The arrows indicate the

direction of distortion of a cube.
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I elas
HS ¼

ð
Welas

HS dx

¼
ð

1

2
ðp� C0��Þ � ðC0 � CÞ�1ðp� C0��Þ

�

� 1

2
p � Cp� h�i � pþ �� � p� 1

2
�� � C0��

�
dx: (7)

Above C0 is the elastic modulus of a homogeneous compari-

son material, p is a polarized stress field, h�i is the average

of strain, and C is the linear operator producing from polar-

ized stress p a strain with zero average. In other words,

�0 ¼ Cp; h�0i ¼ 0: (8)

The explicit operation of C in the Fourier transform space

can be found in the Appendix (see also Ref. 36). Note that

the notion of polarized stress field p originally arising from

the early work by Hashin and Shtrikman54 can be related to

the eigenstrain introduced by the Eshelby’s equivalent inclu-

sion method later.

To understand the above variational formulation,

consider the first variation of Eq. (7) with respect to p and

��. This gives

dI elas
HS ¼ �

ð
ðFelas

p � dpþ Felas
e� � d��Þdx; (9)

where the driving forces Felas
p and Felas

e� are

Felas
p ¼ �ðC0 � CÞ�1ðp� C0��Þ þ Cpþ h�i � ��; (10)

Felas
e� ¼ C0½ðC0 � CÞ�1ðp� C0��Þ� � pþ C0��: (11)

Set the total strain � as

� ¼ �0 þ h�i ¼ Cpþ h�i: (12)

The vanishing of the first variation with respect to dp in

Eq. (10) gives

ðC0 � CÞ�1ðp� C0��Þ ¼ �� ��:

In other words,

Cð�� ��Þ ¼ C0�� p ¼ C0ð�� �0Þ; p ¼ C0�0: (13)

This is exactly the conditions made by Eshelby’s equivalent

inclusion principle;38 i.e., the strain and stress fields are iden-

tical in the original inhomogeneous material and an equiva-

lent homogeneous solid. Such an equivalence is achieved by

introducing a polarized stress field p or eigenstrain field �0

necessary for homogenization. In addition, the driving force

Felas
e� becomes

Felas
e� ¼C0ð�� ��Þ�C0�0þC0�� ¼C0ð�� �0Þ ¼ r: (14)

Thus, Felas
e� is interpreted as the stress field necessary for

refining microstructure to accommodate the specified bound-

ary constraints.36

Next, the relation between I elas and I elas
HS can be under-

stood by evaluating their stationary values. Suppose the

periodic boundary condition is enforced with average strain

h�i prescribed. For a fixed distribution of microstructure, the

elastic energy I elas in Eq. (4) at equilibrium is

I elas ¼
ð

1

2
r � �0dxþ

ð
1

2
r � h�idx�

ð
1

2
r � ��dx

¼ 1

2

ð
hri � h�idx�

ð
1

2
r � ��dx; (15)

where the equilibrium condition r � r ¼ 0 and periodic

boundary condition are used in deriving the above formula-

tion. Next, consider I elas
HS in Eq. (7) at the stationary value.

From Eq. (10) at the vanishing of Felas
p , Eq. (7) becomes

I elas
HS ¼

ð
1

2
ðp� C0��Þ � ðCpþ h�i � ��Þ

�

� 1

2
p � Cp� h�i � pþ �� � p� 1

2
�� � C0��

�
dx

¼ �
ð

1

2
h�i � pdx�

ð
1

2
�� � ½C0ðCpþ h�iÞ � p�dx

¼
ð

1

2
h�i � hridx�

ð
1

2
r � ��dx�

ð
1

2
h�i � C0h�idx;

(16)

where from Eq. (13) hpi ¼ �hri þ C0h�i. The comparison

between Eqs. (15) and (16) provides

I elas ¼ I elas
HS þ

ð
1

2
h�i � C0h�idx: (17)

In other words, the difference between I elas and I elas
HS per

unit volume is a constant denoted by 1
2
h�i � C0h�i.

Finally, the variational formulation in Eq. (7) is based

on prescribing average strain h�i. Instead, if the overall stress

hri is provided, Eq. (7) is replaced as

I elas
HS� ¼

ð
Welas

HS�ð�0; ��Þdx;

¼
ð

1

2
ð�0 � ��Þ � ðS� S0Þ�1ð�0 � ��Þ

�

� 1

2
�0 � K�0 � hri � �0

�
dx; (18)

where S ¼ C�1 and S0 ¼ C0�1

are the elastic compliance of

the original heterogeneous and background homogeneous

solids, �0 is the eigenstrain field required for homogeniza-

tion, and K is a linear operator producing from strain to a

stress field with zero average. In other words,

r0 ¼ K�0; hr0i ¼ 0: (19)

The explicit operation of K in the Fourier transform space

can be obtained similarly by following the method proposed

by Ref. 36 (see also the Appendix).

C. Total free energy

The total free energy of a martensite taking heterogene-

ous elastic moduli and microstructure into account is
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I tot ¼
ð
fWint þWani þWelas

HS gdx; (20)

where the elastic energy density Welas is replaced by Welas
HS

due to the result of Eq. (17). The first term in Eq. (20) is the

interfacial energy density accounting for the surface energy

of the interfaces between different variants of martensite,

and the second term in Eq. (20) is the anisotropy energy den-
sity which is the energetic cost when field variables deviate

from points corresponding to the ground states of energy

wells. The explicit expressions of these two terms depend on

the choices of phase filed variables. One newly approach,

called an unconventional phase field model,35–37 is to choose

the characteristic functions of transforming variants as the

field variables. For example, from Eq. (3), the characteristic

function ki is used to represent each variant. Thus, Wint and

Wani can be expressed by61

Wint ¼ A
XN

i¼1

jrkij2; (21)

Wani ¼ K1

XN

i¼1

k2
i ð1� kiÞ2

" #
þ K2

XN

i¼1

ki � 1

" #2

; (22)

where A > 0 is associated with the width of two adjacent

martensitic variants and K1 > 0 is related to the energy bar-

rier from one energy ground state to the other. Note that the

second term in Wani with K2 > 0 is required to avoid two

variants occupying at the same material point.61 This term

can be removed by employing another characteristic function

li motivated by laminated microstructure such that

k1 ¼ l1;

� � �
kN�1 ¼ lN�1ð1� l1Þ � � � ð1� lN�2Þ;
kN ¼ ð1� l1Þ � � � ð1� lN�2Þð1� lN�1Þ:

(23)

As a result, the anisotropy energy density can be expressed

in terms of li by Wani ¼ K½
PN

i¼1 l2
i ð1� liÞ2� with K > 0.

Readers are referred to references for details of this

approach.35,37,62

Taking the variations with respect to p and �� in the total

free energy, Eq. (20) gives

dI tot ¼ �
ð

Felas
p � dpþ Fint þ Fani þ Felas

e� �
@��

@k

� �
� dk

� �
dx;

(24)

where k ¼ ðk1;…; kNÞ and the driving forces Felas
p and Felas

e�

are given by Eqs. (10) and (11), and the rest of two terms are

Fint ¼ 2Ar2k; Fani ¼ � @Wani

@k
: (25)

Physically, Fint is the driving force for coarsening micro-

structure and Fani is the driving force for selecting variants.

Note that periodic boundary conditions are enforced in deriv-

ing Eq. (24). But for non-periodic boundary conditions, the

vanishing of normal derivative @k
@n ¼ 0 is required on the

boundary.36

D. Evolution equations

The thermodynamic driving forces are defined as the

negative of the first variations with respect to fields variables

p and k in Eq. (20). It follows from Eq. (24) as

Fp ¼ � dI tot

dp
¼ Felas

p ;

Fk ¼ � dI tot

dk
¼ Fint þ Fansi þ Felas

e� �
@��

@k
:

(26)

The evolution of polarized stress fields and martensitic var-

iants is therefore assumed to be proportional to the associ-

ated thermodynamic driving forces; i.e.,

@p

@t
¼ LpFp

¼ Lpf�ðC0 � CÞ�1ðp� C0��Þ þ Cp� �� þ h�ig;
(27)

@k

@t
¼ LkFk

¼ Lk 2Ar2k� @Wani

@k
þ ½C0ðC0 � CÞ�1ðp� C0��Þ

�

�pþ C0��� � @�
�

@k

�
; (28)

where Lp > 0 and Lk > 0 are the mobility coefficients. The

evolution equations are interpreted as follows. When the

driving force Fp is approaching to vanish under evolving

from Eq. (27), this reaches the condition of Eq. (13) where

the stress and strain fields in an equivalent homogeneous me-

dium are identical to those in the original inhomogeneous

solid. The final term Felas
e� in Eq. (28) therefore corresponds

to the actual stress driving evolution of microstructure, as

interpreted by Eq. (14).

The total energy is decreased under the evolution of

field variables. Indeed, from Eqs. (24), (27), and (28),

dI tot

dt
¼�

ð
Felas

p � @p

@t
þ Fint þFani þFelas

e� �
@��

@k

� �
� @k
@t

� �
dx

¼�
ð

LpjFpj2dx�
ð

LkjFkj2dx� 0: (29)

Note that the mobility coefficient Lp in Eq. (27) could be

replaced by ~L
pðC0 � CÞ whenever ~L

p
> 0 and ðC0 � CÞ is

positive definite symmetric. The decrease of the total energy

in Eq. (29) remains unchanged since ~L
pðFp � ðC0 � CÞFpÞ

> 0. Such a modification has been shown to be capable of

enhancing the rate of convergence to an order of magnitude.44

Finally, if the boundary condition is replaced by assign-

ing the average stress hri, the evolution equations become

@�0

@t
¼ �Le0 dI tot

�
d�0

¼ Le0f�ðS� S0Þ�1ð�0 � ��Þ þ K�0 þ hrig; (30)
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@k

@t
¼ �Lk dI tot

�
dk

¼ Lk 2Ar2k� @Wani

@k
þ ½ðS� S0Þ�1ð�0 � ��Þ� � @�

�

@k

� �
;

(31)

where mobility coefficients Le0

> 0; Lk > 0, and I tot
� replace

the third term of I tot by Welas
HS�; i.e.,

I tot
� ¼

ð
fWint þWani þWelas

HS�gdx;

and Welas
HS� is defined by Eq. (18).

III. RESULTS

Consider the case of tetragonal martensite first. The pa-

rameters of transformation strain are taken to be g1 ¼
�1:5% and g2 ¼ 3% in Eq. (1). As the elastic properties of

single crystals are not available for typical shape-memory

alloys, the data from PbTiO3 ferroelectric crystals in the tet-

ragonal phase are chosen instead.63 For the first variant, they

are C
ð1Þ
11 ¼ 235 GPa; C

ð1Þ
33 ¼ 105 GPa; C

ð1Þ
12 ¼ 101 GPa; C

ð1Þ
13

¼ 98:8 GPa; C
ð1Þ
44 ¼ 65:1 GPa, and C

ð1Þ
66 ¼ 104 GPa where

the Voigt notation is adopted here. The elastic modulus for

other variants can be obtained by symmetry transformation.

In addition, the elastic modulus of the comparison material

is chosen to be 2
3
ðCð1Þ þ Cð2Þ þ Cð3ÞÞ to guarantee that ðC0

�CðiÞÞ is positive definite for i¼ 1, 2, 3. The evolution equa-

tions in Eqs. (27) and (28) are numerically computed in a

unit cell with K1 ¼ K2 ¼ 0:557 GPa and A ¼ 0:0001K1. To

enhance the rate of convergence, the Fast Fourier Transform

(FFT) is carried out for evaluating the operation C in Eq. (8).

The random initial conditions are taken for simulations.

Self-accommodation patterns are of the primary interest

in shape-memory alloys,64 and therefore, the average strain

is assigned by h�i ¼ 0. A 3-dimensional simulation result is

shown in Fig. 2(a), where different martensitic variants are

presented by different gray levels. The darkest shadow

denotes the first variant and the rest follows. Notice that the

microstructure patterns projected to (100)/(010)/(001) planes

are marked as I, II, and III in Fig. 2(a). Each of them is also

presented in Figs. 2(b)–2(d), respectively. While the gray

levels become a little blurred at the triple junctions in each

plot, the rest shows sufficient resolution for distinguishing

different martensitic variants. Several comments are made

below.

First, the pattern shown in Fig. 2(a) is not a typical rank-

2 laminate where two fine-scale lamellar microstructure pat-

terns alternate in layers separated by parallel planes (for

example, see the pattern comprised by trigonal variants in

Fig. 3). Instead, it is an intriguing, fascinating, and strain-

FIG. 2. A three-dimensional compatible self-accommodation pattern consisting of three tetragonal variants. The first variant is presented by the darkest gray

level and the rest follows. (a) Eight identical patterns are packed together for exhibiting periodic images, (b) pattern projected to (100) plane, (c) pattern pro-

jected to (010) plane, and (d) pattern projected to (001) plane.

FIG. 3. A three-dimensional compatible self-accommodation pattern consisting of four trigonal variants. The first variant is presented by the darkest gray level

and the rest follows. (a) Eight identical patterns are packed together for exhibiting periodic images, (b) pattern projected to (100) plane, (c) pattern projected to

(010) plane, and (d) pattern projected to (001) plane.
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compatible pattern. Indeed, two variants i and j are twin-

related (or compatible) if they satisfy

�ðiÞ � �ðjÞ ¼ 1

2
ða� nþ n� aÞ (32)

for some vectors a and n.1 If such a relation holds, they can

form a lamellar microstructure with interfacial normal paral-

lel to n. Table I lists all possible 3-dimensional compatible

interfaces formed by different pairs of tetragonal variants. In

addition, the interfacial normals projected to (100), (010),

and (001) planes are also listed in Table I. For example, con-

sider the (100) face which is marked the symbol I in Fig.

2(a) and is also shown in Fig. 2(b). It is found that the inter-

faces between the first and second variants and the interfaces

between the first and third variants are parallel to the edges

(see n12 and n13). Further, the interfaces between the second

and the third variants are 45�ð135�Þ oriented from the edges

(see n23). These observations agree well with those listed in

Table I. Similarly, the patterns projected to (010) and (001)

planes shown in Figs. 2(c) and 2(d) also follow the rules of

compatibility listed in Table I.

Next, consider the case of trigonal martensite. The

parameters of transformation strain are taken to be a ¼ 0 and

d ¼ 0:1% in Eq. (2). Similar to the explanation in previous

case, the elastic constants are chosen from the data of

PbðZn1=3Nb2=3ÞO3 � PbTiO3 (PZN-PT) ferroelectric crystals

in the trigonal phase.65 They are for the first variant

C
ð1Þ
11 ¼ 180 GPa; C

ð1Þ
12 ¼ 80 GPa; C

ð1Þ
13 ¼ 48 GPa; C

ð1Þ
14 ¼ �26

GPa; C
ð1Þ
33 ¼ 171 GPa, and C

ð1Þ
44 ¼ 16 GPa where the data are

measured based on the crystal basis of the trigonal phase. The

elastic modulus of the comparison material is chosen to be
5
4
ðCð1Þ þ Cð2Þ þ Cð3Þ þ Cð4ÞÞ to guarantee that ðC0 � CðiÞÞ is

positive definite for i ¼ 1;…; 4. The evolution equations in

Eqs. (27) and (28) are numerically computed in a unit cell

with K1 ¼ K2 ¼ 1:93 MPa and A ¼ 0:0001K1.

The average strain is assigned by h�i ¼ 0 for producing

self-accommodation patterns. A three-dimensional simula-

tion result is shown in Fig. 3(a), where different martensitic

variants are presented by different gray levels. The darkest

shadow denotes the first variant and the rest follows. Notice

that the microstructure patterns projected to (100)/(010)/

(001) planes are marked as I, II, and III in Fig. 3(a). Each of

them is also presented in Figs. 3(b)–3(d). Similar to the pre-

vious case, there is a little blurred in gray levels at the triple

junctions. But the rest of regions shows clear resolution for

identifying distinct martensitic variants. Next, in contrast to

the previous case, the pattern shown in Fig. 3(a) is a typical

rank-2 laminate. It exhibits a standard compatible herring-

bonelike structure.29,37 To see it, first note that Table II lists

all possible three-dimensional compatible interfaces satisfy-

ing Eq. (32) for different pairs of trigonal variants. In addi-

tion, there are two types of twins classified by their

interfacial normals. One is the {100} type-I twin and the

other is the {110} type-II twin. The interfacial normals pro-

jected to (100), (010), and (001) planes are also listed in

Table II. The subscripts of the projected normals indicate

what types of twins they originally come from. To examine

the issue of strain compatibility, take an example of the

(010) face which is marked the symbol II in Fig. 3(a) and is

also shown in Fig. 3(c). Four trigonal variants are arranged

to form a compatible herringbone structure. Indeed, from

Table II, the only compatible interface between the first and

fourth variants is the one with normal ð11Þ2 projected to the

(010) plane, and the subscript 2 indicates the type-II twin

originally. In addition, the only compatible interface between

the second and third variants is the one with normal ð1�1Þ2
projected to the (010) plane. These predictions are observed

in Fig. 3(c) by the labels indicating normals n14 and n23,

respectively. Similarly, the projected normals n12 and n34 in

Fig. 3(c) are along the (10) direction. Both agree well with

those predicted in Table II. Finally, the examination of inter-

faces shown in Figs. 3(b) and 3(d) confirms that they do fol-

low exactly the rules of compatibility listed in Table II.

IV. CONCLUSIONS

An unconventional phase-field model taken into account

elastic modulus difference of distinct phases is established

for microstructure simulation in martensitic materials. It is

based on the Hashin-Shtrikman variational formulation by

introducing a homogeneous comparison elastic material and

a polarized stress field so that strain and stress fields in an

TABLE I. Three-dimensional compatible interfaces formed by different

pairs of tetragonal variants are listed. The interfacial normals projected onto

different cubic faces are also listed.

Tetragonal martensite

�
ð1Þ
tet =�

ð2Þ
tet �

ð1Þ
tet =�

ð3Þ
tet �

ð2Þ
tet =�

ð3Þ
tet

3D ð110Þ=ð1�10Þ ð101Þ=ð10�1Þ ð011Þ=ð01�1)

(100) plane (1 0) (0 1) ð1 1Þ=ð1 �1Þ
(010) plane (1 0) ð1 1Þ=ð1 �1Þ (0 1)

(001) plane ð1 1Þ=ð1 �1Þ (1 0) (0 1)

TABLE II. Three-dimensional compatible interfaces formed by different pairs of trigonal variants are listed. The interfacial normals projected onto different

cubic faces are also listed.

Trigonal martensite

�
ð1Þ
trig=�

ð2Þ
trig �

ð1Þ
trig=�

ð3Þ
trig �

ð1Þ
trig=�

ð4Þ
trig �

ð2Þ
trig=�

ð3Þ
trig �

ð2Þ
trig=�

ð4Þ
trig �

ð3Þ
trig=�

ð4Þ
trig

3D (100)/(011) (001)/(110) (010)/(101) ð010Þ=ð10�1Þ ð001Þ=ð1�10Þ ð100Þ=ð01�1Þ
(100) plane ð1 1Þ2 ð0 1Þ1=ð1 0Þ2 ð1 0Þ1=ð0 1Þ2 ð1 0Þ1=ð0 1Þ2 ð0 1Þ1=ð1 0Þ2 ð1 �1Þ2
(010) plane ð1 0Þ1=ð0 1Þ2 ð0 1Þ1=ð1 0Þ2 ð1 1Þ2 ð1 �1Þ2 ð0 1Þ1=ð1 0Þ2 ð1 0Þ1=ð0 1Þ2
(001) plane ð1 0Þ1=ð0 1Þ2 ð1 1Þ2 ð0 1Þ1=ð1 0Þ2 ð0 1Þ1=ð1 0Þ2 ð1 �1Þ2 ð1 0Þ1=ð0 1Þ2

123506-6 H. Z. Chen and Y. C. Shu J. Appl. Phys. 113, 123506 (2013)



equivalent homogeneous medium are identical to those in

the original inhomogeneous solid. As a result, the force due

to stress for driving microstructure evolution is able to be

computed in the homogeneous comparison solid to which

the fast numerical algorithm can be applied. The framework

is applied to the simulation of three-dimensional self-accom-

modation patterns for tetragonal and trigonal martensitic

materials. The former produces an atypical but fascinating

and compatible pattern, while the latter is a commonly

observed herringbone structure. Finally, as the unconven-

tional phase field models have shown easiness in coupling

multiple physical processes and order parameters,66–68 the

proposed framework extended to other phase-transforming

materials accounting for material inhomogeneities is cur-

rently under investigation.58
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APPENDIX: FOURIER TRANSFORM OF STRESS FIELD
IN A STRUCTURALLY INHOMOGENEOUS BUT
ELASTIC HOMOGENEOUS SOLID

Let �f ðnÞ be the Fourier transform of any function f(x),

where x ¼ ðx1; x2; x3Þ and n ¼ ðn1; n2; n3Þ are the coordi-

nates in the real and reciprocal spaces. Both f(x) and �f ðnÞ are

related by

�f ðnÞ ¼ F½f � ¼
ð1
�1

f ðxÞe�2piðn�xÞdx; (A1)

f ðxÞ ¼ F�1½�f � ¼
ð1
�1

�f ðnÞe2piðn�xÞdn; (A2)

where i2 ¼ �1.

Let p denote the polarized stress with �p as its Fourier

transform. It produces a strain � with �� as its Fourier trans-

form. Suppose both are expressed in terms of Voigt notation.

Thus, it can be shown that they are related by �� ¼ Ĉ�p in the

Fourier transform space36 with

Ĉ ¼ BðBTC0BÞ�1
BT : (A3)

Above, C0 is the elastic 4-tensor of a homogeneous compari-

son material expressed in terms of Voigt notation, and

B ¼ 2pi

n1 0 0

0 n2 0

0 0 n3

0 n3 n2

n3 0 n1

n2 n1 0

0
BBBBBB@

1
CCCCCCA
:

Next, let �0 denote the eigenstrain field necessary for ho-

mogenization and let ��0 be its Fourier transform. It produces

a stress r with �r as its Fourier transform. It can be shown

similarly that both are related by �r ¼ K̂��0 in the Fourier

transform space36 with

K̂ ¼ C0½BðBTC0BÞ�1
BTC0 � I�; (A4)

where I is the identity.
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