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Abstract

A novel multivariant model of martensite is developed through competing energetics to describe the coarsening, refinement and selec-
tion of the microstructure. In contrast with the conventional phase-field methods, a new set of field variables motivated by the hierar-
chical structure of multirank laminates is employed to represent each variant. As a result, the energy-well structure can be expressed
explicitly in an elegant and unified fashion. The framework is applied to the investigation of pattern formation in martensitic thin films
with trigonal symmetry. Various intriguing patterns are predicted and are found to be in good agreement with those observed in exper-
iments. In addition, film orientations and patterns necessary to achieve large actuation strains are suggested for dome-shaped and tunnel-
shaped microactuators. It is found that the resulting morphologies evolve with coherent interfaces under various loading conditions. This
suggests that compatible walls provide a low-energy path during evolution, and the understanding of them leads to novel strategies of
large strain actuation.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A martensitic material undergoes a first-order, diffusion-
less, solid-to-solid phase transformation during which there
is a sudden change in the crystal structure at a certain tem-
perature. Crystals going through a thermoelastic martens-
itic transformation often exhibit the shape-memory effect
– a phenomenon where deformation suffered below a crit-
ical temperature can be recovered on heating. This prop-
erty enables these alloys to be used for a variety of
applications and makes them attractive candidates for
smart materials, since they function as actuators as well
as sensors [1–3]. Recently, several proposed designs for cre-
ating tiny machines have suggested that the characteristic
microstructure patterns can be exploited as device elements
[4]. This requires the design of devices that can take full
advantage of the inherent microstructure to achieve this
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goal, which in turn raises many fundamental issues in mar-
tensitic materials.

Much work has addressed the formation and description
of various aspects of microstructure in bulk crystals but,
for a number of reasons, little attention was paid to thin
films until recently. A typical film has a characteristic
geometry where one dimension is much smaller than the
other two with large surfaces. Consequently, a dimensional
constraint appears as a new length scale comparable to that
of microstructure. Moreover, martensitic crystals are
highly anisotropic and nonlinear due to phase transforma-
tion. All of these facts have made it difficult to develop suit-
able theories to describe their behavior in slender
structures. Bhattacharya and James [5] employed ideas
similar to the notion of C-convergence to derive a theory
of martensitic single crystal films, and Shu [6] extended it
to polycrystalline films. They showed that the microstruc-
ture in thin films can be different from that in the bulk,
and this enables a novel strategy that directly uses aspects
of this microstructure for building new microactuators
[7,8]. Bringing these ideas to practical applications requires
a thorough understanding and characterization of the
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microstructure and its evolution under stress. This calls for
an appropriate model that not only can capture the spirit
of the Bhattacharya–James theory but also can serve as a
useful tool for evaluating various conditions in the design
process. The goal of this paper is to develop such a model
and validate it. A strategy exploiting the microstructure
and orientation of the film for performance optimization
of microactuators is also recommended here.

The key feature of a martensitic phase transformation is
the microstructure it generates. The high-temperature aus-
tenite phase is cubic, while the low-temperature martensite
phase has less symmetry. This gives rise to symmetry-
related variants that are identical crystal lattices of mar-
tensite with different orientations. The crystal is able to
take a specific shape by making a fine-scaled mixture of dif-
ferent variants to accommodate the deformation. However,
these variants cannot be arbitrarily mixed; instead, each
interface separating different variants has a well-defined
crystallographic orientation such that rows of atoms are
unbroken across it. As a result, variants of martensite form
highly intricate and very characteristic patterns at a length
scale much smaller than the size of the sample. To explain
these observed patterns, the crystallographic theory of
martensite was proposed by Wechsler et al. [9], as well as
by Bowles and MacKenzie [10], in the early 1950s. How-
ever, this theory is purely kinematic in origin and involves
a priori the twinning mode, leading to difficulty in extend-
ing it to other circumstances. Ball and James [11] developed
a theoretical approach to predict the fine microstructure
based on the relaxation of a nonlinear energy function.
Khachaturyan [12] and Roitburd [13], on the other hand,
used a different theory based on linear elasticity and the
Fourier technique for predicting the morphology of crystal
microstructures. Both theories are based on energy minimi-
zation and can recover the results of the early crystallo-
graphic theory. The link between these two was
established by Kohn [14], who showed that the latter is
the geometrically linear analogue of the former. Bhattach-
arya and Kohn [15] and Shu and Bhattacharya [16]
extended the Ball–James theory to the case of polycrystals.

As analytic solutions obtained from the above-men-
tioned theories are available only for some simplified prob-
lems, this article adopts another perspective by proposing a
multivariant framework suitable for simulating patterns of
microstructure under a variety of boundary conditions.
This problem has been studied by Khachaturyan, Royt-
burd, Salje, Saxena, Lookman and their collaborators for
martensites [17–24], and by Chen and his co-workers for
ferroelectrics [25,26]. Other important contributions for
microstructure simulation include the works [27–31]. All
of them use the conventional time-dependent Ginzburg–
Landau (TDGL) model, and choose a suitable set of order
parameters and the special polynomial expansions of these
parameters at high orders for a particular transformation.
Instead, a new set of field variables is introduced to repre-
sent each variant here [32]. This approach is motivated by
the hierarchical structure of multirank laminates con-
structed by Bhattacharya [33] for establishing the rule of
mixtures. It provides the advantage of expressing the
energy-well structure of martensitic variants in a unified
fashion, irrespective of the different types of transforma-
tion under consideration. Besides, only two parameters
are needed in the proposed framework. One is related to
the energetic cost due to formation of the interface and
the other is the cost due to the deviation from the ground
state energy.The extensions of the present framework for
simulating domain patterns in ferroelectrics and ferromag-
netic shape-memory alloys are currently underway [34,35].
Moreover, this idea of employing laminated domain pat-
terns has been applied to the investigation of ferroelectric
switching by Shu et al. [36] and Yen et al. [37].

This article is organized as follows: It starts with the use
of energetics to describe the coarsening, refinement and
selection of microstructure of martensite in Section 2. This
phenomenon has been observed in other physical systems,
including self-organized nanoscale patterns in a binary epi-
taxial monolayer [38] and nanomesa and nanowell forma-
tion in a Langmuir–Blodgett ferroelectric polymeric film
[39]. The framework is then applied to the investigation
of pattern formation in martensitic thin films in Section
3. Ti–Ni in the R-phase state is chosen as the model mate-
rial. The R-phase transformation is martensitic and ther-
moelastic, and is characterized by a rhombohedral
distortion of the parent B2 structure [40]. While it yields
a relatively small shape change, its temperature hysteresis
vs. strain is an order of magnitude smaller than that of
the monoclinic phase. Thus, it is suitable in transducer
applications. Indeed, microactuators exploiting the R-
phase transformation of Ti–Ni films have been developed
recently with operation frequency around 100 Hz [41]. Var-
ious self-accommodation patterns are predicted from simu-
lations. They are satisfied with the interface conditions of
the Bhattacharya–James thin film theory [5], and some of
them are found to be in good agreement with those
observed in experiments. In the last part of Section 3, the
model is applied to the design of large strain microactua-
tors by targeting the optimal microstructures and film ori-
entations. Conclusions are drawn in Section 4.

2. Framework and formulation

2.1. Transformation strain

Consider a single crystal of austenite and choose this as
the reference configuration. The crystal occupies the region
X � R3 in its reference configuration. The displacement
and linear strain of the crystal are described by the func-
tions u and e. Both are related by

e½u� ¼ 1

2
ruþ ðruÞT
n o

ð1Þ

The austenite has stress-free strain e(0) = 0. As it is cooled,
it transforms to martensite. In shape-memory alloys, the
austenite lattice has cubic symmetry, while the martensite
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lattice has lesser symmetry, such as tetragonal, trigonal,
orthorhombic or monoclinic symmetry. This gives rise to
N symmetry-related variants of martensite. The transfor-
mation from the austenite to the ith variant of martensite
is described by the transformation (Bain) strain e(i). It can
be determined from the change of symmetry and lattice
parameters. For example, in the case of cubic-to-trigonal
transformation, N = 4, and the transformation strain of
each variant is described by

eð1Þ ¼ ða� dÞIþ 3dpð1Þ � pð1Þ

eð2Þ ¼ ða� dÞIþ 3dpð2Þ � pð2Þ

eð3Þ ¼ ða� dÞIþ 3dpð3Þ � pð3Þ

eð4Þ ¼ ða� dÞIþ 3dpð4Þ � pð4Þ

ð2Þ

where I is the identity tensor, a and d are material con-
stants, and each p(i) is a unit vector directing along one
of the body diagonals of a cube, i.e.

pð1Þ ¼ 1ffiffiffi
3
p ðe1 þ e2 þ e3Þ; pð2Þ ¼ 1ffiffiffi

3
p ð�e1 þ e2 þ e3Þ

pð3Þ ¼ 1ffiffiffi
3
p ðe1 � e2 þ e3Þ; pð4Þ ¼ 1ffiffiffi

3
p ð�e1 � e2 þ e3Þ

ð3Þ

and {e1,e2,e3} is an orthonormal basis parallel to the cubic
lattice of the austenite. Above in Eq. (2) the notation a � b

denotes the tensor product of any two vectors a and b, and
its matrix representation is (a � b)ij = aibj for i, j = 1, 2, 3,
where ai and bj are components of a and b in the basis
{e1,e2,e3}. To explain Eq. (2), notice that the transforma-
tion strain e(1) can also be rewritten as

eð1Þ ¼ Uð1Þ � I

¼ g2pð1Þ � pð1Þ þ g1 qð1Þ � qð1Þ þ rð1Þ � rð1Þ
� �� �

� I

where g1 = a � d + 1, g2 = a + 2d + 1, and the vectors q(1)

and r(1) are any pairs such that {p(1),q(1), r(1)} forms an
orthonormal set of vectors in R3. Thus, U(1) represents a
distortion obtained by stretching the cubic lattice along
the body diagonal direction p(1). Similarly, other variants
are obtained by stretching the same lattice along the rest
of three body diagonal directions p(2), p(3) or p(4), as demon-
strated in Fig. 1. The expression of Bain strains for other
cases such as tetragonal, orthorhombic and monoclinic
martensitic crystals can be found in [16].
(3) (4)

(1) (2)e3

e2

e1

ε ε

εε

Fig. 1. Schematic of four trigonal variants described in terms of
transformation strains e(1), e(2), e(3) and e(4). The crystal and reference
bases are assumed to coincide together, and each arrow represents the
stretching along one of the body diagonal directions of a cube.
Let Xi � X be the region occupied by the ith martensitic
variant for i = 1,2, . . . ,N. Thus, Xi \ Xj = ; if i 6¼ j. Let
e*(x) be the locally inhomogeneous transformation strain
field such that e*(x) = e(i) if x 2 Xi; or, equivalently,

e�ðxÞ ¼
XN

i¼1

ciðxÞeðiÞ ð4Þ

where ci(x) = 1 if x 2 Xi and ci(x) = 0 otherwise. Alterna-
tively, the transformation strain field e*(x) can be described
by employing a set of field variables {l1,l2, . . . ,lN�1}
whose elements li are equal to either 0 or 1. Indeed, set

c1 ¼ l1

c2 ¼ l2ð1� l1Þ
c3 ¼ l3ð1� l1Þð1� l2Þ
� � �
cN�1 ¼ lN�1ð1� l1Þ � � � ð1� lN�2Þ
cN ¼ ð1� l1Þ � � � ð1� lN�2Þð1� lN�1Þ

ð5Þ

in Eq. (4). Notice that when li = 1 and l1 = l2 =
� � � = li�1 = 0, ci = 1 and cj = 0 for j 6¼ i. If, however, all
l1 = l2 = � � � = lN�1 = 0, then cN = 1 and cj = 0 for
j 6¼ N. Thus, assigning discrete values to each of the field
variables li guarantees that at each point x 2 X, only one
of ci is equal to 1 and the rest of them vanishes.

Introducing li in Eq. (5) as the field variables, instead of
the conventional choice ci, to express the transformation
strain field e* is motivated by the rule of mixtures proposed
by Bhattacharya [33]. Simply speaking, suppose two vari-
ants i and j are twin-related, i.e. the corresponding trans-
formation strains satisfy

eðiÞ � eðjÞ ¼ 1

2
a� nþ n� að Þ ð6Þ

for some vectors a and n. The strain compatibility in Eq.
(6) implies that a laminate microstructure can be con-
structed by alternating layers of these two variants with
an overall strain

keðiÞ þ ð1� kÞeðjÞ ð7Þ
where 0 6 k 6 1 is the volume fraction of the ith variant. If
all the variants are twin-related satisfying Eq. (6), the rule
of mixture indicates that a coherent rank (N � 1) laminate
can be developed to accommodate any prescribed average
he*i with

he�i ¼ hc1ieð1Þ þ hc2ieð2Þ þ � � � þ hcN�1ieðN�1Þ þ hcN ieðNÞ

¼ k1e
ð1Þ þ k2ð1� k1Þeð2Þ þ � � � þ kN�1

YN�2

k¼1

ð1� kkÞeðN�1Þ

þ
YN�1

k¼1

ð1� kkÞeðNÞ ð8Þ

where the symbol h� � �i denotes the average over the volume
of a body, and ki is the local volume fraction of the ith-rank
laminate, as illustrated in Fig. 2 (a rank-3 laminate in trigo-
nal martensite). This result is important since laminated



Fig. 2. Schematic representation of a compatible rank-3 laminate in trigonal martensite. Each variant is presented by a different gray level, as listed on the
bottom. Note that the scales of different levels of laminates are assumed to be widely separated. The transition layers on the interfaces are not drawn here
to avoid congestion.
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microstructures are commonly observed in martensite [1].
It therefore raises a fundamental question about how the
idea of multirank lamination is incorporated in a phase-
field model of martensite. From the comparison between
Eq. (5) and Eq. (8), it is suggested that the nonuniform field
variables li be used instead of ci to describe the locally
inhomogeneous transformation strain field e*. An advan-
tage of using the proposed approach is that it provides a
unified way for specifying the energy-well structure of mar-
tensite, and will be explained in Section 2.2.

Finally, the derivation of Eq. (8) is simply sketched in
the case of trigonal martensite. First, it can be verified that
all trigonal variants given by Eq. (2) are twin-related satis-
fying Eq. (6). A further investigation reveals that there are
two types of twins classified by different interfacial nor-
mals: {10 0} and {110}. Table 1 lists all possible compati-
ble interfacial normals among different variants. Second,
according to Eq. (7) and Table 1, variants (1) and (2) can
form a rank-1 laminate by choosing n

ðIÞ
1 ¼ ð1; 0; 0Þ, and

variants (1) and (3) can form another rank-1 laminate with
n
ðIÞ
2 ¼ ð0; 1; 0Þ. Both are shown in Fig. 2a, where k1 is the

volume fraction of variant (1). These two rank-1 laminates
can further form a rank-2 laminate if they alternate in lay-
ers separated by parallel planes with unit normal n

ðIIÞ
1 , as

demonstrated in Fig. 2b, where k2 is the volume fraction
of layers comprising variants (1) and (2) in this case. This
rank-2 laminate is legitimate if the scales of different levels
of laminates are widely separated, and the interfacial nor-
mal n

ðIIÞ
1 is oriented to satisfy Eq. (6) in the sense of average.
Table 1
Compatible interfacial normals in a bulk martensite with trigonal
symmetry

Variants 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

{100} type (1,0,0) (0,1,0) (0,0,1) (0,0,1) (0,1,0) (1,0,0)
{110} type (0,1,1) (1,0,1) (1,1,0) (�1,1,0) (�1,0,1) (0,�1,1)
In the present case, the average compatibility requires
n
ðIIÞ
1 ¼ ð�1ffiffi

2
p ; 1ffiffi

2
p ; 0Þ. Third, using an argument similar to the

above, variants (1), (2) and (4) of trigonal martensite can
also form another rank-2 laminate characterized by local
volume fractions k1 and k2, as shown in Fig. 2c and d.
Now a rank-3 laminate can be constructed by alternating
these two rank-2 laminates separated by an interface with
unit normal n(III), as shown in Fig. 2, where k3 is the vol-
ume fraction of layers containing variants (1), (2) and (3).
Again, it is a coherent pattern if the average compatibility
condition across the interface n(III) can be satisfied, and we
have n(III) = (1, 0,0). Employing Eq. (7) repeatedly over
each level of laminates gives the overall strain of this
rank-3 laminate as in Eq. (8) with N = 4. Thus, by choos-
ing k1, k2 and k3 suitably, any average of transformation
strains can be achieved using coherent patterns of martens-
itic variants.

2.2. Free energy

The elastic energy density of martensite taking its heter-
ogeneous microstructure into account is

W elasðlÞ ¼ 1

2
e� e�ðlÞ½ � � C e� e�ðlÞ½ � ð9Þ

where e*(l) is given by Eq. (4) using Eq. (5),
l = (l1,l2, . . . ,lN�1) and C is the elastic modulus assumed
to be the same for all phases. The elastic tensor C is posi-
tive-definite symmetric such that, for i, j, k, l = 1, 2, 3

Cijkl ¼ Cijlk ¼ Cklij

where Cijkl is the component of C in some orthonormal
basis. The compatible strain e is implicitly dependent on
the field variable l and is determined by solving the
mechanical equilibrium equation

r � r ¼ 0; r ¼ C e� e�ðlÞ½ � 8x 2 X ð10Þ
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subject to suitable boundary conditions. In Eq. (10) r is the
symmetric elastic stress tensor.

As explained in Section 2.1, each li has to take on either
0 or 1 such that e*(l) stands for one of the transformation
strains. To enforce it, we introduce the notion of energy
density Wani(l), which is the energetic cost when the field
variable l deviates from these two points. Specifically,
one of the simplest forms of it to achieve this purpose is

W aniðlÞ ¼
XN�1

i¼1

Kil
2
i ð1� liÞ

2 ð11Þ

where Ki > 0 for i = 1, . . . ,N � 1. Thus, let l be relaxed to
take on any value. Minimizing

W aniðlÞ þ W elasðlÞ ¼
XN�1

i¼1

Kil
2
i ð1� liÞ

2 þ 1

2
e� e�ðlÞ½ �

� C e� e�ðlÞ½ �

forces each li to take on the value very close to either 0 or 1
if Ki is sufficiently large. The zeros of (Wani + Welas) define
the tensorial directions along which the crystal is deformed
most easily. Thus, this builds in the information that the
crystal prefers certain spontaneous strain at a given tem-
perature. Moreover, if there are no discrepancies among
all martensitic variants, K = Ki for each i, so that each mar-
tensitic variant owns an identical energy of the ground
state.

Next, to describe the sharp interface separating different
variants of martensite, we introduce the notion of interfa-

cial energy density by

W intðlÞ ¼ Ajrlj2 ð12Þ

where A > 0 is called the exchange or gradient coefficient.
From Eq. (12), l has been relaxed to continuously vary
across the boundaries of martensitic variants. This energy
density Wint(l) penalizes changes in l and thus is inter-
preted as the energy of forming a martensitic interface.
Such changes are supposed to be abrupt if A is assumed
to be very small. Further, according to Eq. (5), several dif-
ferent sets of li may represent the same variant. However,
our numerous numerical results in Section 3 have revealed
that the adjacent variants typically select particular sets of
li to minimize the interfacial energy.

Under these hypotheses (sufficiently large K and small
A), we postulate that the pattern of martensitic variants
at some fixed temperature below the critical temperature
can be obtained by minimizing

IðlÞ ¼
Z

X
W intðlÞ þ W aniðlÞ þ W elasðlÞ � r0 � e
� �

dx ð13Þ

subject to the constraint Eq. (10). Above, r0 is the external
stress induced owing to the applied traction on some parts
of its boundary. It has to be divergence-free in the absence
of body forces and consistent with the mechanical bound-
ary conditions [42]. Note that if the boundary condition
is specified by displacement on the whole part of the
boundary, the last term r0 � e in Eq. (13) is dropped.

The task here is to determine the field variable l, which
minimizes the free energy in Eq. (13) subject to the con-
straint Eq. (10). However, this is not an easy task due to
the nonlinear optimization and the complexity in solving
the elastic equilibrium equation for arbitrary finite shape
of X. In fact, Shu et al. [42] have proposed a modified
boundary integral formalism to solve Eq. (10) to simulate
the evolution of magnetic domains for magnetostrictive
materials. However, the size of their simulation is restricted
to the nanoscale. Fortunately, for a bulk martensite, the
length scale of martensitic microstructure is typically much
smaller than the body size. Thus, it is reasonable to assume
the periodic boundary condition in Eq. (13) for simulating
microstructure in bulk materials, i.e. l is periodic over a
small cube X = (0, l0)3, where l0 is larger than the micro-
structure size but is smaller than the size of the body.
Under this assumption, the elastic constraint Eq. (10) can
be solved as follows. First, the elastic compatible strain e

and transformation strain field e* can be decomposed as
the sum of macroscopically homogeneous state and micro-
scopically nonuniform state

e ¼ hei þ e0; e� ¼ he�i þ e�0 ð14Þ
where e0 is the perturbed inhomogeneous strain and is re-
lated with the displacement u0 through Eq. (1). Both u0

and e0 are periodic and can be obtained by solving

r � r0 ¼ 0; r0 ¼ C e0½u0� � e�0ðlÞ½ � ð15Þ
at fixed l. The solution of r0 can be achieved explicitly
using the technique of Fourier transform and its derivation
is provided in Appendix A. The homogeneous state
hri = C[hei � he*i], however, depends on the specific types
of boundary conditions. For instance, the complete stress
field can be expressed as

r ¼ C e0 � he�i
� �

þ r0; if hei ¼ e0 is imposed ð16Þ
r ¼ r0 þ r0; if hri ¼ r0 is imposed ð17Þ
2.3. Evolution of microstructure under driving forces

Applying the variation in l to Eq. (13) gives

dIðlÞ ¼ �
Z

X
Fint þ Fani þ Felas
� �

� dldxþ
Z

oX
2A

ol

on
� dldS

þ
Z

X
r� r0
� �

� de½u�dx ð18Þ

where oX is the boundary of X, n is the outward unit vector
to oX, dS is the surface element and the driving forces

Fint ¼ 2Ar2l

Fani ¼ � oW aniðlÞ
ol

Felas ¼ C e� e�ðlÞ½ � � oe�ðlÞ
ol

ð19Þ
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The surface integral term in Eq. (18) originates from

d
Z

X
A rlj j2dx ¼

Z
X

2A rl � rðdlÞ½ �dx

¼
Z

X
2A r � dl � ðrlÞ½ � � dl � r2l
� �

dx

¼ �
Z

X
Fint � dldxþ

Z
oX

2A
ol

on
� dldS

The last integral term in Eq. (18) can be shown to beZ
X

r� r0
� �

� de½u�dx ¼ 0 ð20Þ

and the derivation of Eq. (20) is provided in Appendix B.
Now the necessary condition for minimizing the total

free energy IðlÞ is the first variation of it has to be equal
to zero, i.e. dIðlÞ ¼ 0. In other words, from Eq. (18)

FðlÞ ¼ � d
dl

IðlÞ ¼ Fint þ Fani þ Felas ¼ 0

ol

on
ðxÞ ¼ 0 8x 2 oX ðnonperiodic settingÞ

l is periodic over a cube ðperiodic settingÞ

( ð21Þ

where F is the total thermodynamic driving force defined by
the negative of the variational derivative of the free energy
with respect to the field variable l. Physically, Fint is the
driving force for coarsening microstructure, Fani is the driv-
ing force for selecting variants and Felas is the driving force
for refining microstructure to accommodate the specified
boundary constraints.

The nonzero F defined by Eq. (21) provides a force driv-
ing the microstructure to evolve. The simplest form to
describe the evolution of microstructure is given by

ol

ot
¼ �M

dI
dl
¼ MF ð22Þ

where M > 0 is the mobility. It is obvious that F = 0 can be
viewed as a particular case of Eq. (22), giving the steady-
Fig. 3. Two prototypes of microactuators with dome-shaped and tu
state solution. In fact, the evolution of l described by
Eq. (22) implies the decrease of the total free energy in
Eq. (13). This can be understood by considering

dI

dt
¼
Z

X

oW int

ol
þ oW ani

ol
þ oW elas

ol
� r0 � oe

ol

	 

� ol

ot
dx

¼
Z

X
�F � ol

ot
dx ¼ �M

Z
X
jFj2dx 6 0 ð23Þ

due to Eq. (22), M > 0 and the arguments similar to those
used to derive dIðlÞ in Eq. (18). As the result of Eq. (23),
Eq. (22) will be used as our fundamental tool to investigate
the formation of martensitic patterns under different
conditions.

2.4. Thin film limit

Consider a single crystal film of thickness h. Suppose it
is released on a certain region S � R2 but is attached to a
substrate outside it, as shown in the left of Fig. 3. Very
often the thickness of the film is much smaller than the lat-
eral extent. In this situation, Bhattacharya and James [5]
have shown that the out-of-plane strain incompatibility
can be neglected. Therefore, only the in-plane components
of the transformation strains need to be considered. As a
result, the criterion for coherence is weakened in thin films
and may depend on the film normals. To be precise, let P
be the 2 � 3 matrix

P ¼
1 0 0

0 1 0

� �

and R be the proper rotation associated with the film nor-
mal. The in-plane transformation strain field e�pðlÞ in this
case is defined by

e�pðlÞ ¼
XN

i¼1

ciðlÞeðiÞp ; eðiÞp ¼ P ReðiÞRT
� �

PT ð24Þ
nnel-shaped deformations depicted in (a) and (b), respectively.
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where ci(l) is given by Eq. (5) and eðiÞp is the in-plane trans-
formation strain of the ith martensitic variant associated
with the orientation R. According to the theory proposed
by Bhattacharya and James [5] and Shu [6,43], the problem
can be reduced to a two-dimensional setting since the en-
ergy consists of two contributions: the one scales at an or-
der of h and the other has an h3 scaling, i.e.

IðlÞ¼ h
Z

S
W int

p þW ani
p ðlÞþW elas

p ðlÞ�rp0 � ep

n o
dxpþOðh3Þ

W int
p ðlÞ¼Ajrplj2; W ani

p ðlÞ¼W aniðlÞ;

W elas
p ðlÞ¼

1

2
ep� e�pðlÞ
h i

�Cp ep� e�pðlÞ
h i

ð25Þ
where $p is the in-plane gradient with respect to the planar
variables xp = (x1,x2) 2 S, ep is the in-plane strain, rp0 is
the in-plane auxiliary stress state, which is divergence-free
and consistent with the applied traction at the boundary,
and Cp is the conventional plane-stress elastic modulus.
The term O(h3) is the energy scaling on the order of h3.
Thus, at the first-order approximation, the evolution of
microstructure is governed by

ol

ot
¼M Fint

p þFani
p þFelas

p

 �

Fint
p ¼ 2Ar2

pl; Fani
p ¼ Fani; Felas

p ¼ Cp ep � e�pðlÞ
h i

�
oe�pðlÞ

ol

ð26Þ

under the elastic constraint

rp � rp ¼ 0; rp ¼ Cp ep � e�pðlÞ
h i

ð27Þ

As the length scale of martensitic microstructure is typi-
cally much smaller than the lateral boundary size of the
film, it is reasonable to assume the periodic boundary con-
dition in Eq. (26), i.e. l is periodic on a small square (0, l0)2.
In addition, the in-plane stress rp can be decomposed as the
sum of the homogeneous hrpi and perturbed rp0 states, as
discussed in Eq. (14) and Eq. (15). The perturbed inhomo-
geneous stress rp0 can be explicitly obtained in the Fourier
reciprocal space, as provided by Eq. (A3). The homoge-
neous in-plane stress hrpi, however, depends on the im-
posed boundary conditions, such as specifying the overall
strain, as in Eq. (16), or the overall stress, as in Eq. (17).

Finally, the development of various kinds of microactu-
ators motivates the consideration of the mixed types of
boundary conditions. For example, suppose the released
region S of the film, shown in the left of Fig. 3a, is a circle.
It is expected to obtain a dome-shaped deformation under
perhaps some back pressure. Thus, a small element of the
film, taken out away from the lateral boundary, may sus-
tain hrp

11i ¼ r0 > 0, hrp
22i ¼ r0 > 0 and hep12

i ¼ 0, as illus-
trated in the right of Fig. 3a. The tensile stress r0 > 0 is
induced due to some back pressure, while its magnitude
may be different at distinct locations. Under these circum-
stances, the elastic stress in this case is
r
p
11 ¼ r0þr

p0
11

r
p
22 ¼ r0þr

p0
22

r
p
12 ¼

r0

Cp
11Cp

22�ðC
p
12Þ

2
Cp

22Cp
16þCp

11Cp
26�Cp

12 Cp
16þCp

26ð Þ½ �

þ
2he�p12

i
Cp

11Cp
22�ðC

p
12Þ

2
Cp

22ðC
p
16Þ

2þCp
11ðC

p
26Þ

2� 2Cp
12Cp

16Cp
26

h i
� 2Cp

66he�p12
iþr

p0
12

ð28Þ
where Cp

ij is the plane-stress elastic constant in terms of
Voigt notation (i, j = 1, 2, 6). Another common example
is that the released region S of the film is a strip rather than
a circle, as shown in the left of Fig. 3b. A tunnel-shaped
deformation is anticipated. Since two parts of the film are
attached to a substrate, this indicates that the film suffers
no shear in the strip when it transforms to martensite,
and is stretched in a direction perpendicular to the strip.
Hence, if a small portion of the film is taken out and exam-
ined, as shown in the right of Fig. 3b, it sustains a tensile
stress hrp

11i ¼ r0 > 0 with hep12
i ¼ 0 and hep22

i ¼ 0 to ensure
a tunnel-like configuration. In this case, the elastic stress is

r
p
11 ¼ r0 þ r

p0
11

r
p
22 ¼

Cp
12

Cp
11

r0 þ Cp
12Cp

12

Cp
11

� Cp
22

� �
he�p22
i

þ 2
Cp

12Cp
16

Cp
11

� Cp
26

� �
he�p12
i þ r

p0
22

r
p
12 ¼

Cp
16

Cp
11

r0 þ Cp
12Cp

16

Cp
11

� Cp
26

� �
he�p22
i

þ 2
Cp

16Cp
16

Cp
11

� Cp
66

� �
he�p12
i þ r

p0
12

ð29Þ
2.5. Numerical implementation

It is common to normalize the length and time scales in
Eq. (26) under the periodic boundary condition. Indeed, set

~x1 ¼
x1

l0

; ~x2 ¼
x2

l0

; ~t ¼ 2MKt ð30Þ

where l0 is the size of the simulation. The evolution of mar-
tensitic microstructure in thin films governed by Eq. (26)
can be normalized to be

ol

o~t
¼ D ~r2

plþ
1

2K
Fani

p ðlÞ þ Felas
p ðlÞ

h i
; ð~x1;~x2Þ 2 ð0; 1Þ2

ð31Þ

where ~r2
p ¼ o2

o~x2
1

þ o2

o~x2
2

and D ¼ A=K
l2
0

. The dimensionless

parameter
ffiffiffiffi
D
p

is related to the length scale of the interface.

Solving Eq. (31) by an explicit forward Euler scheme is
not efficient since it requires very small time steps to main-
tain stability. On the other hand, the implicit backward
Euler method is also not suitable since Fani

p ðlÞ and
Felas

p ðlÞ are nonlinear in l in general, causing nonlinear
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equations to be solved at each time step. To compromise,
the semi-implicit method proposed by Chen and Shen
[44] is chosen to solve Eq. (31). This scheme treats the
Laplacian operator implicitly to relax the stability con-
straint, while the nonlinear terms are specified explicitly
to avoid solving nonlinear algebraic equations at each iter-
ation. Specifically, let D~t be the small time step, ln ¼
lð~x1;~x2; nD~tÞ and lnþ1 ¼ lð~x1;~x2; ðnþ 1ÞD~tÞ. Applying the
semi-implicit finite difference scheme to Eq. (31) provides

lnþ1 � ln

D~t
¼ D ~r2

pl
nþ1 þ 1

2K
Fani

p ðlnÞ þ Felas
p ðlnÞ

h i
ð32Þ

Under the periodic boundary condition, it is convenient to
solve Eq. (32) in the Fourier space. Taking the Fourier
transform on both sides of Eq. (32) gives

�lnþ1¼ 1

1þ4p2Dðn2
1þn2

2ÞD~t
� � �lnþ D~t

2K
Fani

p ðlnÞþFelas
p ðlnÞ

h i	 


ð33Þ
where n1 and n2 are coordinates in the reciprocal space,

lnþ1¼F½lnþ1�, ln¼F½ln�, Fani
p ðlÞ¼F½Fani

p ðlÞ�, Felas
p ðlÞ¼

F½Felas
p ðlÞ� and the Fourier operator F½�� is defined by

Eq. (A1). The variable ln+1 in the real space can be ob-
tained through an inverse Fourier transform of lnþ1 de-
fined by Eq. (A2).

3. Simulation results

Now the various types of patterns in martensitic thin
films are provided here. The chosen material for simulation
is Ti–Ni at the trigonal R-phase. Thus, the number of mar-
tensitic variants is N = 4, and from [40], a = 0, d = 0.0047
in Eq. (2). The elastic moduli of Ti–Ni single crystals are
not available; therefore, we take Cp

11 ¼ Cp
22 ¼ 80 GPa,

Cp
12 ¼ 20 GPa, Cp

66 ¼ 30 GPa and Cp
16 ¼ Cp

26 ¼ 0 in Eq.
(A3). They are typical parameters for Ti–Ni polycrystals
[45]. Besides, there are two dimensionless parameters in
the evolution Eq. (31). The first one, D ¼ A=K

l2
0

, related to
the length scale of microstructure, is taken to be D =
0.0001 [18]. Another dimensionless parameter is related
to the ratio of elastic energy to anisotropy energy. In the

present simulation, K is chosen such that
e
ð1Þ
p �Cpe

ð1Þ
p

K ¼ 1, where
eð1Þp is given by Eq. (35). Thus, the energy densities W ani

p and
W elas

p are of the same order. As described in Section 2.4, the
criterion for compatibility in thin films depends on film
normals. We consider three common crystallographic ori-
entations: (001), (11 0) and (111) films, given by

Rð0 0 1Þ ¼

1ffiffi
2
p 1ffiffi

2
p 0

�1ffiffi
2
p 1ffiffi

2
p 0

0 0 1

0
B@

1
CA; Rð1 1 0Þ ¼

1ffiffi
2
p 1ffiffi

2
p 0

0 0 1
1ffiffi
2
p �1ffiffi

2
p 0

0
B@

1
CA;

Rð1 1 1Þ ¼

1ffiffi
2
p � 1ffiffi

2
p 0

1ffiffi
6
p 1ffiffi

6
p �2ffiffi

6
p

1ffiffi
3
p 1ffiffi

3
p 1ffiffi

3
p

0
BB@

1
CCA ð34Þ
in Eq. (24). A variety of periodic boundary conditions are
taken for simulations, and the fast Fourier transform is em-
ployed to enhance the speed of computation. Since the
nucleation problem, while important in general, is not the
central issue in the present study, we take the random ini-
tial conditions for all simulations.

3.1. (001) Film

According to Eq. (24), the in-plane transformation
strains under the rotation R(0 0 1) given by Eq. (34) are

eð1Þp ¼ eð4Þp ¼
aþ d 0

0 a� d

� �
; eð2Þp ¼ eð3Þp ¼

a� d 0

0 aþ d

� �
ð35Þ

Thus, there are only two distinct variants. Suppose the film
is unstressed as deposited, and is partially released in a cho-
sen region S. As the film is still attached to the substrate in
the surrounding region, as illustrated in the left of Fig. 3a,
it is reasonable to assume the clamped boundary condition,
i.e. hepi = 0. The simulation result shows that the only self-
accommodation pattern is the lamellar type, as shown in
Fig. 4a. Notice that different variants are presented by dif-
ferent gray levels, as listed at the bottom of Fig. 2. The
interface separating variants (1) and (3) is compatible since
eð1Þp � eð3Þp ¼ 1

2
ða13 � n13 þ n13 � a13Þ and n13 ¼ 1ffiffi

2
p ð1; 1Þ or

n13 ¼ 1ffiffi
2
p ð�1; 1Þ, as can be seen in the right of Fig. 4a.

Finally, the lamellar pattern is not a basic unit for self-
accommodation in bulk trigonal martensite [46], since the
average of the transformation strains does not vanish, i.e.
0.5e(1) + 0.5e(3) 6¼ 0. However, this pattern in thin films is
self-accommodated due to the zero average of the in-plane
transformation strains, i.e. 0:5eð1Þp þ 0:5eð3Þp ¼ 0. As a result,
the pattern shown in Fig. 4a is observed often in many
(00 1) films with trigonal lattices [47].

3.2. (110) Film

According to Eq. (24), the in-plane transformation
strains under the rotation R(1 1 0) given by Eq. (34) are

eð1Þp ¼
aþ d

ffiffiffi
2
p

dffiffiffi
2
p

d a

 !
; eð2Þp ¼ eð3Þp ¼

a� d 0

0 a

� �
;

eð4Þp ¼
aþ d �

ffiffiffi
2
p

d

�
ffiffiffi
2
p

d a

 !
ð36Þ

From Eq. (36), variants (2) and (3) are indistinguishable
according to the Bhattacharya–James thin film theory [5],
and therefore there are three distinct variants in this case.
Under the clamped boundary condition, hepi = 0, two dif-
ferent kinds of self-accommodation patterns are predicted
from the simulations. The first one, shown in Fig. 4b, is
similar to the herring-bone pattern commonly observed
in trigonal martensites [46]. Another pattern which is much
simpler than the previous one is shown in Fig. 4c. Notice
that it is not an allowable pattern in bulk martensites, since



Fig. 4. Self-accommodation patterns for various film orientations: (a) for
(001) films; (b) and (c) for (110) films; and (d) for (111) films. All of the
interfaces are compatible except those with normals nþ13 in (d). Notice that
four identical patterns are packed together to obtain a better image.

Table 2
Compatible interfacial normals in (110) films

Variants 1, 2 or 1, 3 1, 4 2, 4 or 3, 4

{100} type (1,0) (0,1) (1,0)
{110} type ð1;

ffiffiffi
2
p
Þ (1,0) ð�1;

ffiffiffi
2
p
Þ
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the third components in the interfacial normals are differ-
ent, as can be seen in the right of Fig. 4c. However, it is
a legitimate one in thin films, and this confirms that mar-
tensitic materials can form many more interfaces in thin
films than in bulk. In addition, the self-accommodation re-
quires c1e

ð1Þ
p þ c2e

ð2Þ
p þ c4e

ð4Þ
p ¼ 0, giving rise to c1 = 0.25,

c2 = 0.5, c4 = 0.25. The simulated volume fractions are
c1 = 0.248, c2 = 0.502, c4 = 0.25 in Fig. 4b, and c1 = 0.25,
c2 = 0.5, c4 = 0.25 in Fig. 4c. They are all consistent with
the theoretical prediction.

Finally, Table 2 contains all possible compatible inter-
faces in (110) films predicted based on the thin film com-
patibility. For example,

eð1Þp � eð2Þp ¼ d
1

0

� �
�

1ffiffiffi
2
p

� �
þ d

1ffiffiffi
2
p

� �
�

1

0

� �

Thus, (1, 0) and ð1;
ffiffiffi
2
p
Þ are the only two compatible inter-

facial normals separating variants (1) and (2). The simula-
tion results confirm that all the interfacial normals in
Fig. 4b and c agree very well with those listed in Table 2.

3.3. (111) Film

According to Eq. (24), the in-plane transformation
strains under the rotation R(1 1 1) given by Eq. (34) are

eð1Þp ¼
a� d 0

0 a� d

� �
eð2Þp ¼

aþ d 2ffiffi
3
p d

2ffiffi
3
p d a� 1

3
d

 !

eð3Þp ¼
aþ d �2ffiffi

3
p d

�2ffiffi
3
p d a� 1

3
d

 !
eð4Þp ¼

a� d 0

0 aþ 5
3
d

 !

ð37Þ
They are all different in this case, and a self-accommoda-
tion pattern is expected to contain all four of these mar-
tensitic variants with equal volume fractions, since
0:25eð1Þp þ 0:25eð2Þp þ 0:25eð3Þp þ 0:25eð4Þp ¼ 0. Indeed, the sim-
ulated pattern shown in Fig. 4d under the clamped bound-
ary condition gives the volume fractions c1 = 0.247,
c2 = 0.250, c3 = 0.252, and c4 = 0.251. Each of them is
close to the theoretical prediction. However, certain inter-
facial normals deviate from those listed in Table 3 which
contains all possible compatible interfaces in (111) films.
Precisely,

eð1Þp � eð3Þp ¼
�d
3

�
ffiffiffi
3
p

1

 !
� �

ffiffiffi
3
p

1

 !
þ �

ffiffiffi
3
p

1

 !
� �

ffiffiffi
3
p

1

 !( )

Thus, n13 ¼ ð�
ffiffiffi
3
p

; 1Þ is the only compatible normal direc-
tion separating variants (1) and (3). However, all of the
interfacial normals shown in Fig. 4d are found to be in
good agreement with those listed in Table 3 except nþ13. A
further investigation reveals that the discrepancy between
n13 and nþ13 is around 11.4�. It indicates that Fig. 4d does
not reach a minimum energy solution with average excess
stress fields hjrp

11ji ¼ 6:4� 10�5Cp
12, hjrp

22ji¼13:9�10�5Cp
12

and hjrp
12ji¼5:7�10�5Cp

12, respectively.



Table 3
Compatible interfacial normals in (111) films

Variants 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

{100} type ð
ffiffiffi
3
p

; 1Þ ð�
ffiffiffi
3
p

; 1Þ (0,1) (0,1) ð�
ffiffiffi
3
p

; 1Þ ð
ffiffiffi
3
p

; 1Þ
{110} type ð

ffiffiffi
3
p

; 1Þ ð�
ffiffiffi
3
p

; 1Þ (0,1) (1,0) ð1;
ffiffiffi
3
p
Þ ð1; �

ffiffiffi
3
p
Þ

Table 4
The average strains for different orientations of the film in the cases of
dome-shaped and tunnel-shaped deformations

Types of microactuators (001) film (110) film (111) film

Dome: hep11
þ ep22

i (%) 	0 0.48 0.34
x2-tunnel: hep11

i (%) 	0 0.48 0.34
x1-tunnel: hep22

i (%) 	0 	0 0.32

Here, ‘‘x2-tunnel” denotes that the orientation of a tunnel is along the x2-
direction (see Fig. 3b), while ‘‘x1-tunnel” is along the x1-direction.
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3.4. Design of large strain microactuators

We now apply the present framework to the design of
large strain microactuators with dome-shaped and tun-
nel-shaped configurations. Suppose the film is deposited
on a substrate first, and is released in some chosen region
S by etching. It is flat and taut at high temperatures, while
it bulges up in the martensite phase at low temperatures,
under perhaps some back pressure. Thus, the released por-
tion of the film swells out and pulls back, functioning as an
actuator by thermal cycling. The task here is to determine
the optimal orientation and microstructure of the film to
maximize the deformed volume.

Suppose the released region S of film, shown in the left
of Fig. 3a, is a circle. It is expected to bulge out like a dome
in the martensite phase. As discussed in Section 2.4, the
film sustains a biaxial stress due to some back pressure such
that hrp

11i ¼ r0, hrp
22i ¼ r0 and hep12

i ¼ 0, as demonstrated
in the right of Fig. 3a. To obtain large pumping volume,
we seek for the optimal microstructure such that the trace
of hepi, hep11

þ ep22
i, is maximized [8]. It can be determined

using Eq. (26) for microstructure simulation and Eq. (28)
for stress computation under r0=5 MPa. The resulting pat-
terns of microstructure are shown in Fig. 5 for (110) and
(111) films. The pattern for (001) films is similar to the
self-accommodated pattern shown in Fig. 4a due to sym-
metry. Thus, it is not shown here. To explain these stressed
patterns for (11 0) and (111) films, an energy argument is
employed. The auxiliary stress state is rp0 = r0I in Eq.
(25), where I is the identity tensor. For (110) films, the
potential energy due to this biaxial stress is positive for var-
iant (2): �ðr0I � eð2Þp Þ ¼ dr0 > 0. However, it is negative and
identical for both variants (1) and (4): �ðr0I � eð1Þp Þ ¼
�ðr0I � eð4Þp Þ ¼ �dr0 < 0. Thus, variant (2) disappears in
Fig. 5a. Moreover, from Table 2, the only compatible inter-
face separating variants (1) and (4) is n14 = (1, 0) or
Fig. 5. Patterns of microstructure in dome-shaped deformations: (a) for (110)
compatible during evolution.
n14 = (0, 1), giving rise to the final pattern shown in
Fig. 5a. Next, applying this energy argument to the stressed
(11 1) film gives

� r0I � eð1Þp

 �
¼ 2dr0 > 0;

� r0I � eð2Þp

 �
¼ � r0I � eð3Þp

 �
¼ � r0I � eð4Þp

 �
¼ � 2

3
dr0 < 0

Thus, variant (1) vanishes and the other variants are ener-
getically equally favorable, leading to a pattern shown in
Fig. 5b. Finally, Table 4 lists the sum of the principal
strains for these patterns. It shows that (110) films
provides the largest biaxial stretch under the same stress
state.

We now turn to another case where the released portion
of the film is a strip, as shown in the left of Fig. 3b. As
described in Section 2.4, to ensure a tunnel-like configura-
tion, it requires hrp

11i ¼ r0 > 0 with hep22
i ¼ 0 and hep12

i ¼ 0
in any small element of the film taken away from the
boundary constraints, as illustrated in the right of
Fig. 3b. Now the task here is to look for the microstructure
such that the tensile strain hep11

i is maximized for different
orientations of the film. The elastic stress field is computed
using Eq. (29) under r0 = 5 MPa, and the simulation
results via Eq. (26) are shown in Fig. 6a for (110) films
and Fig. 6b for (111) films. The pattern for (001) films is
similar to that in Fig. 4a, therefore, is not shown here.
Fig. 6 can be understood in a way similar to the previous
case by comparing the potential energy of this uniaxial
stress for each of the variants. The results show that vari-
ants (1) and (4) are favorable for (110) film. This gives
the pattern shown in Fig. 6a since, from Table 2, the only
films and (b) for (111) films. Note that these two stressed patterns remain



Fig. 6. Patterns of microstructure in tunnel-shaped deformations: (a) for (110) films and (b) for (111) films. The orientation of the tunnel is along the x2-
direction, as shown in Fig. 3b. All of the interfaces are coherent except nþ34, which deviates from n34 by only 5.1�.
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compatible interfacial normals between variants (1) and (4)
in (110) films are either n14 = (1, 0) or n14 = (0, 1). Next, it
can also be shown that variants (2) and (3) are energetically
favorable for (111) films under the uniaxial stretch. How-
ever, in the pattern shown in Fig. 6b there appears a small
fraction of the unfavorable variant (4) due to the require-
ment of hep22

i ¼ 0. From Eq. (37), the theoretical ratio to
satisfy this constraint is 2.5:2.5:1 for variants (2), (3) and
(4), and the simulation result shown in Fig. 6b agrees this
prediction. Finally, Table 4 lists the average strains hep11

i
for different film orientations. The results show that this
actuation strain is the largest for (110) films.

In the previous case, the orientation of the tunnel is
along the x2-direction, as illustrated in the left of Fig. 3b.
Suppose now we change the design such that the tunnel’s
orientation is along the x1-direction. In this case, the possi-
ble patterns of microstructure, under hrp

22i ¼ r0 ¼ 5 MPa,
hep12
i ¼ 0 and hep11

i ¼ 0, are shown in Fig. 7a for (110)
films and Fig. 7b for (111) films. The explanations of the
formation of these special patterns are similar to those in
the previous case, and therefore are not given here. Note,
though, that Fig. 7b is different from Fig. 5b since the vol-
ume fractions of variants are different. The former has a
ratio of 1:1:2 for variants (2), (3) and (4), while the latter
shows equal volume fractions for these three variants. In
this case, the tensile strain hep22

i is aimed to be maximized
in order to achieve larger deformations. The results are
listed in Table 4 for different film orientations. In contrast
to the previous case, where the tunnel’s orientation is per-
Fig. 7. Patterns of microstructure in another tunnel-shaped deformations: (a) fo
the x1-direction, in contrast to the one shown in Fig. 3b. All of the interfaces
pendicular to the present one, it is found that the actuation
strain hep22

i is the largest for (111) films.
Finally, as depicted in the right of Figs. 5–7, it is inter-

esting to see that all of the interfacial normals are almost
compatible and follow the predictions listed in Tables 2
and 3. Thus, the microstructure remains compatible during
evolution under various loading conditions.

4. Conclusions

This article develops a novel multivariant model of the
microstructure of martensite. The framework starts with
the nonconventional choice of field variables motivated
by the hierarchical structure of multirank laminates, as
demonstrated in Fig. 2, to represent each variant. It offers
an advantage of expressing the energy-well structure in a
unified fashion, instead of choosing the special polynomial
expansions of order parameters for a particular transfor-
mation. The resulting morphology is determined by bal-
ancing three competing forces: the first one, arising from
the gradient energy, coarsens the microstructure; the sec-
ond one, arising from the elastic strain energy, refines the
microstructure; and the third one, arising from the anisot-
ropy energy, selects the microstructure.

The framework is applied to the investigation of pattern
formation in martensitic thin films. It chooses Ti–Ni at the
trigonal R-phase as the model material. Since the criterion
for coherence is weakened in thin films and depends on the
film normals, three common crystallographic orientations
r (110) films and (b) for (111) films. The orientation of the tunnel is along
are compatibly oriented.
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are selected in simulations, including (001), (110) and
(111) films. Fig. 4 highlights the striking contrast in self-
accommodation patterns for martensitic films with differ-
ent orientations. Some of them have been observed in
experiments. In addition, the interfaces separating different
variants and volume fractions of each variant are found to
be in excellent agreement with the theoretical predictions
based on the Bhattacharya–James thin film theory [5].

As many thin film applications require the design of large
strain microactuators, this motivates consideration of the
optimal film microstructures and orientations to serve this
goal. Fig. 5 lists various patterns for dome-shaped microac-
tuators and concludes that (110) films have the largest prin-
cipal strains. On the other hand, the optimal film normals
and patterns for tunnel-shaped microactuators depend on
the orientation of the tunnel, as demonstrated in Figs. 6
and 7. It is also found that the resulting morphologies
remain compatible under various loading conditions. This
suggests that compatible walls provide a low-energy path
for the evolution of microstructure, and understanding
them leads to novel strategies of large strain actuation.

Finally, the simulation results demonstrate that the pres-
ent framework is able to capture many important features
for exploring the formation of martensitic patterns under
various cases, and thus it is expected to be a valuable tool
for designing advanced devices at the microscale.
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Appendix A. Elastic stress field in the Fourier space

The solution of elastic stress due to periodic nonuniform
transformation strain field can be obtained using the Fou-
rier technique. In terms of the conventional Voigt notation,
the stress vector s = (s1, s2, s3, s4, s5, s6) denotes (r11, r22,
r33, r23, r31, r12), the strain vector � = (�1, �2, �3, �4, �5, �6)
represents (e11, e22, e33, 2e23, 2e31, 2e12), and the transforma-
tion strain vector �� ¼ ð��1; ��2; ��3; ��4; ��5; ��6Þ represents
ðe�11; e

�
22; e

�
33; 2e�23; 2e�31; 2e�12Þ. According to Eq. (10), they

are related by s = C (� � �*), where C is the 6 � 6 stiffness
matrix in terms of the Voigt notation. Notice that CT = C.
In the two-dimensional case, s becomes (s1, s2, s6), � and �*

represent (�1, �2, �6) and ð��1; ��2; ��6Þ, and C here stands for
the 3 � 3 stiffness matrix.

Let f ðnÞ be the Fourier transform of any function f(x),
where x = (x1,x2, . . . ,xd) and n = (n1,n2, . . . ,nd) are the
coordinates in the real and reciprocal spaces, and d is the
space dimension. Both f(x) and f ðnÞ are related by

f ðnÞ ¼F½f � ¼
Z 1

�1
f ðxÞe�2pi n�xð Þ dx ðA1Þ

f ðxÞ ¼F�1½f � ¼
Z 1

�1
f nð Þe2pi n�xð Þdn ðA2Þ
Applying the Fourier transform on both Eq. (1) and Eq.
(10) gives

u ¼ ðBTCBÞ�1
BTC��

where u ¼F½u�, and B is the matrix given by

B ¼ 2pi

n1 0

0 n2

n2 n1

0
B@

1
CA if d ¼ 2;

B ¼ 2pi

n1 0 0

0 n2 0

0 0 n3

0 n3 n2

n3 0 n1

n2 n1 0

0
BBBBBBBB@

1
CCCCCCCCA

if d ¼ 3

such that � ¼F½�� ¼ Bu. As a result,

s ¼F½s� ¼F½Cð�� ��Þ� ¼ CBu� C��

¼ CBðBTCBÞ�1
BT � I

n o
C�� ðA3Þ

where I is the identity matrix. The elastic stress field s is
therefore obtained by the inverse Fourier transform of s

defined by Eq. (A2).

Appendix B. Derivation of Eq. (20)

Using Eq. (1) and the divergence theorem in Eq. (20)
yieldsZ

X
r� r0
� �

� de½u�dx ¼
Z

oX
ðr� r0Þn � dudS ðB1Þ

In deriving Eq. (B1), we have used the facts that $ � r = 0,
$ � r0 = 0 and the elastic modulus C is symmetric. Now we
show that Eq. (B1) vanishes according to two different
cases: nonperiodic/periodic boundary conditions. First, un-
der the nonperiodic setting, the definition of r0 requires it
to be consistent with the traction boundary conditions,
i.e. rn = r0n on the boundary where the applied traction
is specified. On the other hand, du = 0 on the other part
of the boundary where the displacement is specified. Com-
bining these two observations gives

R
oXðr� r0Þn � dudS ¼ 0

in Eq. (B1).
Second, under the periodic boundary condition, the

domain X = (0,l0)3 becomes a cube. If the overall strain is
imposed, i.e. hei = e0 is constant, then the term (r0 � e) is
dropped from Eq. (13) and Eq. (B1) is changed to beZ

X
r � de½u�dx ¼

Z
X

r � de0½u0�dx ¼
Z

oX
rn � du0dS ðB2Þ

due to Eq. (14). u0 and r are periodic and the traction vec-
tor rn evaluated at one side of the cube is in the opposite
direction to that evaluated at an opposite face of the cube,
giving rise to

R
oX rn � du0dS ¼ 0. However, if the boundary

condition is imposed by assigning the overall stress, i.e.
hri = r0 is constant, more effort is needed to prove this
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argument. Indeed, using Eq. (14) and Eq. (17), Eq. (B1) can
be rewritten asZ

X
r� r0
� �

� de½u�dx

¼
Z

X
r0 � dheidxþ

Z
X

r0 � de0½u0�dx

¼ d
Z

X
r0 � heidx

� �
�
Z

X
hei � dr0dxþ

Z
oX

r0n � du0dS

¼ d hei �
Z

X
r0dx

� �
� hei � d

Z
X

r0dx

� �
þ
Z

oX
r0n � du0dS

ðB3Þ

The last term in Eq. (B3) is zero due to the similar reasons
used to conclude the vanishing of Eq. (B2). The first two
terms of Eq. (B3) are null since from Eq. (17), hr0i = 0.
So is

R
X r0dx ¼ 0.
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