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AbstractÐA model is developed to show that texture is a crucial factor in determining the shape-memory
e�ect in polycrystals. In particular, it is established that texture is the reason why the strains recoverable in
Ti±Ni are so much larger than those in Cu-based shape-memory alloys in rolled, extruded and drawn spe-
cimens. Further, it is shown that both these materials recover relatively small strains in sputter-deposited
thin ®lms due to unfavorable texture. It is found that even the qualitative behavior of combined tension±
torsion can critically depend on the texture. The results are in good agreement with experimental obser-
vations. Finally, textures are suggested for improved shape-memory e�ect. # 1998 Acta Metallurgica Inc.
Published by Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Shape-memory e�ect (SME) is a phenomenon
where deformation su�ered below a critical tem-

perature can be recovered on heating. About 20±30
alloys are known to exhibit SME in single crystals.

However, the degree to which they retain their
shape-memory behavior in polycrystals is widely

varied. Some materials have good shape-memory
behavior as single crystals but little or none as poly-
crystals, while others display good SME even as

polycrystals. Bhattacharya and Kohn [1] have
argued that crystallographic symmetry is a very im-

portant factor in determining the recoverable strains
in polycrystals: alloys which undergo small change

in symmetry (cubic to tetragonal or trigonal) have
virtually no recoverable strains in polycrystals,

while alloys which undergo large change in sym-
metry (cubic to orthorhombic or monoclinic)
always recover at least some strain even in polycrys-

tals. While this explains much experimental obser-
vation, it fails to make any distinction within the

latter group of alloys. In particular, it is unable to
explain why Ti±Ni is so much better than Cu-based

SMAs (Table 1) since both undergo cubic±monocli-
nic transformation and have similar transformation

strains. They speculated on, but did not systemati-
cally explore, the role of texture.

Typically, shape-memory materials are prepared
by casting followed by hot-working (rolling for

strips or drawing for wires) followed by heat treat-
ment. Therefore, it is natural to expect that the

polycrystals are textured and this has been exper-

imentally con®rmed in Ti±Ni rolled sheets [8, 16±

21]; Ti±Ni rods and Ti±Ni±Cu wires [22, 23]; Cu±

Zn±Al rolled sheets [24±26]; and Cu±Zn±Al drawn

wires [27]. Other processing means like rapid

solidi®cation [8, 28±30] and sputtering [31] also

endow the polycrystal with texture.

In this paper, we explore the e�ect of texture on

SME by extending the framework of Bhattacharya

and Kohn [32]. We use ``recoverable strain'' as a

measure of SME and develop a model to estimate it

for a polycrystal with given texture. A geometric

point of view is adopted for brevity. We note that it

is possible to justify this geometric picture using

energy minimization, and we refer interested readers

to Refs [32, 33] for details. We also note that the

strains recoverable by superelasticity or pseudoelas-

ticity are essentially identical to those recoverable

by SME; so our model also provides a means to

evaluate the e�ect of texture on superelasticity.

Using this model, we show that texture is a very im-

portant reason for the di�erence between Ti±Ni

and Cu-based SMAs: the texture that develops

during rolling or drawing is very desirable from the

point of view of SME in Ti±Ni while these textures

are undesirable in Cu-based alloys. We also ®nd

that sputtering textures in both Ti±Ni and Cu-

based shape-memory thin ®lms are not favorable

for large recoverable strain. This is consistent with

experimental observations. Finally, we explore in

some detail the predicted recoverable strains for

various textures in an attempt to recommend tex-

tures for large SME.
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The source of the SME is a martensitic phase

transformation. This gives rise to microstructure of

martensitic variants below the transformation tem-

perature, and certain deformations are recoverable

because they are accomplished not by slip or the

motion of dislocations but by rearrangement of the

microstructure. In a single crystal, it is relatively

easy to calculate the recoverable strains and we

characterize these using SÐthe set of recoverable

strains in a single crystalÐin Section 2.1. In a poly-

crystal, each grain is constrained by its neighbors as

it tries to deform by rearranging its microstructure.

Therefore, the set PÐthe set of recoverable strains

in a polycrystalÐdescribed in Section 2.2 is rather

di�cult to calculate. Further, its calculation

requires knowledge of the shape and orientation of

each grain which is di�cult to obtain. Finally, even

if we measure the exact texture and solve the pro-

blem for a speci®c specimen, the resulting set is

valid only for that specimen; we have to repeat the

process for each specimen. Therefore, we need an

easily computable, but reasonable estimate of this

set which can use readily measurable and character-

izable information about the texture. This is accom-

plished using boundsÐthe inner or the Taylor

bound Pi and the outer or the Sachs bound PoÐin

Section 2.3. The inner bound is obtained by impos-

ing the same strain on each grain while the outer

bound is obtained by ignoring compatibility

between grains.

We specialize on speci®c loads in Section 3.

Uniaxial tension or compression is considered as an

example of homogeneous loads and combined ten-

sion±torsion as an example of inhomogeneous

loads. We show that under uniaxial loading of

single crystals, our model essentially coincides with

that of Saburi and Nenno [34]. In polycrystals, we

again provide an inner bound and an outer bound

of the recoverable strain. For monoclinic marten-

sites, we also provide an inner estimate.

We believe that the inner bound is in fact a

reasonable estimate of the actual recoverable

strains. An example is provided to justify this in

Section 3.2. Bhattacharya and Kohn [32] as well as

Kohn and Niethammer [35] have derived rigorous

results in dimensionally reduced problems to sup-

port this argument. Therefore, we use the inner

bound, which can be rewritten as a linear program-

ming problem, as our fundamental tool for evaluat-

ing the e�ect of texture.

The outer bound, on the other hand, is often a

large overestimate. In uniaxial tension, the outer

bound is the average of the strain of the most

favorable martensitic variant in each grain. Various

authors [17, 19] have used this as a model for the

recoverable strain and have predicted almost twice

the observed recoverable strain.

We extend these ideas to the behavior of very

thin ®lms in Section 4. Shape-memory materials

have the largest energy output per unit volume per

cycle of known actuator systems [36]. This fact,

together with the enhanced rate of heat transfer in

thin ®lms, makes these alloys ideal for microactua-

tor, micropump and for microelectromechanical

systems (MEMS) applications and this has motiv-

ated many experimental e�orts (see, e.g. Refs [37±

40]). All of these e�orts have concentrated on Ti±

Ni-based alloys and use sputtering to produce

polycrystalline ®lms. However, it is not clear that

Ti±Ni is the ideal material in thin ®lms. It is well

known that microstructure can be signi®cantly

di�erent in thin ®lms as compared to bulk ma-

terials. Recently Bhattacharya and James [41] have

developed a theory of martensitic thin ®lms which

captures this e�ect. We discuss the extension of

this theory to polycrystalline thin ®lms in this

section.

We use our models to explore the e�ect of tex-

ture on recoverable strains in uniaxial tension in

Section 5 and in combined tension±torsion in

Section 6. Recently Zhao and Beyer [20, 21] as

well as other groups [17±19] have measured both

the recoverable strain and the texture of rolled

Ti±Ni and closely related materials. We calculate

the recoverable strains for their observed texture

and compare them with experimental observations

in Section 5.1. Both Ti±Ni and Cu-based alloys,

and, in fact, most SMAs, have a body-centered-

cubic (b.c.c.) superlattice structure in their parent

phases. We calculate recoverable strains for typi-

cal b.c.c. rolling and drawing textures, and also

for textures formed by rapid solidi®cation and

sputtering. Figures 9 and 10 highlight the striking

contrast in SME between Ti±Ni and Cu-based

alloys in rolling textures. The results for various

other textures are shown in Table 5. In Section 6,

we ®nd that even the qualitative behavior of com-

bined tension±torsion can depend on the texture

as shown in Fig. 11. We conclude in Section 7

with a discussion.

Table 1. Experimental observations of the recoverable strains in some Cu-based SMAs and Ti±Ni

SMA Recoverable strain

Single crystals Polycrystals

Cu±Zn±Al 2±9% depending on orientation [2, 3] around 2% in general [4±7], but can be up to 6% in textured ribbons [8, 9]
Cu±Al±Ni

Ti±Ni 3±10% depending on orientation [10, 11] 5±8% in drawn wires and rolled sheets [12±15]
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2. RECOVERABLE STRAIN

2.1. Recoverable strain in a single crystal

Consider a single crystal of austenite and choose
this as the reference con®guration, so the austenite
has stress-free strain e�0� � 0. As it is cooled, it

transforms to martensite. In SMAs, the austenite
lattice has cubic symmetry while the martensite lat-
tice has smaller symmetry such as tetragonal, trigo-
nal, orthorhombic or monoclinic symmetry. This

gives rise to k symmetry-related variants of marten-
site. The transformation from the austenite to the
ith variant of martensite is described by the trans-

formation strain e(i). It can be determined from the
change of symmetry and lattice parameters as
shown in Table 2. Schematically, we mark each

transformation strain as a point . in Fig. 1.

When a single crystal is below the transformation

temperature, it can form microstructures by coher-

ently mixing the variants of martensite. It deforms

if it can by rearranging the microstructure. When it

is subsequently heated, each variant reverts to the

austenite and all the strain is recovered. Thus, the

strains that a single crystal can recover are exactly

those that are associated with a microstructure of

martensitic variants. Thus, S, the set of recoverable

strains in a single crystal, is exactly the set of strains

one can make by coherent microstructures of mar-

tensite.

Consider two variants of martensiteÐsay 1 and

2Ðand suppose that these variants are compatible

or twin-related. In other words, assume that the

transformation strains e(1) and e(2) satisfy the com-

patibility condition

Fig. 1. (a) Recoverable strains in a single crystal when all pairs of martensitic variants are compatible.
(b) The set of recoverable strains Smono in a single crystal undergoing cubic±monoclinic transform-
ation. This nonconvex set Smono is bounded by orthorhombic Sorth and monoclinic Sc

mono estimates.

Table 2. Transformation strains associated with di�erent changes of symmetry. Only e(1) is shown here; the rest e(2), . . . , e(k) can be
obtained from e(1) by symmetry by permuting the basis. In Monoclinic-I, the axis of monoclinic symmetry corresponds to h110icubic while
in Monoclinic-II, the axis of monoclinic symmetry corresponds to h100icubic. We choose variant 1 so that d>0 (orthorhombic and mono-

clinic cases) and e>0 (monoclinic case). The compositions of all alloys are given in atomic percentages unless otherwise speci®ed

Symmetry of martensite k Transformation
strain e(1)

Examples Lattice parameters

Tetragonal 3

� a 0 0
0 a 0
0 0 b

�
Ni±36.8Al [42, 43] a=ÿ 0.0608, b = 0.1302

Trigonal 4

� b a a
a b a
a a b

�
Ti±50.5Ni (R-phase) [44] a= 0.0047, b = 0

g
0
1 Cu±14Al±4Ni (wt%) [45] a = 0.0425, b =ÿ 0.0822, d = 0.0194

Orthorhombic 6

� a d 0
d a 0
0 0 b

�
Ti±45Ni±5Cu [46] a = 0.0240, b =ÿ 0.0420, d = 0.0310

Ti±49.8Ni [47, 48] a= 0.0243, b =ÿ 0.0437, d= 0.0580, e= 0.0427
Monoclinic-I 12

� a d e
d a e
e e b

�
Ti±45Ni±5Cu [46] a= 0.0232, b =ÿ 0.0410, d= 0.0532, e= 0.0395

Cu±15Zn±17Al [49] a= 0.0483, b =ÿ 0.0907, d= 0.0249, e= 0.0383
Monoclinic-II 12

� a� e d 0
d aÿ e 0
0 0 b

�
b
0
1 Cu±14Al±4Ni (wt%) [50] a= 0.0442, b =ÿ 0.0822, d = 0.0160, e= 0.06
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e�1� ÿ e�2� � 1

2
�a
 n� n
 a� �1�

for some vectors a and n. Here a
 n denotes the

matrix with components �a
 n�ij � ainj. Then, we

can form ®ne twins whose overall strain is the aver-

age of the transformation strains of these two var-

iants. Geometrically, this average strain is a point

on the line connecting these two variants, and by

choosing the appropriate volume fraction we con-

clude that all strains on the line joining e(1) and e(2)

are recoverable. Furthermore, if all the variants are

pair-wise compatible, S is the convex hull of the

transformation strains [51]; i.e.

S �
�
e : e �

Xk
i�1

mie
�i �, mir0,

Xk
i�1

mi � 1

�
: �2�

This is shown schematically as the shaded set in

Fig. 1(a). The variants are pair-wise compatible in

cubic±tetragonal, cubic±trigonal and cubic±orthor-

hombic transformation and we can obtain S in

these cases.

The transformation strains of monoclinic marten-

sites are not pair-wise compatible and the set of

recoverable strains Smono is not the convex hull of

the transformation strains. This is because there are

some strains that cannot be achieved by coherent

microstructures of the di�erent martensitic variants.

Unfortunately, we do not know the precise set

Smono, so we bound it using ``orthorhombic'' and

``monoclinic'' estimates as shown in Fig. 1(b). Let

Sc
mono be the convex hull of the monoclinic variants

and let Sorth be the convex hull of a ®ctitious

cubic±orthorhombic transformation obtained by

setting e = 0 in e(1), . . . , e(12). We can show that
Sorth �Smono �Sc

mono [1, 32].

Finally, shape-memory alloys are self-accommo-
dating: they can undergo the austenite±martensite
transformation with no apparent shape change. In

other words, there is a microstructure of martensitic
variants whose average strain is e(0) or e�0� 2S [52]
as also shown in Fig. 1.

Putting all this together, the situation is as fol-
lows. At high temperatures, the single crystal is in
the austenite state with overall strain e(0). On cool-

ing it transforms to self-accommodated martensite,
also with strain e(0). We can now deform it freely as
long as the strain is in the set S. On subsequent
heating, no matter where it is in the set S it reverts

once again to austenite with overall strain e(0) reco-
vering all imposed strain. If we deform beyond the
set S at low temperature, elastic stresses build up

resisting the deformation, resulting in dislocation
motion or fracture and non-recoverability.

2.2. Recoverable strain in a polycrystal

We now turn to a polycrystal. A polycrystal is an
aggregate of a great number of single crystal grains

with di�erent orientations. We describe the texture
of a polycrystal by a rotation-valued function R(x).
R(x) gives the orientation of the crystal at the point

x relative to some ®xed reference crystal.
Suppose we start in the austenite and cool. Each

grain transforms to a self-accommodated state.

Suppose we now impose an overall strain eo, and
ask if it is recoverable. Once again, it is if it can be
accommodated by a microstructure of martensite in
each grain. However, each grain has its own set of

Fig. 2. (a) Recoverable strains in a polycrystal (made of two grains of equal volume fraction). Each
grain has its own set of recoverable strains (the two triangles) obtained by a rotation of the basic set
S. The polycrystal can recover all strains inside the inner bound Pi, but none outside the outer bound
Po. (b) Inner and outer bounds of recoverable strain can be wide apart when S has small dimension

(schematically a line).
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recoverable strains

S�x� � R�x�SRT�x� �3�
which is obtained by the rotation of the basic set S
through R(x) as shown in Fig. 2(a). Thus, in order
to accommodate eo, the polycrystal has to ®nd (a
possibly inhomogeneous but compatible) strain ®eld

e(x) that satis®es di�erent constraints in di�erent
grains (e�x� 2S�x�) and whose average is eo. Thus,
P, the set of recoverable strains in a polycrystal, is

given by

P �
�
eo : eo �

�
O
ÿ e�x� dx, e�x� 2 S�x�,

and e�x� a compatible strain field

�
: �4�

Above
�
O � � � � �1=Vol:O�

�
O denotes the average

over O. We will estimate this set in Section 2.3. For
now, we simply note that P is not empty in a

SMA, since it always contains e(0) due to self-ac-
commodation.
Once again the situation is as described at the

end of Section 2.1 with the set P replacing S.

2.3. Bounds on recoverable strain in a polycrystal

We now estimate the set P using bounds. The

®rst, and what we will ®nd to be the most useful,
bound is the inner bound or Taylor bound.
Consider an average strain e. Suppose e is recover-
able in each grain, i.e. e 2S�x� for ``every'' x 2 O.
Then, clearly e is recoverable in the polycrystal or
e 2 P. Thus

P � Pi � fe:RT�x�eR�x� 2S for ``every'' x

2 Og: �5�

The set Pi is shown in the shaded region of

Fig. 2(a). Geometrically it is the intersection of the
set of recoverable strains of the di�erent grains.
The set Pi contains all strains that can be recovered

without the cooperative e�ect of the di�erent
grains. Hence, it is a pessimistic or inner bound.
The other bound is the outer bound or Sachs

bound. This bound is obtained by allowing each

grain to deform as it wishes and forgetting about
the constraints they impose on each other. Thus

P � Po �
�
e : e �

�
O
ÿ e�x� dx, e�x� 2S�x�,

and e�x� not necessarily compatible

�
: �6�

The geometric meaning of this set is harder to visu-

alize. Scale the sets S(x) for each grain by its own
volume fraction. Po is the set of all points that can
be obtained by adding (vectorically) points in all of
these scaled sets as shown in Fig. 2(a). The set Po

does not account for the constraints between grains;
hence, it is an optimistic or outer bound.

It may so happen that the inner and outer
bounds are wide apart if S has small dimension.
This is dramatically illustrated in Fig. 2(b) where

the set S is shown schematically as a line. In such
a situation, the inner bound reduces to a single
point, and we say that the inner bound Pi is trivial.

Bhattacharya and Kohn [32] have argued that the
actual set P is also trivial in such a situation, i.e.
P � Pi (also see Ref. [53]). In contrast, if S has

high dimension and spans deviatoric strains, the set
Pi is not trivial. In this case, it is generally not true
that P � Pi. However, we believe that even in this
case, Pi is often a good estimate of P, i.e. P � Pi.

We will present examples in support of this claim in
Section 3.2. Also see the recent work of Kohn and
Niethammer [35].

We close this section by recalling the arguments
of Bhattacharya and Kohn [1] on the e�ect of sym-
metry. If the change of symmetry is small, such as

cubic±tetragonal or cubic±trigonal transformation,
the set S has low dimension; hence Pi is trivial and
the polycrystal has no recoverable strains except for

exceptional textures [Fig. 2(b)]. If, on the other
hand, the change of symmetry is large, such as
cubic±orthorhombic and cubic±monoclinic trans-
formation, the set S has full dimension. Therefore,

the polycrystal has some recoverable strains irre-
spective of texture [Fig. 2(a)].

3. MAXIMUM RECOVERABLE STRAIN IN TENSION
AND TORSION

3.1. Extension or compression

Consider a polycrystalline SMA below the trans-

formation temperature in the self-accommodated
state. Apply a uniaxial stress s to this specimen in
the x direction. We can show [33] that the maximum

recoverable strain eR is given by

eR � maxe2P�x � ex� if s > 0 �extension�
mine2P�x � ex� if s<0 �compression�

�
: �7�

The maximum recoverable strain in a single crystal
is also given by equation (7) if P is replaced with
S. Equation (7) has an interesting geometrical in-

terpretation. The maximum recoverable strain eR is
the maximum projection of the set P (or S) on the
loading direction x
 x. In single crystals, it is clear

from Fig. 1 that the maximum projection of the set
S is always equal to the maximum projection of
the transformation strains e(1), . . . , e(k). Therefore, it

follows that variants coalescence under loading to
produce the most favorable variant in a single crys-
tal. Thus, our model coincides with that of Saburi

and Nenno [34] except they use a geometrically
nonlinear theory.
In polycrystals, we cannot calculate eR since we

do not know P. However, we can bound it as
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before using an inner bound eiR and outer bound eoR.
For tensile loading

eiR � maxe2Pi
�x � ex� and eoR � maxe2Po

�x � ex�: �8�
It follows from equations (5)±(7) that eiRReRReoR.
The inner bound eiR assumes that every grain under-

goes the same strain and it does not take into

account the cooperative response between grains.

On the other hand, the outer bound eoR assumes

that each grain picks its most favorable variant and

ignores the fact that the constraints from the neigh-

boring grains can suppress the most favorable var-

iant. We believe that the inner bound is a

reasonable estimate of the actual recoverable strain

(see Section 3.2).

Now consider a polycrystal made of N grains

with orientations R1, R2, . . . , RN and volume frac-

tion l1, l2, . . . , lN. We can now write eiR and eoR as

eiR � maxRT
j eRj2S 8j�1,...,N�x � ex� �9�

eoR �
XN
j�1

maxe2S�ljvj � evj � �10�

where vj � RT
j x. We can interpret equations (9) and

(10) geometrically as shown in Fig. 2(a): the inner

bound is the maximum projection of the set Pi on

the loading direction while the outer bound is the

average of the maximum projection of each set

RjSRT
j on the loading direction weighted by its

volume fraction lj. Note also from Fig. 2(a) that eiR
can be strictly smaller than the smallest recoverable

strain amongst all grains.

We can rewrite equations (9) and (10) as linear

programming problems if S is the convex hull of

stress-free variants. The inner bound

eiR � max
m j
i

�Xk
i�1

x � �m1i R1e
�i �RT

1 �x
�

�11�

where the maximum is taken over the following

constraints:Xk
i�1

m j
iRje

�i �RT
j �

Xk
i�1

m1i R1e
�i �RT

1 for j � 2, . . . , N

Xk
i�1

m j
i � 1, m j

ir 0 for j � 1, . . . , N �12�

and the outer bound

eoR�
XN
j�1

lj

 
max

mir0, Sk
i�1mi�1

x �
�Xk

i�1
miRje

�i �RT
j

�
x

!
:

�13�

Recall that in the cubic±monoclinic transform-

ation Smono is unknown. Therefore, we cannot

evaluate equation (9). Instead, we use

eiR � maxRT
j eRj2Sorth 8j�1,...,N�x � ex� �14�

eeR � maxRT
j eRj2Sc

mono 8j�1,...,N�x � ex� �15�

eoR �
XN
j�1

maxe2Sc
mono
�ljvj � evj � �16�

as the inner bound, inner estimate and outer

bound, respectively. We can rewrite equations (14)±
(16) as linear programming problems as before.

3.2. Maximum recoverable strain in a laminated
polycrystal

We have claimed above that the inner bound pro-

vides a reasonable estimate to the actual recover-
able strain. This is justi®ed with an exampleÐa
polycrystal with a laminated texture. Laminated

microstructures have been used extensively in the
study of polycrystals and composite materials since
the exact e�ective properties can be obtained by sol-

ving an algebraic problem (see, e.g. Ref. [54]). We
consider the orthorhombic martensite where we
know the exact set Sorth. A rank-two laminate con-
taining two orientations R1 and R2 is shown in

Fig. 3. Here, n1, n2 and n3 are the normals of the
laminates with the corresponding volume fraction
l1, l2 and l3, respectively.
If we assume a wide separation of scales between

the two levels of the laminate, it can be shown that
the strain is piecewise constant with values e1, e2, e3
and e4 as also shown in Fig. 3. Kinematic compat-
ibility or coherence forces the following constraints:

Fig. 3. A rank-two laminate containing two orientations
R1 and R2.
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e1 ÿ e2 � 1

2
�n1 
m1 �m1 
 n1�,

e3 ÿ e4 � 1

2
�n2 
m2 �m2 
 n2�,

�l1e1 � �1ÿ l1�e2� ÿ �l2e3 � �1ÿ l2�e4�

� 1

2
�n3 
m3 �m3 
 n3� �17�

for some vectors m1, m2 and m3 and average strain

is

eave �l3�l1e1 � �1ÿ l1�e2�
� �1ÿ l3��l2e3 � �1ÿ l2�e4�: �18�

Moreover, to be recoverable, e1, e2, e3 and e4 must

satisfy

RT
1 e1R1, RT

2 e2R2, RT
1 e3R1, RT

2 e4R2 2Sorth: �19�

Putting all these in equation (7), we can conclude

that for tensile loading in the x direction, the maxi-

mum recoverable strain is given by

eR � max x � eavex �20�
where the maximum is taken over e1, e2, e3 and e4
subject to constraints (17) and (18).

Let us consider two examples: Ti±40Ni±10Cu

(B19) and g
0
1 Cu±14Al±4Ni (wt%), both undergoing

cubic±orthorhombic transformation. The texture,

normals and volume fraction of the rank-two lami-

nate are listed in Table 3 and the tensile loading

direction for both cases is x � �cos y,0,sin y�T for

various y. In fact, we will ®nd later that this is

exactly like the rolled sheet subjected to tensile

loading along the rolling plane (see Section 5 and

Fig. 6). Figure 4 shows the inner bound, the outer

bound and the exact value of the maximum reco-

verable strain calculated according to equations (9),

(10) and (20), respectively. We have repeated the

same calculations for di�erent laminates, i.e. for

di�erent normals of n1, n2 and n3. The results are

either the same or closer to the inner bound except

in a very few exceptional situations. We have also

performed the calculations for a rank-three lami-

nate. The results are even closer to the inner bound.

Table 3. Orientation, normals and volume fraction of the rank-two laminates used in the calculation for Ti±40Ni±10Cu (B19) and g
0
1 Cu±

14Al±4Ni (wt%)

SMA Orientation Normals Volume fraction

R1 R2 n1 n2 n3 l1 l2 l3

Ti±40Ni±10Cu 1��
2
p
� 1 ÿ1 0
1 1 0
0 0

���
2
p

�
1��
6
p
� ���

3
p ÿ ���

3
p

0���
2
p ���

2
p ���

2
p

ÿ1 ÿ1 2

�
1��
2
p
�ÿ1

0
1

�
1��
2
p
� 1
1
0

� � 1
0
0

�
0.5 0.5 0.5

Cu±14Al±4Ni 1��
2
p
� 1 ÿ1 0

0 0
���
2
p

ÿ1 ÿ1 0

�
1��
6
p
� ���

3
p ÿ ���

3
p

0
1 1 2
ÿ ���

2
p ÿ ���

2
p ���

2
p

� � 0
0
1

�
1��
2
p
� 1
1
0

� � 1
0
0

�
0.5 0.5 0.5

Fig. 4. The inner bound, outer bound and exact value of the maximum recoverable strain for the rank-
two laminated polycrystal subjected to uniaxial tension in di�erent directions: (a) Ti±40Ni±10Cu (B19);

(b) g
0
1 Cu±14Al±4Ni (wt%).
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It is clear that the constraints between the grains is
overwhelming and hence eR � eiR. Finally, the draw-

back of the outer bound can also be seen especially
in the case of g

0
1 Cu±14Al±4Ni (wt%) at the loading

direction y= 08.
To understand the e�ect of the intergranular con-

straint, we show in Fig. 5 the volume fractions of
the di�erent orthorhombic variants calculated

according to the exact solution as well as the inner
and outer bounds in the grains with orientation R2

for the case y = 608. Variant 6 is the most favor-

able variant in both Ti±Ni±Cu and Cu±Al±Ni for
this orientation and hence the outer bound uses
100% variant 6. However, compatibility forces var-
iants 1, 3, 4 and 5 to also form in Ti±Ni±Cu and

variants 1 and 3 to also form in Cu±Al±Ni in the
exact solution. The inner bound which respects
compatibility does not get the volume fractions

exactly correct, but is close.

3.3. Combined tension±torsion

Consider a shape-memory wire or a circular tube
below the transformation temperature in the self-
accommodated state. Pull it uniaxially to the given

strain e0 and apply a torque M to the ends. We
wish to ®nd wR, the maximum recoverable twist
(angle per unit length). Notice that wR is not

dimensionless; it depends on the outer radius r0 of
the specimen. However, r0wR is dimensionless and
is independent of the dimensions of the specimen.

Therefore, we estimate the maximum recoverable
normalized twist gR � r0wR. It will be clear that the
normalized twist gR is also the shear strain in the

outer-most part of the cross section.
Torsion is a di�cult problem in general anisotro-

pic bodies. Therefore, we assume that the grains are
very small and the specimen is macroscopically uni-

axial in symmetry. Choose any coordinate system
with i3 the axis of the wire or tube and de®ne

e�g,y,ai � �
a1 a2 ÿg cos y
a2 a3 g sin y

ÿg cos y g sin y e0

0@ 1A: �21�
Then, it is possible to show [33] that the maximum

recoverable normalized twist

gR � maxaimaxe�g,y,ai �2P8y g: �22�
Equation (22) cannot be solved without knowing

the set P. However, we can bound it by replacing
P with Pi and Po to get the inner and outer
bound, respectively. In particular, in the case of ma-

terials undergoing cubic±monoclinic transformation,
we obtain the inner bound giR, inner estimate geR
and outer bound goR analogously to equations (14)±

(16), respectively.

4. THIN FILMS

We now extend the results of Sections 2 and 3 to

polycrystalline thin ®lms. It is well known that
microstructure can be signi®cantly di�erent in thin
®lms as compared to bulk materials. Recently
Bhattacharya and James [41] have developed a the-

ory of single crystal martensitic thin ®lms which
captures this e�ect. It is possible to extend this the-
ory to polycrystalline thin ®lms following methods

similar to Sections 2 and 3 if the texture satis®es
certain conditions: the grains are columnar (i.e.
they extend through the thickness) and the ®lm nor-

mal is crystallographically the same in each grain.
If the texture does not satisfy this condition, the
theory becomes more complicated. Fortunately,

sputtered ®lms do satisfy this condition and we
limit ourselves to this case. Here we present the
main ideas and summarize the results referring the
reader to Shu [33, 55] for details. We note in par-

ticular that grain size changes as we go from bulk
to sputtered ®lms and this has important conse-

Fig. 5. Constraints from neighboring grains can suppress the most favorably oriented variant. Volume
fractions of the di�erent orthorhombic variants in the grains with orientation R2 for the case y= 608
calculated according to the exact solution as well as inner and outer bounds: (a) Ti±40Ni±10Cu (B19);

(b) g
0
1 Cu±14Al±4Ni (wt%).
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quences. This will not be discussed here to keep the

length of this paper manageable, but in a forthcom-

ing paper [55] which addresses in detail the in¯u-

ence of length scales of microstructure, ®lm

thickness and grain size on the limiting behavior of

heterogeneous thin ®lms.

The main di�erence in the microstructure

between bulk materials and thin ®lms can be

explained in terms of kinematics: as the ®lm

becomes very thin, only the in-plane components of

the strain need to be compatible. Consider a ®lm

with normal f and let {f1,f2,f3} be an orthonormal

basis so that f1 and f2 lie in the plane of the ®lm. A

strain ®eld e(x) has to satisfy only

@ 2e11
@x 2

2

� @
2e22

@x 2
1

� 2
@ 2e12
@x 1@x 2

�23�

but not the other ®ve compatibility conditions.

Alternatively, consider an interface G between two

strains e1 and e2. Compatibility in thin ®lms

requires

e1 ÿ e2 � 1

2
�a
 n� n
 a� � 1

2
�c
 f� f
 c� �24�

for some vectors a and c, and where n is the normal

to the interface in the plane of the ®lm. Contrast

this with bulk materials where compatibility

requires equation (1) which is equation (24) with

c = 0. The term 1
2 �c
 f� f
 c� represents incom-

patibility in the thickness direction. This can be

overcome by a local strain ®eld or transition layer

whose energy goes to zero with thickness.

Therefore, the compatibility or coherence require-

ment is weakened in thin ®lms and this allows a

variety of deformations like the paper-folding defor-

mations, tunnels and tents, and exact austenite/mar-

tensite interfaces in a single crystal ®lm [41].

As before, we can de®ne the set of recoverable

strains Sf in a single crystal thin ®lm as the set of

average strains of microstructures of martensitic

variants. Since the thin-®lm compatibility or coher-

ence conditions (23) and (24) depend on the ®lm

normal, Sf also depends on it. We can show that

all pairs of monoclinic variants are pair-wise com-

patible for {100} and {110} ®lms in Ti±Ni and

{110} and {111} ®lms in Cu±Zn±Al. Here, {hkl}

denotes the thin ®lm normal f in the cubic basis.

Thus, for these ®lms, S f �S c
mono. In contrast, not

all pairs are compatible for {111} ®lms in Ti±Ni

and {100} ®lms in Cu±Zn±Al. In those cases, the

set Sf becomes more complicated [33].

We now turn to polycrystalline thin ®lms. We

assume that the grains are columnar and the ®lm

normal is crystallographically identical in each

grain, R is a rotation about the ®lm normal and is

a function only of the in-plane coordinates.

Further, we assume the following separation of

length scales: ®lm thickness and microstructure are

smaller than the lateral diameter of each grain

which in turn is smaller than the specimen. Then,
we can follow the arguments of Sections 2 and 3 to

conclude that the set of recoverable strains in a
polycrystalline thin ®lm with normal f is

P f �
�
he�x�i:e�x� 2 R�x�S fRT�x�

and
@ 2e11
@x 2

2

� @
2e22

@x 2
1

� 2
@ 2e12
@x 1@x 2

�
�25�

where he(x)i denotes the average over the entire
®lm. The corresponding inner and outer bounds are

P f
i � fhe�x�i:e�x�

2 R�x�S fRT�x�, e11, e12 and e22 are constantsg
�26�

P f
o � Po: �27�

Finally, when subjected to uniaxial in-plane tension

in the x direction, the inner bound on the maximum
recoverable extension is

eifR � max
e2P f

i
�x � ex�: �28�

5. RESULTS FOR UNIAXIAL LOADING

We now evaluate the theoretical bounds on reco-
verable strains under uniaxial loading for speci®c

textures. Experimentally observed textures will be
used for comparison, and idealized textures for pre-
diction. We focus on Ti±Ni and Cu±Zn±Al alloys.
The results for other Cu-based SMAs are very simi-

lar to those of Cu±Zn±Al.

5.1. Rolling texture: comparison with experimental
observations

Zhao and Beyer [20, 21] have recently measured
the texture and recoverable strain in rolled Ti±Ni±

Cu sheets. After rolling, the specimens were heat
treated at a temperature below the recrystallization
temperature of this alloy. The Cu composition was
around 5% so that the martensite phase was mono-

clinic similar to Ti±Ni [46, 56]. The observed texture
is shown in Fig. 6: 60% of the grains had a
{110}h110i orientation in the parent phase while

40% of the grains had a {111}h110i orientation.
Here, {hkl}huvwi means that {hkl} planes lie parallel
to the rolling plane and huvwi directions lie parallel

to the rolling direction (RD). ND and TD denote
the normal and transverse directions of the rolled
sheet. Specimens were cut along di�erent loading

directions (LDs) along the plane of the sheet and
the recoverable strains were measured by the ther-
mal cycling tensile test. The experimental results are
shown as dark circles . in Fig. 7.
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Theoretical bounds computed using

equations (14)±(16) are shown in Fig. 7(a). Here,

the upper dashed line (OB) is the outer bound eoR,
the dashed line in the middle (IE) is the inner esti-

mate eeR and the thin continuous line (IB) is the

inner bound eiR. As expected, the experimental ob-

servations of recoverable strains lie close to the

inner estimate and inner bound while the outer

bound is a serious overestimate.

However, the experimental result near the RD

violates the inner bound. There are a variety of

reasons. Among them is the fact that the texture is

not ideal; not all grains have the {111}h110i or

{110}h110i orientation, but contain certain ``wob-

ble'' about the ideal orientation. Therefore, we take

100 grains with the following orientation: 40 grains

are oriented randomly within 58 of {111}h110i while
60 grains are oriented randomly within 58 of

{110}h110i. We call this a texture with 58 wobble.

The results are shown in Fig. 7(b). We have also

repeated the calculation using 200 grains with the

same distribution and ®nd the results are essentially

identical. However, if the wobble is taken as 108
instead of 58 [18, 57], the inner estimate (IE) and

inner bound (IB) drop about 1% in the vicinity of

RD and remain unchanged near the TD.

We also compare our results with similar exper-

iments of Inoue et al. [18]. First consider their PL-

CR specimens which have a strong {111} ®ber k
ND. This means the rolling planes are {111} in the

parent phase while the RD is random. Our bounds

calculated with 58 wobble and their experimental

observations are shown in Fig. 8(a). As expected,

the results are almost isotropic in the plane and the

experimental results are close to the inner bound

and the inner estimate. Next, consider their PL-RX

specimens which contain h110i partial ®ber k RD

with peaks at {332}h110i and {111}h110i ac-

companied with a spread towards {110}h110i. This
texture is similar to that observed by Zhao and

Beyer [20, 21] except that the distribution of the

rolling planes is di�erent. Our bounds calculated

with 58 wobble are compared with their experimen-

tal observations in Fig. 8(b).

The inner bounds and estimates, which we

emphasize do not use any adjustable parameters,

are in general agreement with the observed recover-

able strains: they pick out the level and the trend.

However, they do di�er in one crucial aspect. In

particular, notice in Figs 7 and 8(b) that the inner

bound contains a cusp-like dip around 35 deg. The

main reason, we believe, is the fact that for a mono-

clinic material we use the set Sorth instead of

Smono to calculate the inner bound. The di�erence

between these sets is signi®cant in some isolated

directions; and one such direction corresponds to

the cusp-like dip for these textures. This is indeed a

weakness of our inner bound which uses Sorth, and

calculation of the set Smono still remains a major

outstanding problem. It is to overcome this weak-

Fig. 6. Directions in a rolled sheet and texture observed
by Zhao and Beyer.

Fig. 7. Comparison of theory and experiment for the Zhao±Beyer texture. Here, . Expt is the exper-
imentally measured recoverable strain. OB, IE and IB mean outer bound eoR, inner estimate eeR and

inner bound eiR, respectively: (a) ideal texture; (b) texture with 58 wobble.
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ness that we also include the inner estimate. A sig-

ni®cant di�erence between the inner bound and the
estimate in some loading direction provides a warn-
ing that the inner bound may be too conservative in

this direction.{ A second reason for the deviation is
the fact that we use only the important ®ber com-
ponents (with wobble) rather than the exact

measured texture.

5.2. Rolling texture: prediction on ®ber components

Most SMAs including Ti±Ni and Cu±Zn±Al
have a body-centered-cubic (b.c.c.) superlattice
structure in the austenite phase [58]. Common b.c.c.
textures are listed in Table 4 [59±62]. We note that

a-®ber II is not common in general, but is observed
in SMAs [18, 20, 21].
Figure 9 and 10 show the inner bound and esti-

mate for Ti±Ni and Cu±Zn±Al for the di�erent tex-
tures listed in Table 4. Comparing these, it is clear
that the recoverable strains are much higher in Ti±

Ni than in Cu±Zn±Al for typical b.c.c. textures.
The a-®ber I in Ti±Ni exhibits two peaks in RD
and TD of the rolled sheet as shown in Fig. 9(a).

Therefore, this texture is desirable for uniaxial ap-
plications since it is easy to extract good specimens
from a rolled sheet. On the other hand, the g-®ber
observed in Ref. [18] exhibits the least anisotropy as

seen in Fig. 9(c). This texture is preferred if the
recoverable strain is required in every direction of
the rolled sheet. In Cu-based SMAs, the shape-

recovery strain while poor in general is expected to

be relatively large for the Z-®ber. Unfortunately,

this ®ber is usually less common. We also note that
for these alloys, the behavior of a-®ber I can be
improved by restricting the ®ber components from

{001}h110i to {112}h110i: the result is similar to
that of Fig. 10(a) except the peak of the inner esti-
mate rises to about 5% around 458. Park and

Bunge [24±26] have observed this texture in a hot-
rolled Cu±Zn±Al sheet although no recoverable
strain measurements are available.

5.3. Other textures

5.3.1. Random texture. The inner bound and
inner estimate on the maximum recoverable exten-
sion for a polycrystal with randomly oriented grains
are shown in Table 5 for Ti±Ni and Cu±Zn±Al.

The behavior of these alloys is quite similar, and
rather poor with random texture.
5.3.2. Wire drawing texture. Body-centered-cubic

metals and alloys have been shown to develop
strong h110i ®ber texture after drawing or
extrusion [63]. Assuming equal volume fraction in

all of the ®ber components, the inner bound and
estimate of tensile recoverable strain in Ti±Ni and
Cu±Zn±Al are listed in Table 5. Clearly, Ti±Ni is

Fig. 8. Comparison of theory and experiment for the Inoue±Miwa±Inakazu textures. Here, . Expt is
the measured recoverable strain. OB, IE and IB mean outer bound eoR, inner estimate eeR and inner
bound eiR, respectively: (a) PL-CR specimens with {111}huvwi texture; (b) PL-RX specimens with h110i

partial ®ber with components from {111}h110i to {110}h110i.

Table 4. Some common texture ®bers observed in b.c.c. metals
and alloys. The a-®ber II is the characteristic texture of Ti±Ni

with the B2-lattice

Fiber Fiber axis Relevant components associated with the ®ber

a-®ber I h110ikRD {001}h110i±{112}h110i±{111}h110i
a-®ber II h110ikRD {111}h110i±{110}h110i
g-®ber f111gkND {111}h110i±{111}h112i
Z-®ber h100ikRD {001}h100i±{011}h100i

{At the same time, close agreement between the inner
bound and estimate (as in Fig. 8(a)) indicates that these
are reliable predictions.
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expected to have much better shape-memory beha-
vior than Cu±Zn±Al for this ®ber. Park et al. [27]

have observed a strong h110i ®ber texture in the

parent phase in cold drawn Cu±Zn±Al wires
although no recoverable strain measurements are

available.

Yamauchi et al. [22] observed a h111i recrystalli-
zation ®ber texture in cold-drawn and subsequently
annealed Ti±Ni rods. Similar observation was

reported in Ref. [23] for Ti±Ni±Cu wire. Our

bounds for this h111i texture are also listed in

Table 5. Again, this texture is more favorable in
Ti±Ni than in Cu±Zn±Al.

Finally, Miyazaki et al. [12] have reported that

drawn wires of Ti±50.6Ni alloy can recover around

6% tensile strain although there is no additional in-
formation to show those wires have such h110i or
h111i ®ber texture.
5.3.3. Solidi®cation texture. Eucken and co-

workers [8, 28, 29] have obtained a columnar grain
structure with a strong {100} texture in meltspun

ribbons of both Ti±Ni alloy and Cu-based SMAs.
Their experimental results show that Ti±Ni ribbon

can recover less than 4% tensile strain, but Cu±Al±

Ni ribbon can recover as large as 6.5% strain.

Indeed, this di�erence can be predicted using the
inner bound [1]. Clearly, {100} texture favors larger

recoverable strain in Cu-based SMAs than in Ti±Ni

alloys.
5.3.4. Sputtering texture. Thin ®lms of the shape-

memory material Ti±Ni and closely related alloys

have been made by magnetron sputtering by sev-

eral groups (Refs [37±40] and references there).
This method produces polycrystalline ®lms with

special texture: the grains are columnar and the

®lm normal is crystallographically identical in each

grain. In b.c.c.-based materials, including Ti±Ni
and Cu±Zn±Al, the ®lm normal is typically

{110} [31, 64, 65]. The inner bound and estimate

on the in-plane recoverable strain are shown in

Table 5. For relatively thick ®lms, one should use
the inner bound eiR and the inner estimate eeR. For

Fig. 9. The predicted uniaxial recoverable extension in Ti±Ni for various rolling textures. The upper
dashed line is the inner estimate eeR while the lower continuous line is the inner bound eiR.
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very thin ®lms, one should use the inner bound

eifR. It turns out that they are the same for {110}

®lms for both Ti±Ni and Cu±Zn±Al. The predic-

tion is consistent with the experimental obser-

vation: around 2±3.5% recoverable strain in

sputter-deposited Ti±Ni thin ®lms [37, 40]. Thus,

{110} ®lm texture is not a favorable texture in

either Ti±Ni or Cu±Zn±Al.

Table 5 also lists the results for {100}, {111} and

random ®lms. Clearly, for the best shape-memory

Fig. 10. The predicted uniaxial recoverable extension in Cu±Zn±Al for various rolling textures. The
upper dashed line is the inner estimate eeR while the lower continuous line is the inner bound eiR.

Table 5. The predicted uniaxial recoverable extension for various textures. Use eiR and eeR for bulk specimens
(wires, sheets, etc.) and thick ®lms and eifR for very thin ®lms

Texture Recoverable strains (%)

Ti±Ni Cu±Zn±Al

eiR eeR eifR eiR eeR eifR

random 2.3 2.3 2.3 1.3 1.7 1.7
h110i wire/rod 6.0 7.5 Ð 1.3 1.7 Ð
h111i wire/rod 3.9 9.6 Ð 1.7 1.7 Ð
{111} ®lm/sheet 4.6 5.3 8.1 1.4 1.9 5.9
{100} ®lm/ribbon 2.3 2.3 2.3 4.6 7.1 7.1
{110} sputtered ®lm 2.3 2.3 2.3 1.5 1.7 1.7
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Fig. 11. The predicted recoverable torsion vs the applied extension in Ti±Ni and Cu±Zn±Al polycrystals
with random texture as well as h110i and h100i ®ber texture. Above torsion means normalized twist
or outer radius times the angle of twist. Also, IE and IB are the inner estimate geR and inner bound giR,

respectively.

SHU and BHATTACHARYA: THE INFLUENCE OF TEXTURE ON SHAPE-MEMORY5470



behavior one should try to make {111} Ti±Ni ®lms
or {100} Cu±Zn±Al ®lms.

6. RESULTS FOR COMBINED TENSION±TORSION

We now report the results for combined tension±
torsion: ®rst pull the self-accommodated wire (or
circular tube) specimen to the desired strain e0
below the transformation temperature, and measure
the twist angle using the thermal cycling test under
the constant torque. Figure 11 shows the results for

a random polycrystal and for a wire or tube with
h110i or h100i texture. Notice that the maximum
recoverable normalized twists are relatively small.

Further, the recoverable twist decreases with
increasing imposed recoverable extension in random
and h110i texture while h100i texture shows the

opposite behavior. Sittner et al. [66] have used force
control to study stress-induced pseudoelasticity in
Cu±Zn±Al±Mn under the combined tension±tor-
sion. The maximum recoverable normalized twist is

around 1% in their experiment, and it increases
with applied tensile loading. Unfortunately they do
not provide any information about the texture.

7. DISCUSSION AND CONCLUSION

We have investigated the e�ect of texture on
SME. We start with a theoretical framework to
quantify recoverable strain and then use inner and

outer bounds to estimate it. We demonstrate with
an example that the inner bound (in the case of
cubic to orthorhombic transformation) accounts for

the intergranular constraints and consequently pro-
vides a reasonable estimate for the actual recover-
able strain while the outer bound ignores these
constraints and is a large overestimate (also see

Refs [32, 53]). In the case of a cubic±monoclinic
transformation, our inner bound becomes conserva-
tive (because we replace the unknown set Smono

with the smaller set Sorth); so we supplement the
inner bound with an inner estimate. We compare
the predictions of the inner bound and estimate

with the experimental observations of Zhao and
Beyer [20, 21] as well as Inoue et al. [18].
The inner bound and estimate are quite easy to

calculateÐthey can be written as linear program-

ming problemsÐand incorporate some easily mea-
surable information about the texture. Therefore,
these are ideal tools to study the e�ect of texture on

SME. We demonstrate this with speci®c calculations
focused on Ti±Ni and Cu±Zn±Al. Both these alloys
undergo cubic±monoclinic transformation, recover

similar strains as single crystals and are predicted to
recover similar strains as random polycrystals. Yet,
their observed behavior is widely varied. Figures 9

and 10 and Table 5 shed light on the striking con-
trast in SME between these two alloys. The follow-
ing is a list of our main conclusions and
suggestions.

. In Ti±Ni, the texture that develops during rolling,
extrusion and drawing is extremely favorable

from the point of view of large recoverable
strains. In contrast, in Cu±Zn±Al and other Cu-
based SMAs the texture that develops during

these processes is rather unfavorable for SME.
. In Ti±Ni, the a-®ber I rolling texture has the lar-
gest uniaxial recoverable strain in the RD and

TD. Thus, this texture is ideal for applications
which require SME in only one direction. On the
other hand, the g-®ber rolling texture has rela-

tively large recoverable strains and has little in-
plane anisotropy. Hence, this texture is ideal for
applications which require SME in multiple direc-
tions.

. In Cu±Zn±Al and other Cu-based SMAs, the
SME can be improved in rolled sheets if one can
make either the Z-®ber texture or the a-®ber
restricted to {001}h110i±{112}h110i. In the later
case, relatively large recoverable strain is pre-
dicted around 458 from the RD.

. {100} solidi®cation texture shows large recover-
able strain for Cu-based SMAs but not for Ti±Ni
ribbons.

. Both Ti±Ni-based and Cu-based SMAs recover
comparatively small strains in thin ®lms owing to
the unfavorable {110} or random sputtering tex-
ture. Ti±Ni ®lms with {111} texture and Cu-

based SMA ®lms with {100} texture are predicted
to have large recoverable strains.

. Typically, the recoverable torsion is quite small.

In wires, rods and tubes with random or h110i
drawing texture, the recoverable angle of twist
decreases with increasing applied uniaxial exten-

sion while the behavior is reversed for h100i tex-
ture.

We conclude with a few comments.

7.1. Other models

Various authors [17, 19] have used a model that
is equivalent to what we call the outer bound to
predict the recoverable strain. This bound ignores

the constraints of neighboring grains which turn
out to be very important and consequently, their
predictions are much larger (often by a factor of
two) than the observed recoverable strains.

Inoue et al. [18] have used a di�erent model,
which they found agreed well with their obser-
vations. In the language of this paper, rather than

using the set S for a single crystal, they use only a
small subset of it, the size of which is determined
by a parameter q. They then average over the

grains; in other words they use an outer bound
based on this smaller set. In the examples they con-
sider, the underestimate in the single crystal for a

choice q= 0.5 in each grain compensates for the
overestimate inherent in the outer bound, and they
obtain very good agreement with experiment.
However, it is unclear whether this choice gives

SHU and BHATTACHARYA: THE INFLUENCE OF TEXTURE ON SHAPE-MEMORY 5471



good results in other situations, especially for di�er-
ent materials, textures and multiaxial loading.

7.2. R-phase Ti±Ni

Ti±Ni alloys often transform from the cubic to a

trigonal R-phase before transforming to the mono-
clinic martensite [44, 67, 68]. This cubic±trigonal
transformation also displays SME and superelasti-

city. Though the strains are smaller, this transform-
ation is often preferable compared to the cubic±
monoclinic transformation in view of small hyster-

esis and ease of control [69]. According to the sym-
metry arguments of Bhattacharya and Kohn [1], a
random polycrystal of cubic±trigonal material will
not display any SME. However, a polycrystalline

wire with h111i texture has about 0.9% recoverable
uniaxial strain. A rolled sheet with g-®ber texture
also has a nontrivial inner bound of about 0.2%

recoverable extension in any rolling plane direction.
Many shape-memory wires do possess the h111i tex-
ture and once again this prediction is consistent

with observation. Thus, texture produces the good
behavior in Ti±Ni even in the case of the R-phase.

7.3. Texture formation

Various researchers are conducting experiments
to systematically study the e�ect of texture on
SME. Apart from those cited above, we report on

the interesting work of Matsumura et al. [70] on
rolled sheets of Fe±Mn±Si alloys. This alloy under-
goes a face-centered-cubic (f.c.c.) to hexagonal-

close-packed (h.c.p.) transformation. By extracting
specimens from di�erent parts, Matsumura et al.
have found that the surface layer with a shear tex-

ture has a larger SME than the less anisotropic
mid-thickness layer. This suggests an opportunity to
improve shape-memory behavior by targeting
special textures using novel processing techniques.
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