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A two-scale phase field simulation is developed for austenite–martensite interface to understand the
effects of crystalline symmetry and geometric compatibilities on the reversibility of structural phase
transformations in shape memory alloys. It is observed that when the middle eigenvalue of
martensite transformation strain is equal to zero, an exact austenite–martensite interface is formed
with negligible elastic energy. On the other hand, when the middle eigenvalue is different from 0,
an inexact interface between austenite and martensitic twin is formed, and the corresponding elastic
energy increases with the increased magnitude of the middle eigenvalue, resulting in substantially
higher energy barrier for austenite–martensite transformation, and thus higher thermal hysteresis in
shape memory alloys. © 2010 American Institute of Physics. �doi:10.1063/1.3385278�

The reversibility of structural phase transformations has
not only long-standing theoretical interests in condensed
matter physics, but also profound technological implications
for a wide range applications, ranging from fatigue life of
shape memory alloys1 to magnetoelectric coupling in multi-
ferroic oxides.2,3 It has recently been postulated that the re-
versibility of structural phase transformations, as manifested
by their hysteresis characteristics, critically depends on the
crystalline symmetry and geometric compatibilities of auste-
nite and martensite phases.4–6 When the middle eigenvalue
of the transformation matrix of the martensite lattice with
respect to the austenite structure equals 1, a compatible in-
terface between these two phases can be formed, and it was
suggested that the corresponding thermal hysteresis of shape
memory alloys will be minimized.5,6 This principle has been
used to guide the search for shape memory alloys with ex-
tremely low hysteresis, and a clear relationship between the
thermal hysteresis and the middle eigenvalue as expected
from the theory has been observed.1,5,6

When the middle eigenvalue of the transformation ma-
trix is different from 1, a compatible austenite–martensite
interface is no longer possible. Instead, interfaces between
austenite phase and twined martensite are observed, which
satisfy the compatibility condition on average.6–9 This leads
to increased elastic energy due to the incompatibility be-
tween the austenite and martensite phases, resulting in higher
energy barrier for phase transformation and thus higher ther-
mal hysteresis. Indeed, an analytic model based on an inex-
act interface with an assumed transition layer between aus-
tenite and twined martensite yields a relationship between
thermal hysteresis and middle eigenvalue that resembles ex-
perimental observations.1,6 The analysis, however, depends
on the transition layer assumed. To understand the detailed
structure of austenite–martensite interface and its implication
on thermal hysteresis of shape memory alloys, especially
when the middle eigenvalue of transformation matrix devi-
ates from 1, direct numerical simulation without making any
prior assumption on the underlying microstructure is highly

desirable, which we seek to develop in this letter using phase
field approach.10–14

To this end, we adopt a geometric linear theory,15 which
uses transformation strains instead of transformation matri-
ces to characterize the martensitic structure with respect to
the austenite reference, and as such, the middle eigenvalue of
transformation matrix equalling 1 in finite deformation
theory corresponds to the middle eigenvalue of transforma-
tion strain equalling 0 in geometric linear theory. To be spe-
cific, we consider two martensitic variants with transforma-
tion strains ��1� and ��2�, which are assumed to be compatible
with each other, satisfying7

��1� − ��2� = 1
2 �a � n + n � a� , �1�

making it possible to form a martensitic twin with these two
variants, where n is the normal of twin interface, and a is
related to the shear of the twin structure. By definition, the
transformation strain of the austenite phase is 0, and in order
for a compatible austenite–martensite interface to be formed,
the middle eigenvalue of the transformation strain ��i� of
martensitic variant has to be 0. This turns out to be a very
restrictive condition, and is not satisfied in general.7 Instead,
the averaging transformation strain �2��1�+ �1−�2���2� of a
martensitic twin structure can have zero middle eigenvalue
when appropriate volume fraction �2 is chosen, suggesting
an inexact interface between austenite and martensitic twin,7

such that

�2��1� + �1 − �2���2� = 1
2 �b � m + m � b� , �2�

where m is the normal of the inexact interface, and b is the
corresponding shear, as schematically shown in Fig. 1. In
general, two sets of solutions for Eq. �2� exist, corresponding
to two possible interfaces with specific normal and volume
fractions of the martensitic twins.

To confirm that an inexact interface between austenite
and twined martensite can indeed be formed as schematically
shown in Fig. 1, an unconventional phase field approach is
developed.16–21 Two characteristic functions �1�x� and �2�x�
are introduced as the field variables to define the structure,
such that �1�x� takes value of 1 if x is occupied by austenite
phase and 0 if it is occupied by either of the martensitic
variants, whose specification is governed by �2�x�, which
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takes the value of 1 if x is occupied by variant 1 and 0 if it is
occupied by variant 2. As a result, the transformation strain
at x is given by

����� = �1 − �1��2��1� + �1 − �1��1 − �2���2�, �3�

where �= ��1 ,�2�. Note that while �2 is governed by Eq.
�2�, �1 is generally determined by the mechanical boundary
condition. For an arbitrary distribution of ��x�, this transfor-
mation strain might not be compatible, and an elastic field
will be induced, resulting in elastic energy in the structure,

Wela��� = 1
2 �� − ������ · C�� − ������ , �4�

where � is the total strain that can be solved from mechanical
equilibrium equation, consisting of elastic strain and trans-
formation strain, and C is the elastic stiffness tensor. To en-
sure that �1 and �2 take either 1 or 0, an anisotropy energy
is introduced,

Wani��� = K1�1
2�1 − �1�2 + K2�2

2�1 − �2�2, �5�

where K1 and K2 are the anisotropy constants. In addition,
interfacial energy is introduced to penalize gradients in the
characteristic functions, such that

Wgra��� = A����2. �6�

The potential energy of the system is then given by

I��� = �
�

�Wgra��� + Wani��� + Wela��� − �0 · ��dx ,

�7�

where � is the domain occupied by the shape memory alloy,
and �0 is the stress arising from the traction applied at the
boundary. The variation in potential energy with respect to �
results in the driving force for the evolution of �,

F��� = −
�I���

��
= Fgra��� + Fani��� + Fela��� , �8�

and under a linear kinetic approximation, the evolution equa-
tion for � is derived as

��

�t
= M�Fgra��� + Fani��� + Fela���� , �9�

where M is the linear evolution coefficient, and
Fani���=−�Wani��� /��, Fgra���=2A�2�, and Fela���
=� ·������ /��.

The theory is implemented into a numerical simulation
on a x1−x2 plane whose normal is defined by m�n, and all
the field variables are assumed to be independent of x3. Thus
a two-dimensional simulation will be sufficient, though all
the tensorial variables are three-dimensional in nature. From
the definition of �1 and �2, it is clear that �1 represents
austenite–martensite structure, while �2 represents martensi-
tic twin within the austenite–martensite structure. As a result,
the length scales involved in �1 and �2 are clearly different.
A two-scale simulation scheme is adopted to reflect such
difference, where �1 and �2 are simulated at two distinct
length scales, yet are coupled together through boundary
condition and distribution of transformation strain, as sche-
matically shown in Fig. 2. At upper scale where �1 is
evolved, �2 is assumed to be fixed, and it specifies the trans-
formation strain of the martensite through Eq. �3�. On the
other hand, at lower scale where �2 is evolved, �1 is as-
sumed to be fixed, and the boundary condition on the lower
scale simulation cell is specified by the average strain in the
martensite calculated at upper scale. The simulation starts
with random initial conditions for �1 and �2 at both scales,
and iterations between these two scales continue until a
stable configuration emerges. To solve for Eq. �9� at either
scale, fast Fourier transform22 is adopted on spatial scale
with 128�128 cell size, and semi-implicit finite difference
scheme11 is adopted on temporal scale with a time step of
0.005. The elastic constants of the material are assumed to be
C11=80�109 Pa, C12=20�109 Pa, and C66=30�109 Pa.

The phase field simulation is applied to study austenite–
martensite interface for a cubic-to-orthorhombic transforma-
tion, which has transformation strains given by

��1� = �� 0 �

0 � 0

� 0 �
�, ��2� = � � 0 − �

0 � 0

− � 0 �
� . �10�

We focus on the volume-preserving transformation, which is
a necessary condition for self-accommodating structure.7,23

As a result, we have �=−2�, and the three eigenvalues are
given by 	−2� ,�−� ,�+�
. When the middle eigenvalue is
set to be 0, a sharp austenite–martensite interface emerges
from the simulation, as shown in Fig. 3�a�, and the normal of
the interface is indeed what we expect from the geometric
linear theory. When the middle eigenvalue is different from
0, then such an exact interface is no longer possible, and a
typical austenite–martensite structure obtained in the simula-
tion is shown in Fig. 3�b�, where a rough interface between
austenite and martensitic twin is observed. The martensitic
twin has interface normal and volume fraction expected from
Eqs. �1� and �2�, while the austenite–martensite interface,
though rugged, has an average interface normal that is con-
sistent with Eq. �2�. So the simulation we developed can

FIG. 1. The schematics of an inexact interface between austenite �a� and
martensitic twin �M1 and M2�.

FIG. 2. The schematics of two-scale simulation for austenite–martensite
interface.

141910-2 Lei et al. Appl. Phys. Lett. 96, 141910 �2010�

Downloaded 10 Apr 2010 to 140.112.2.121. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



indeed capture the austenite–martensite interface, and can
reveal the detailed interfacial structure without any prior as-
sumption. There is indeed a transition layer between austen-
ite and martensitic twin, as suggested before, due to the in-
compatibility between austenite and martensite phases. The
zigzag type of interface in the transition layer is also consis-
tent with certain experimental observations, and we are
working on to capture the fine-scaled branching martensite
twins often observed near the interface.7

The incompatible interface is expected to result in higher
internal stress, and thus higher elastic energy, and the neces-
sity of martensitic twin for an averaging compatible interface
should also result in higher interfacial energy. This is indeed
what we observe in the simulation. The distributions of elas-
tic energy corresponding to the austenite–martensite struc-
tures in Figs. 3�a� and 3�b� are shown in Figs. 3�c� and 3�d�.
Negligible elastic energy is observed for the exact austenite–
martensite interface, as expected. On the other hand, stress
concentration is observed near the inexact austenite–
martensite interface due to the incompatibility of the austen-
ite and martensite phases, resulting in much higher elastic
energy, as shown in Fig. 3�d�. Such stress concentration and
higher elastic energy will result in higher energy barrier for
austenite–martensite phase transformation, and consequently
higher thermal hysteresis. To appreciate this, we simulate the
austenite–martensite interfaces for a range of middle eigen-
values of the transformation strains, and calculate the corre-
sponding total elastic energy in the structures, as shown in
Fig. 4. Two types of martensitic twin are considered, one
with volume fraction of 60%, and the other 65%. Notice that
different volume fractions of martensitic variants under a
fixed middle eigenvalue is possible, since the volume pre-
serving orthorhombic transformation strain has two indepen-
dent variables � and �. It is observed that in both structures
the elastic energy increases as the middle eigenvalues
deviate from 0, suggesting an increased energy barrier and
thus higher thermal hysteresis, as observed in recent
experiments.1,5,6 The simulation thus is able to explain the
thermal hysteresis in shape memory alloys as related to the
crystalline symmetry of austenite and martensite phases, and

we are currently developing phase field simulation of
austenite–martensite transformation, which would allow us
to quantify the thermal hysteresis directly.
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FIG. 3. �Color online� Austenite–martensite interfaces by phase field simu-
lation; �a� compatible interface when the middle eigenvalue of the transfor-
mation strain is 0 and �b� inexact interface when the middle eigenvalue of
the transformation strain is not 0; �c� and �d� the corresponding distribution
of elastic energy in the structure, with the scale bar indicating the elastic
energy density.
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FIG. 4. �Color online� The elastic energy as function of middle eigenvalue
of the transformation strain for volume-preserving transformation.
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