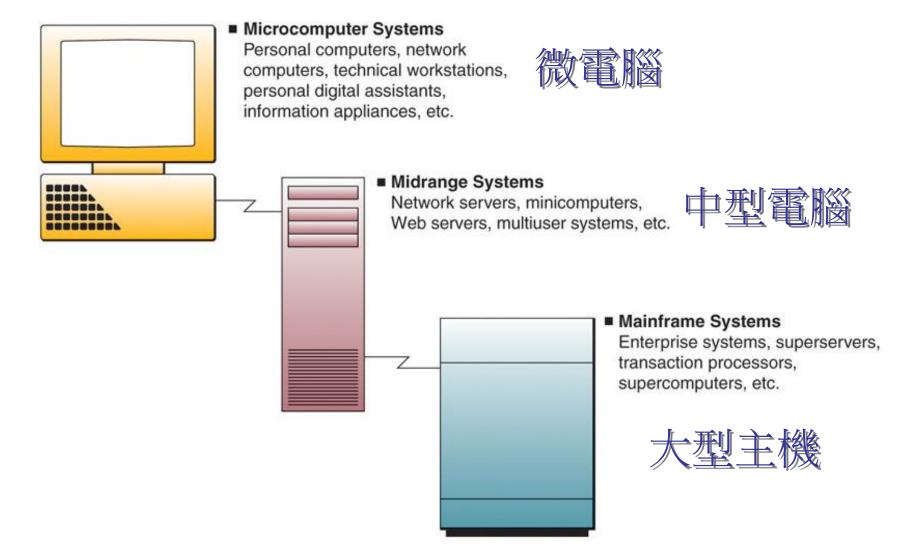

Chapter 3

Computer Hardware

授課老師:台大工管系 楊立偉

McGraw-Hill/Irwin


Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.

Section 1

Computer Systems: End User and Enterprise Computing

Types of Computer Systems

Computers come in a variety of sizes, shapes, and computing capabilities

Corporate PC Criteria

Why laptops instead of desktops?
Why tablet instead of laptops?

Why would a change in OS be disruptive?

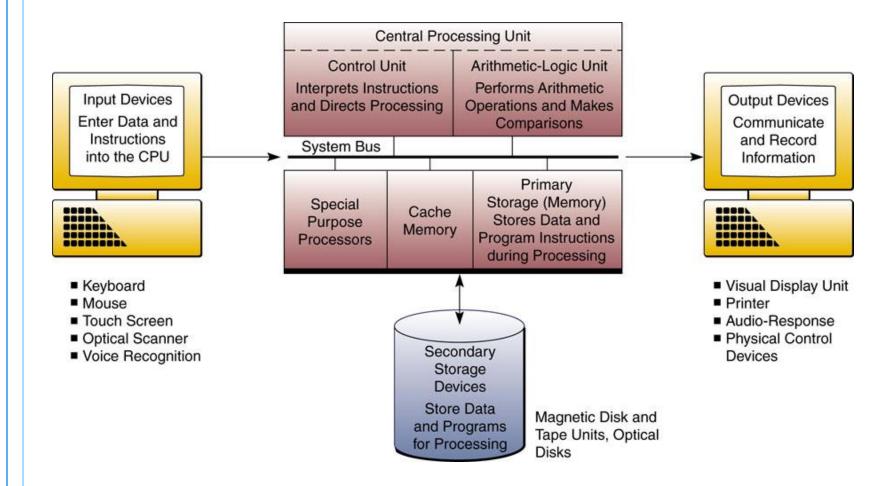
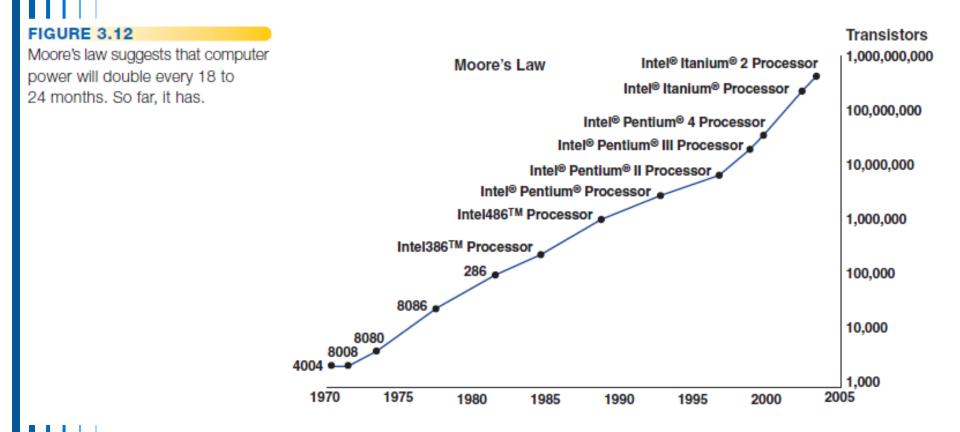

What are the strengths vs. risks of cabled vs. wireless PCs?

FIGURE 3.7

Midrange computer systems can handle large-scale processing without the high cost or space considerations of a large-scale mainframe.

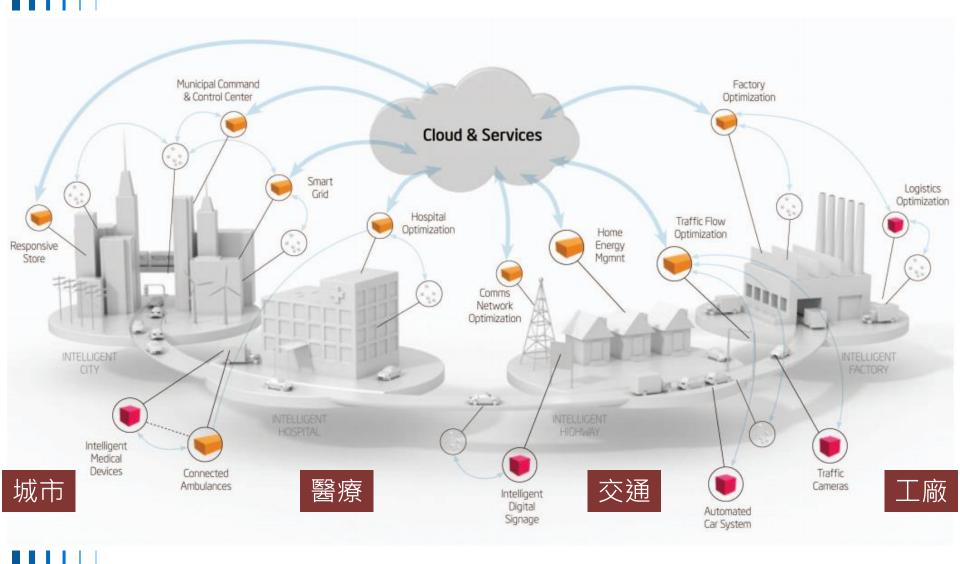
VI. Technical Note: The Computer System Concept

The Next Wave of Computing – minisupercomputers; connecting all the power of unused desktops in an organization


- Distributed (Grid) Computing parallel computing over a network
 - Advantages purchase nodes as a commodity, economies of scale
 - Disadvantages untrustworthy calculations, lack of centralized control

Internet of Things (IoT)

Moore's Law 1965 – the number of transistors on a chip will double every 18-24 months; more broadly interpreted – the power or speed of a computer will double every 18-24 months


The Price would halve in that same time, which has also proven to be true

Recent statistics indicate this time has decreased to 12 months

3-9

雲端運算 與物聯網 應用情境

Source : Internet of Things Also a Security Threat by Anthony Myers

1()

Section 2 Computer Peripherals: Input, Output, and Storage Technologies

Peripheral - a generic name for all input, output, and secondary storage devices not part of the CPU but part of the system

Online – electronically connected to and controlled by the CPU

Offline – separate from and not controlled by the CPU **II. Input technologies**

Source Document – the original record of the data, very important for auditing purposes; now accepted in both electronic or physical form

Graphical User Interface (GUI) – presents icons, buttons, windows, etc. for use with Pointing Devices (as opposed to a text-based interface) **II. Input technologies**

Input Devices – keyboards, mice, light pens, trackballs, touch screens

Speech Recognition Systems – understands spoken commands/words

- Discrete Speech Recognition speak each word separately
- Continuous Speech Recognition recognizes conversationally-paced speech

Speaker-Independent Voice Recognition – understands speech from a voice it has never heard before

II. Input technologies

Optical Scanning – converts text or graphics to digital input for direct entry of source documents

Bar code, QR code, to 3D Scan

- ***** Other Input Technologies
 - Magnetic Stripe on credit cards
 - Smart Cards contain an embedded chip

Digital Cameras

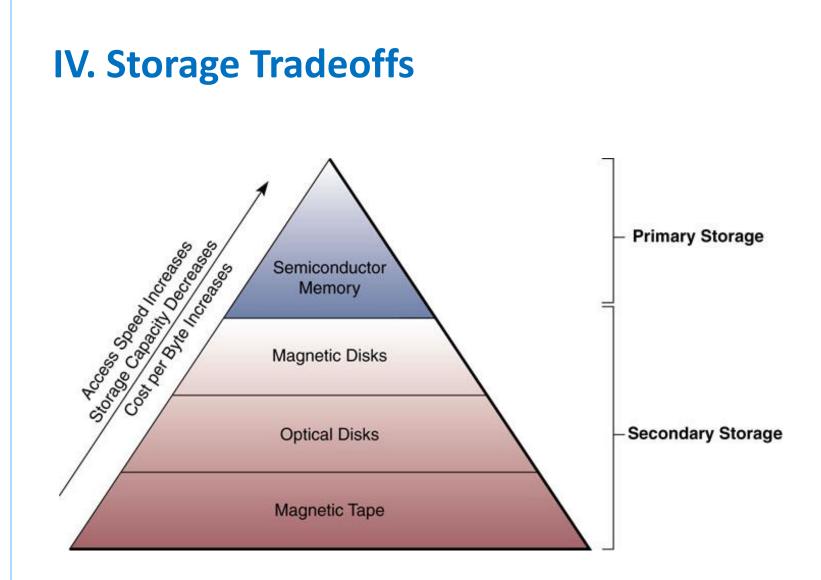
- Magnetic Ink Character Recognition (MICR) used in banking industry (i.e. Machine-readable)
- Radio-frequency Identification (RFID)

Gati Limited: Real-Time Delivery with Handheld Technology

- What is a POD? Why is it important?
 - proof-of-delivery (POD) documents are in essence the only binding evidence that products were delivered safe, sound, and on time
- How long did it take to return a POD?
- Why and How does this help online tracking?
- How long did ROI take?
 - Whether return on investment (ROI) drives more technology decisions than total cost of ownership(TCO) shows how your company views IT."

Forget the ATM: Deposit Checks Without Leaving Home

- What does federal Check 21 Act allow?
 - The Check Clearing for the 21st Century Act (or Check 21 Act) in 2003 allows the recipient of the original paper check to create a digital version of the original check, thereby eliminating the need for further handling of the physical document
- What is the concern of consumers remotely depositing checks?
- What basic security is provided?
- What limits/restrictions are placed on the consumers?

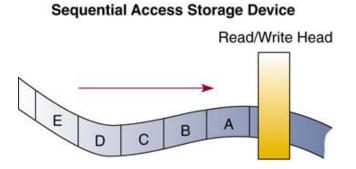

III. Output Technologies

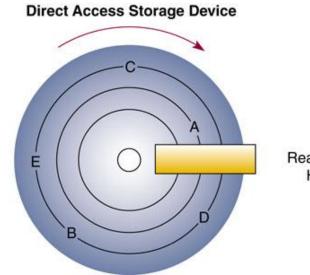
Most popular are video and printed output

Video Output – most popular form of output

Printed Output (Hardcopy) – most popular after video; still required for some legal purposes

- Tradeoffs are Cost vs. speed vs. capacity, but all regularly increase in speed, cost and capacity
 - Primary Storage (Random Access Memory or RAM) – Semiconductor memory, Volatile; faster but more expensive
 - Secondary Storage Magnetic Disks, Optical Disks, Magnetic Tape; Non-Volatile; slower but cheaper


Computer Storage Fundamentals


- Binary Representation Two-state, on/off, +/-, 0/1
- Bit Binary digit, 0/1
- Byte Grouping of bits (typically 8 bits/byte), represents a single character
- ASCII formalized code determining what byte values represent which character
- Storage capacities kilobytes (KB), megabytes (MB), gigabytes (GB), terabytes (TB), petabytes (PB), Exabytes (EB), zettabytes (ZB), yottabytes (YB)

Direct and Sequential Access

Direct Access – Random Access Memory (RAM) and Direct Access Storage Devices (DASD) – Direct Access and Random Access are the same concept; locate an address on the storage device and go directly to that location for access to the datum

Sequential Access – All tape devices are accessed serially – device must be read one record at a time from the first stored datum until the desired datum is located

Read/Write Head

V. Semiconductor Memory

- ROM (Read Only Memory) non-volatile, may be read but not over-written or erased; PROM and EPROM may be reprogrammed
- RAM (Random Access Memory) volatile, may be read and over-written
- Flash (Jump) Drives solid-state memory
- Solid-State Drive (SSD) transistor device created to be accessed like a hard drive; no moving parts, non-volatile, much faster access speed

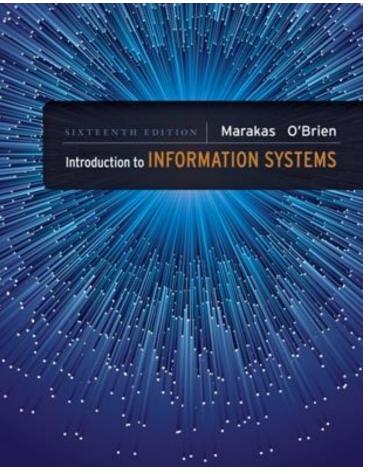
VI. Magnetic Disks – the most common form of secondary storage

RAID Storage (Redundant Arrays of Independent Disks) – interconnected groups of hard drives, fast speeds, fault tolerant (redundant backups) through networks

- ✤ Network attached storage (NAS) 網路儲存設備,有企業及家用,價格已普及
- ✤ Storage area network (SAN) 企業用的儲存網路,由多個儲存設備所組成的儲存網路,擴展性及容量更大,價格較高

VII. Radio Frequency Identification (RFID)

RFID – for tagging and identifying mobile objects (store merchandise, postal objects, sometimes living organisms); provides information to a reader when requested


- Passive no power source, derives power from the reader signal
- Active self-powered, do not need to be close to the reader

RFID Privacy Issues – may be used as spychips; gathers sensitive information about an individual without consent

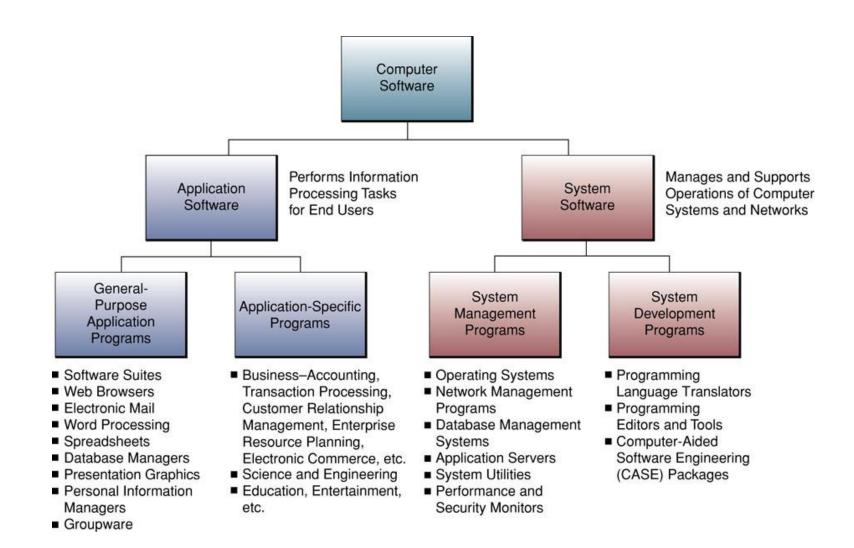
Chapter 4

Computer Software

授課老師:台大工管系 楊立偉

Section 1

Application Software: End-user Applications


I. Introduction to Software

What is Software? – software is programs – instructions that tell the computer and associated peripherals what to do

- Types of Software
 - System Software programs that run the computer

Application Software – programs perform a function/job for you

I. Introduction to Software

3-30

II. Business Application Software

- Available to support any part of business
- Reengineer/Automate Business Processes
 - Customer Relationship management (CRM)
 - Enterprise Resource Planning (ERP)
 - Supply Chain Management (SCM)
- Internal Organizational Activities
 - Human Resource management (HRM)
 - Accounting
 - Finance
- Decision Support tools
 - Data Mining
 - Enterprise Information Portals
 - Knowledge Management Systems

ORACLE E-BUSINESS SUITE

Advanced Planning e-Commerce Financials Manufacturing Procurement Projects Training Business Intelligence Enterprise Asset Management Human Resources Marketing Product Development Sales Treasury Contracts Exchanges Interaction Center Order Fulfillment Professional Services Automation Service

FIGURE 4.3

The business applications in Oracle's E-Business Suite software illustrate some of the many types of business application software being used today. III. Software Suites and Integrated Packages

- Software Suites bundle together a variety of generalpurpose software applications (i.g. MS Office)
 - Advantages:
 - Lower cost than buying each package individually
 - All the programs use a common graphical user interface (GUI)
 - The programs are designed to work together
 - Disadvantages:
 - Many features are never used ; Suites take up a lot of disk space
- Integrated Packages combine some but not all of the functions of several programs; offer advantages in a smaller package

Less powerful than software suites – leave out some functions

Take up less disk space and cost than software suites

XI. Software Alternatives

- Custom Software designed and created specifically to do a particular job for one company
- Commercial Off-the-Shelf Software developed to sell many copies (usually for profit); source code may not be modified by user
- Open Source Software anyone may modify the software, the documentation and source code are available to anyone
- Application Service Providers provide necessary applications for a fee (rather than a firm developing or purchasing the software)
- Cloud Computing a recent advance in computing and software delivery; software and virtualized hardware are provided as a service over the Internet (a.k.a Software as a Service, SaaS)

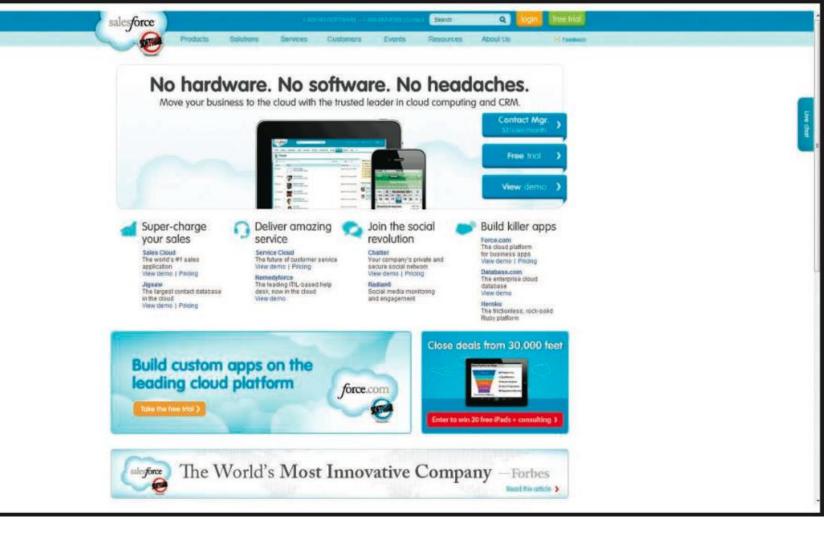
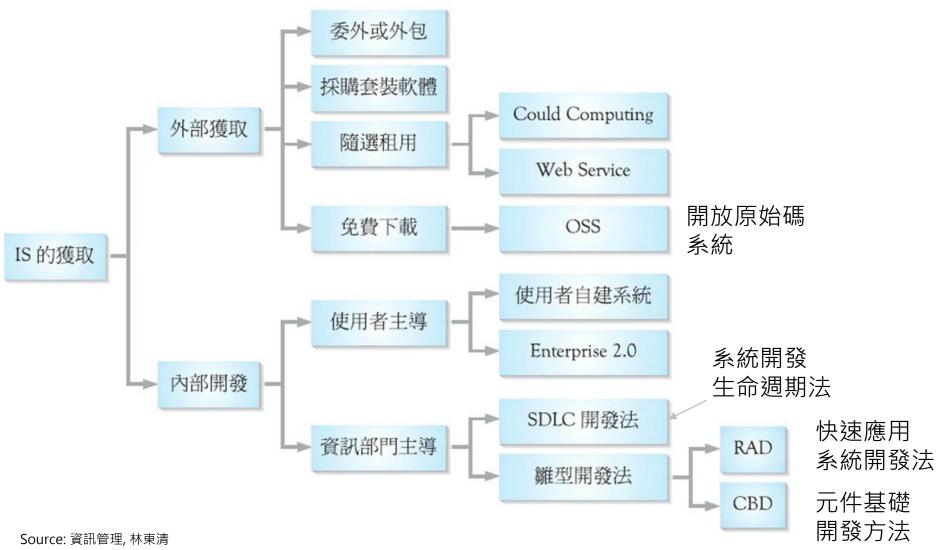



FIGURE 4.12 Salesforce.com is a leading application service provider of Web-based sales management and customer relationship management services to both large and small businesses.

McAfee Inc.: Security under a Softwareas-a-Service Model

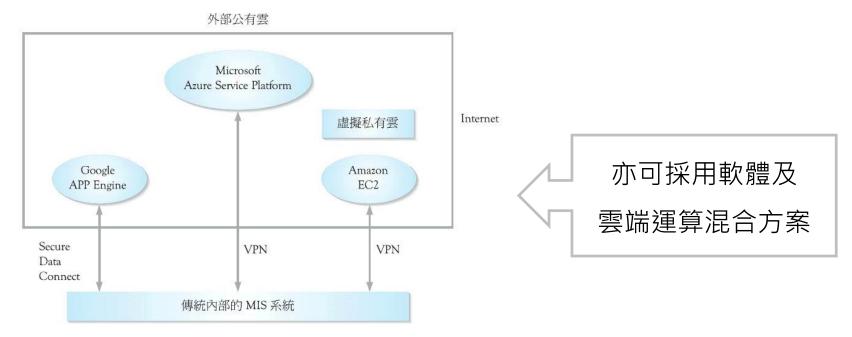
- What SaaS does McAfee offer?
- What are the advantages of this service?
- How is different from other products on the market?

主要獲取資訊系統的方法

Copyright $\ensuremath{\mathbb{C}}$ Proprietary and Confidential. All rights reserved.

資訊系統委外 Outsourcing

- 部分或全部的資訊系統功能,以契約的方式委託外部的資
 訊系統供應商來發展、管理或提供
- ◆ 委外的優點



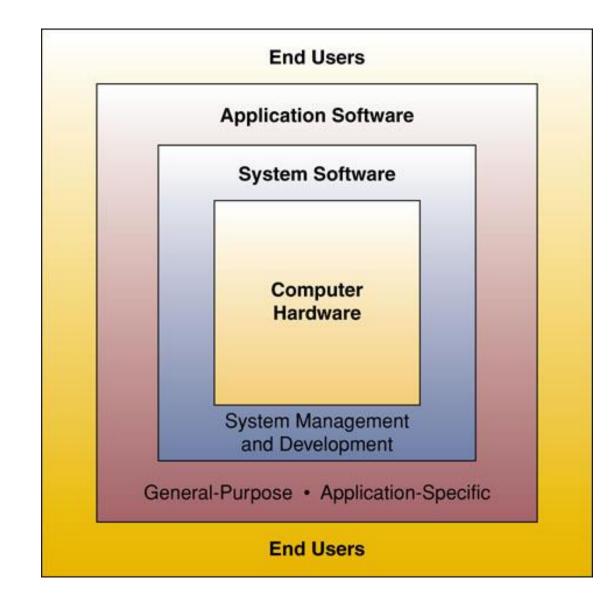
企業本身方面	 企業內部相關人員的配合度與抗拒程度 委外專案管理的規劃與執行品質 企業對專案團隊的授權程度 	
供應商方面	 供應商的支援能力及服務品質 供應商對委外承包商的瞭解程度 	
雙方合作方面	 雙方的合作態度與溝通程度 合約的合理規範與執行 雙方合作的合夥關係與互信程度 	
口碑經驗方面	 公司名譽與成功案例 現在與過去顧客的關係與口碑 保密、分擔風險的承諾 	
專業能力方面	 具有產業專業知識的程度 產品技術具有彈性 具多種資訊科技架構處理的經驗 具有全球化支援的能力程度 	
經營體質方面	 健全的財務、穩健經營 研發經費預算的高低 	
支援與服務方面	 服務品質及對顧客意見的接受度 協商期間的彈性程度 協力廠商的陣容 與公司理念、文化、策略的相容程度 	

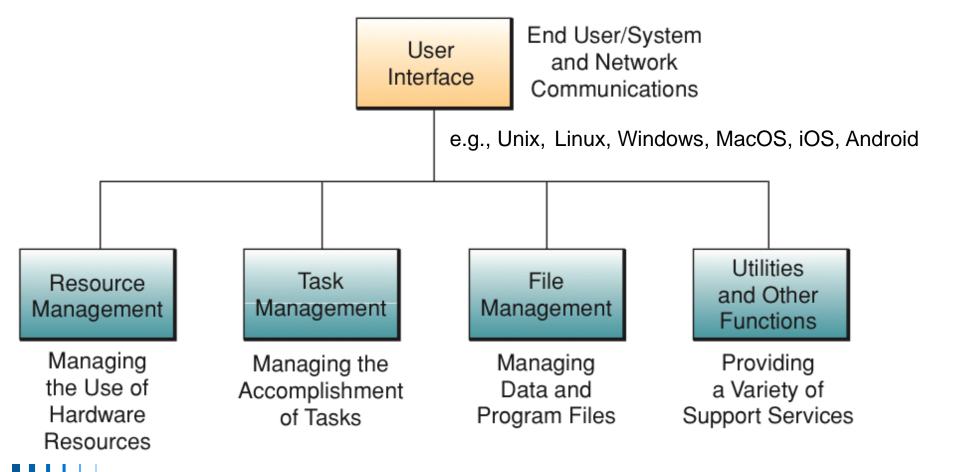
Copyright © Proprietary and Confidential. All rights reserved.

傳統的委外與雲端運算的比較

比較項目	傳統資訊委外服務	雲端運算		
系統擁有與管理	自行擁有與管理	雲端供應商擁有與管理		
軟體採購模式	一次買斷	租賃/隨選,彈性收費		
服務配送方式	到府服務	線上服務		
軟體應用模式	客製化	標準化、模組化		
委外經營模式		一對多		
價位	昂貴	大幅下降		

Copyright © Proprietary and Confidential. All rights reserved.


Section 2 System Software: Computer System Management


I. System Software Overview

System Management Programs – programs that manage the hardware, software, network, and data resources

System Development Programs – programs that help users develop IS programs and procedures; CASE tools

I. System Software Overview

FIGURE 4.15 The basic functions of an operating system include a user interface, resource management, task management, file management, and utilities

and other functions.

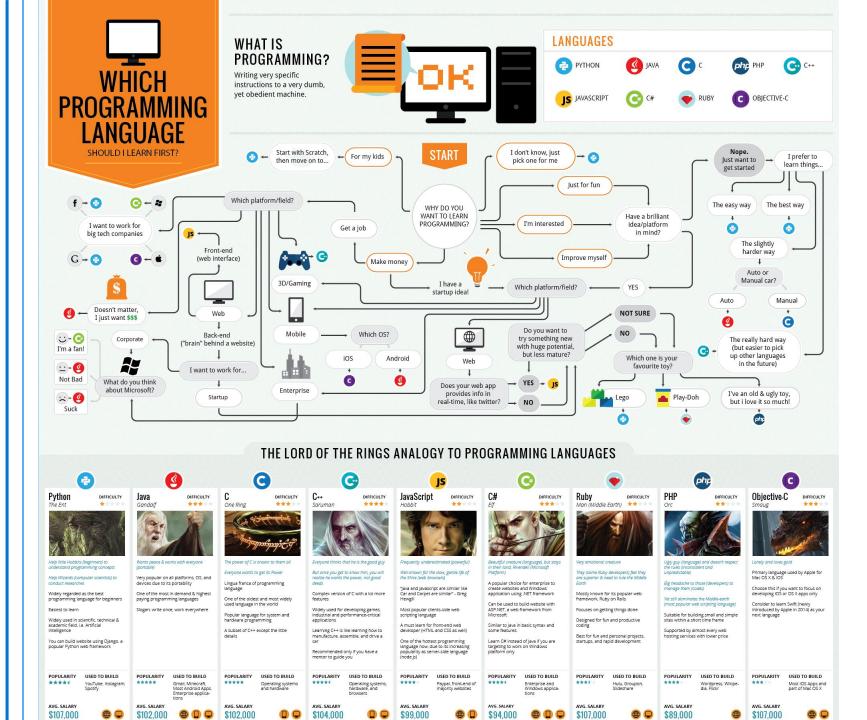
Software Category	What It Does	IBM Product	Customers	Main Competitor	Customers
Network management	Monitors networks to keep them up and running.	Tivoli	T. Rowe Price uses it to safeguard customer records.	HP OpenView	Amazon.com uses it to monitor its servers.
Application server	Shuttles data between business apps and the Web.	WebSphere	REI uses it to serve up its Web site and distribute data.	BEA WebLogic	Washingtonpost.com builds news pages with it.
Database manager	Provides digital storehouses for business data.	DB2	Mikasa uses it to help customers find its products online.	Oracle 11g	It runs Southwest Airlines' frequent-flyer program.
Collaboration tools	Powers everything from e-mail to electronic calendars.	Lotus	Retailer Sephora uses it to coordinate store maintenance.	Microsoft Exchange	Time Inc. uses it to provide e-mail to its employees.
Development tools	Allows programmers to craft software code quickly.	Rational	Merrill Lynch used it to build code for online trading.	Microsoft Visual Studio .NET	Used to develop management system.

FIGURE 4.17 Comparing system software offered by IBM and its main competitors.

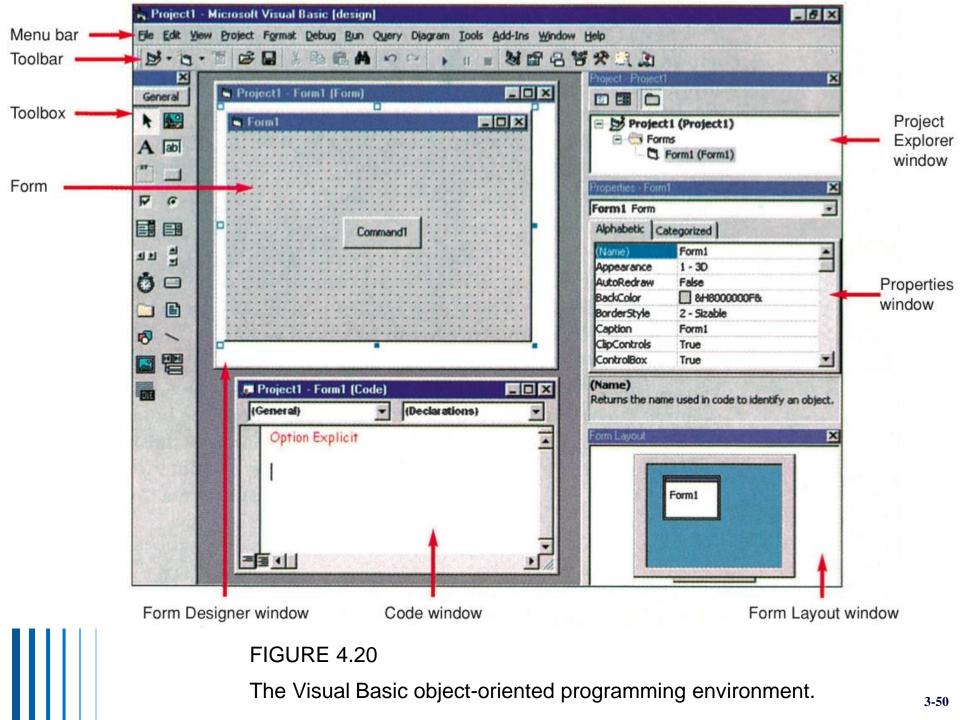
	Four Levels of Programming Languages					
•	Machine Languages: Use binary coded instructions 1010 11001 1011 11010 1100 11011	 High-Level Languages: Use brief statements or arithmetic notations BASIC: X = Y + Z COBOL: COMPUTE X = Y + Z 				
•	Assembler Languages: Use symbolic coded instructions LOD Y ADD Z STR X	 Fourth-Generation Languages: Use natural and nonprocedural statements SUM THE FOLLOWING NUMBERS 				

FIGURE 4.18 Examples of four levels of programming languages. These programming language instructions might be used to compute the sum of two numbers as expressed by the formula X 5 Y 1 Z.

IV. Programming Languages


- Fourth-Generation Languages (4GL) nonprocedural languages; users tell the computer What results they want, but the computer decides How to get there (Generator)
- Fifth Generation Languages (5GL) natural languages, very close to English, conversational
- Object-Oriented Languages combine the data elements and the programs that act on them into Objects; Reusability

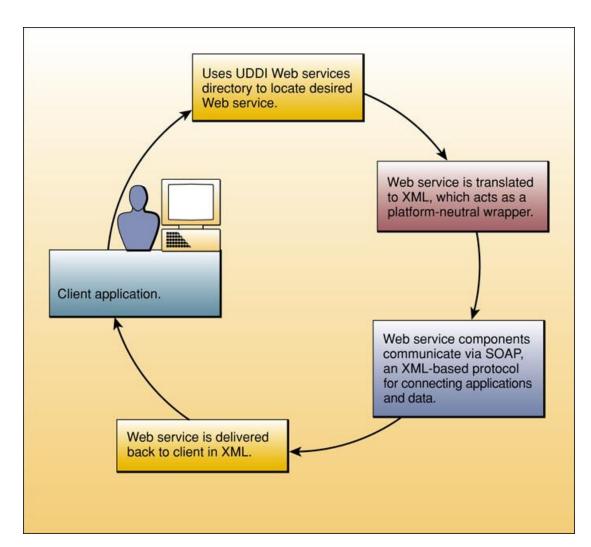
Modern (and Automatic?) Code Generation


Why is automatic code generation important?

Why would this be important for nonprogrammers?

人人都該學程式設計 但不是人人未來都當程式設計師 (未來應該會減少)

3-49


MIT Scratch project : Programming for Junior

V. Web and Internet Languages and Services

Java and .NET

- Java a platform independent, object-oriented programming language; very powerful
- Applets small Java programs that can be executed by any computer running any OS anywhere on the network
- NET Microsoft's collection of programming support for Web services
- Web Services software that electronically links applications of different users and different platforms

V. Web and Internet Languages and Services

Airbus: Flying on SAP and Web Services

Why does Airbus like an open architecture?

Why did Airbus want a Web-services based travel management system?

What benefits does this system provide?

❖ see also: 全球機票訂位系統

Abacus, Amadeus, Galileo, etc.

VI. Programming Software

- Language Translator Programs instructions must be translated into binary to be executed by the computer
 - Assembler translates symbolic instructions written in assembly language
 - Compiler translates high level language statements; translates the entire program (Source code) into binary (Object code) then executes the entire binary program
 - Interpreter translates and executes one line of the program at a time
- Programming Tools help programmers identify and minimize errors as they write the code
 - CASE Tools (Computer-Aided Software Engineering) automated software support tools for developing systems
 - IDE (Integrated Development Environment)